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Abstract View path design is used to generate proper animations for time-varying volume datasets, and it is
crucial to show the evolution of features in the animation. In this paper, we present a novel view path design
method to display the evolution of features with their topology. Firstly, feature extraction and tracking
methods are employed to capture the temporal feature evolution. Then, the viewpoint quality is estimated by
combining the visual information based on the viewpoint mutual information with the topology information
based on the skeletons of features. Temporal viewpoint coherence is further proposed to partition the time
range, and the volume datasets in each time segment share a fixed viewpoint. At last, the viewpoints in
adjacent time segments are linked with a smooth view path, by means of which the user is able to explore
the complex feature evolution in the time-varying volume dataset. Experimental results demonstrate the
utility of the proposed topology aware view path design method.

Keywords View path design � Feature evolution � Topology information measure

1 Introduction

With the increasing computational power to perform simulations of complex physical phenomena, large-
scale time-varying volume datasets are nowadays prevalent. To understand the complex phenomena, feature
extraction and feature tracking methods are crucial steps in the pipeline of current time-varying volume
visualization tools. Features, which are defined as voxel regions of interest satisfying a set of predefined
threshold value, usually experience complex evolution events over time, such as creation, dissipation,
continuation, bifurcation, and amalgamation.

Animation is a powerful technique for time-varying volume visualization. In general, a key step of
animation is view path design, which often contains two main steps: viewpoint selection and view path
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generation. Although view path design for static volume datasets is a well-developed research field, it is still
a challenging task to create a well-designed view path for time-varying volume datasets. On the one hand, it
is difficult to select suitable viewpoints. The selected viewpoints should generate informative images for
each time step. Meanwhile, these viewpoints should display the temporal feature evolution at the most
extent, especially for event-rich time-varying volume datasets. On the other hand, view path generation is
challenging for time-varying volume datasets. Viewpoint transition is always simultaneous with transitions
of temporal adjacent volume datasets (data transition). These transitions are not mutually independent and
have influence on each other.

The visual information of features is usually employed to select suitable viewpoints and obtain an
informative animation for time-varying volume visualization. This information depends on various prop-
erties of features and transfer function settings, such as projected area, curvatures, perceived colors or
opacity. The rendered image under the selected viewpoint based on this information is able to display a good
distribution of features; however, it usually ignores the topological evolutions of features. In previous view
path generation methods, data transition and viewpoint transition are usually two independent processes. As
a result, the generated view path often suffers sudden changes during viewpoint transition.

This paper presents a novel topology aware method for view path design of time-varying volume
datasets. In viewpoint selection, a new viewpoint quality measure is introduced to quantify the visual
information based on the mutual information between viewpoint sets and feature groups (the set of evolution
related features). Then a novel viewpoint quality measure of the topology information is proposed based on
the skeleton information of features. The visual and topology information are integrated to determine the
optimal viewpoint set for each time step. In view path generation, temporal viewpoint coherence is proposed
to divide the time sequence into several appropriate time segments. The volume datasets in each time
segment share a fixed representative viewpoint during data transition. Two representative viewpoints in
adjacent time segments are linked smoothly to compose the viewpoint transition. The generated view path
can help users capture the evolution events to great extent in time-varying volume visualization while
remain the minimum viewpoint transition.

The paper is organized as follows. In Sect. 2, we review related works. Section 3 provides an overview of
the proposed algorithm. The data preprocessing is introduced in Sect. 4. The evaluation of viewpoint quality
and the view path generation are described in Sects. 5 and 6, respectively. Experimental results and
discussion are described in Sect. 7. We summarize and conclude our work in Sect. 8.

2 Related work

2.1 Viewpoint quality measures

Viewpoint quality measure is an important topic in the field of volume visualization. Koenderink and Doorn
proposed an aspect graph (Koenderink and Van Doorn 1976, 1979), which partitions the view sphere
according to the topology similarity of the object projection. Barral et al. proposed heuristic measure based
on the fraction of visible surfaces with respect to the total surfaces number, and the projected area ratio
between the visible surfaces and the whole visual part of the scene (Barral et al. 2000). Information theory
has been introduced to evaluate the quality. Viewpoint entropy (Vázquez et al. 2001), the first information
theory-based measure proposed for polygon meshes, considers the projected areas of faces as the amount of
information captured under a certain view. Viewpoint entropy has been extensively applied to select
suitable viewpoints in volume visualization. Bordoloi and Shen (2005) applied the concept of viewpoint
entropy for volume viewpoint selection, and the information was adapted to the visibility of each voxel
weighted by its noteworthiness value. Takahashi et al. (2005) explored the work for evaluating the view-
point optimality of each decomposed feature component, which is assigned with a weight to emphasize its
importance. Tao et al. (2009) integrated shape information into viewpoint entropy to locate the structural
information maximized viewpoint. Viewpoint mutual information (VMI) is another viewpoint quality
measure based on an information channel between viewpoints and volumetric objects to determine the most
expressive viewpoint Viola et al. (2006). Feixas et al. (2009) utilized VMI built between viewpoints and
polygons to select the optimal viewpoint. Tao et al. (2013) defined two interrelated information channels
between streamlines and viewpoints to select best viewpoints. In this paper, we build an information channel
between viewpoints and feature groups.
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2.2 View path design for static data

View path design for static volume data has been well studied in recent years, and the objective is to
intuitively observe and explore volume data along a view path inside the data or on the view sphere. Several
methods have been proposed to produce optimal animation sequences to interpolate the parameter space
between keyframes, such as anima system (Moltedo and Morigi 1993), the template-based approach (Akiba
et al. 2010), and the keystate-based method (Mühler and Preim 2010). Andújar et al. (2004) designed a
collision-free path for model scene exploration, and Hsu et al. (2013) refined the coarse path derived from a
roadmap graph based on multi-criteria. Sokolov et al. (2006) restricted possible viewpoints on the view
sphere, and ordered the viewpoint according to importance information to construct a view path. Ma et al.
(2014) located the viewpoint on the mesh extracted from the auxiliary entropy field volume, and traversed
all the selected viewpoints. Tao et al. (2013) utilized VMI measure to select optimal viewpoints, and
generated a view path passing through all viewpoints for flow visualization.

2.3 View path design for time-varying volume data

Previous view path design methods can be roughly classified into two categories: graph-based method and
information-based method. Yu et al. (2010) constructed an event graph to build a digital storytelling
approach. This largely facilitated the generation of visualization animations, especially for users without
enough priori knowledge. Other information-based methods utilize viewpoint information to design view
path. Bordoloi and Shen (2005) simplified the view path design by confining the viewpoints transition to a
certain view, which is with the maximum entropy summation for the whole time sequence. Ji and Shen
(2006) introduced a dynamic view selection approach specifically for time-varying volume datasets, in
which the quantity of information of each viewpoint is firstly determined for each static volume data, and
then a global view path is further determined based on dynamic programming (Bellman 1954). Our method
belongs to the second category. A topology aware information metric is proposed to select the optimal
viewpoint sets and temporal coherence is used to maximize feature evolution information with least a
viewpoint transition.

3 Algorithm overview

Our view path design method is comprised of three major steps: preprocessing, viewpoint entropy com-
putation, and view path generation, as shown in Fig. 1.

The preprocessing stage consists of feature extraction, directed acyclic graph generation and skeleton
extraction. Firstly, features are extracted from the time-varying volume dataset. Then, feature evolution is
tracked and presented as the feature evolution graph. Meanwhile, the skeleton of each feature is also
extracted.

The quality of a viewpoint is estimated by the combination of visual information and topology infor-
mation. The visual information is based on the information channel between viewpoints and feature groups.
The topology information is evaluated based on the skeleton of features and quantified with Kullback-
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Fig. 1 The pipeline of our topology aware view path design method
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Leibler distance. Then, the visual and topology information are integrated into a topology aware viewpoint
selection framework to select the optimal viewpoint for each time step.

Given the quantitative evaluation of viewpoints at each time step, the proposed view path generation
method partitions the view sphere into several viewpoint clusters based on viewpoint spatial coherence.
Then viewpoint temporal coherence is utilized to compute the lasting time of each viewpoint cluster as its
lifecycle. At last, a representative viewpoint for each viewpoint cluster is determined, and a smooth
viewpoint path is generated by linking neighbor representative viewpoints.

In the generation of view path, the viewpoint is placed at the representative viewpoint of the selected
viewpoint cluster. This viewpoint remains static until its lifecycle ends, and then smoothly moves to next
representative viewpoint along the generated path.

4 Data preprocessing

Given a time-varying volume dataset, we first extract features at each time step by means of a seeded region
growing (Adams and Bischof 1994). The skeleton of each feature is further computed from the local
maximum voxels based on the thinner algorithm (Tran and Shih 2005).

The spatial overlap based feature tracking method (Silver and Wang 1997) is applied to track the
evolutions of features. This method assumes that a feature usually overlaps itself in adjacent time steps.
Octree data structure is used to speed up the matching process.

Several graph-based visualization tools are proposed to exhibit the feature evolution over time. In the
feature evolution graph, features in the same time step are aligned along the vertical axis, and consecutive
time points are aligned along the horizontal axis. Directed acyclic graph (DAG) is recognized as the most
common method to display detailed feature evolution. In the feature evolution graph, each DAG corre-
sponds one evolution relation of a feature. In the DAG, a node represents a feature and the edge between two
nodes indicates their evolution between adjacent time steps. In the exploration of time-varying volume data,
users can select any node in the feature evolution graph and the related DAG will be highlighted. Two
DAGs are selected and highlighted in Fig. 2a, in which one is with green nodes and edges and the other is
with blue nodes and edges. In this way, users can pay more attention to the evolution of features of interest.

The term feature group is used to describe a feature set at each time step belonging to the same DAG. To
emphasize the focused feature groups, the other groups are merged into a single background feature group.
For example, there are three feature groups in Fig. 2b at time step 8, in which the first one is colored in
green, the second one is colored in blue, and the last one is the background feature group that consists of the
other features. The advantages of feature group will be further discussed in Sect. 5.1.

Fig. 2 A feature evolution graph of the turbulent vortex dataset with two DAGs selected (a) and the corresponding three
feature groups at time step 8, one is colored in green, the second one is colored in blue, and the background feature group
colored in white (b)
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5 Viewpoint quality measure for static data

5.1 Visual information

In this paper, viewpoint mutual information (VMI) is employed to quantify the visual information of
viewpoints. We build an information channel based on feature groups tailored for the time-varying volume
datasets. Firstly, a viewpoint set V and a feature group set G are considered as two random variables, and the
visibility descriptor is constructed from an information channel V ! G: The probability of viewpoint v is
pðvÞ ¼ 1

Nv
; where Nv is the number of viewpoints. p(g|v) represents the visual perception of a feature group g

from the viewpoint v is defined by the normalized visibility of the feature group g from the viewpoint v, andP
g2G pðgjvÞ ¼ 1: The average visibility of a feature group from all viewpoints is defined as pðgÞ ¼P
v2V pðvÞpðgjvÞ: The visibility has been proposed to measure the impact of each individual voxel on the

image during direct volume rendering (Bordoloi and Shen 2005).
VMI between feature groups and viewpoints is used to quantify the visual information HðvÞvis of each

viewpoint v as follows:

HðvÞvis ¼
X

g2G
pðgjvÞ log pðgjvÞ

pðgÞ : ð1Þ

Since VMI is applied to depict the relevance between viewpoints and feature groups, high HðvÞvis corre-
sponds a strong relevance between the current viewpoint and all feature groups. This means that little
information is displayed under the current viewpoint. On the contrary, low HðvÞvis indicates weak relevance
between the current viewpoint and all feature groups, and this means the viewpoint is an informative one.

Evolution information has been represented as a feature evolution graph. Users can select DAGs of
interest in the feature evolution graph. An automatic transfer function is built to highlight the selected DAGs
by assigning a larger opacity value to the corresponding features. Given the transfer function, we obtain the
visibility of the feature group by accumulating the visibilities during rendering. Then, we can obtain the final
visual information for each viewpoint according to Eq. 1.

Results of the VMI based on features and feature groups are shown in Figs. 3 and 4, respectively. The
purple colored feature group is experiencing a typical bifurcation event in a turbulent vortex dataset at time
step 12 and 13. Figure 3 shows the rendered images from the optimal viewpoint based on the mutual
information between viewpoints and features. Figure 4 shows the corresponding images from the mutual
information between viewpoints and feature groups. The bifurcation event in these images are circled by
white. By comparing these two figures, we can conclude that more event information can be obtained from
Fig. 4. It is clear that the VMI measure based on the feature group is more effective way to find the optimal
viewpoints for the exploration of evolution events.

Fig. 3 The figure shows viewpoint selection results of the turbulent vortex dataset based on the VMI measure with the mutual
information between viewpoints and features. The selected purple feature group is experiencing a bifurcation event. The
rendered image from the optimal viewpoint at time step 12 (a) and time step 13 (b)
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5.2 Topology information

Topology information plays an important role in the exploration of temporal evolution, as illustrated in
Figs. 5 and 6. A feature group with an amalgamation event over time is shown in Fig. 5 under the visual
information preferred viewpoint, while Fig. 6 shows the same event under the topology aware viewpoint.
Although the visual information captured from these two viewpoints is similar, the information revealed
about feature evolution is apparently different.

Since the significant change of the skeleton indicates events of interest, we take the skeleton information
to emphasize the topological properties of feature groups. The skeleton curve of each feature is formed by
numerable skeleton points. However, it is a major challenge to measure information of the topology
description under various viewpoints. As the sparsely distributed skeleton curve usually has an irregular
shape and stretch, it is hard to evaluate the quality of each viewpoint. The Kullback-Leibler (K-L) distance
is well studied to quantify the difference between two probability distributions p ¼ fpig and q ¼ fqig: We
employ the K-L distance to quantify the topology information. The probability distribution p is given by the
ratio of the feature group and all feature groups. The other probability distribution q is given by the ratio of
the number of the skeleton points and the number of all skeleton points. Thus, the topology information
HðvÞtopo of each viewpoint is defined as

HðvÞtopo ¼ KLðvÞ ¼
Xn

i¼1

pi log pi=qi ¼
Xn

i¼1

vi

vt
log

vi=vt
Vi=Vt

; ð2Þ

where

– vi is the ith visibility of feature group;
– vt ¼

PNf

i¼1 vi, is the total visibility of all feature groups;
– Vi is the actual number of skeleton points of the i-th feature group;

Fig. 4 The figure shows viewpoint selection results of the turbulent vortex dataset based on the VMI measure with the mutual
information between viewpoints and feature groups. The selected purple feature group is experiencing a bifurcation event. The
rendered image from the optimal viewpoint at time step 12 (a) and time step 13 (b)

Fig. 5 An amalgamation event under a visual information preferred viewpoint at time step 1 (a) and time step 2 (b)
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– Vt ¼
PNf

i¼1 Vi is the number of feature groups.

This viewpoint measure can be evaluated by the distance between the normalized distribution of visibilities
and the normalized distribution of skeletons. A low value of KL(v) means that the normalized distribution of
feature group visibilities is close to the normalized distribution of actual feature group skeletons. On the
other hand, a high value of KL(v) indicates more shift from the ideal distribution. Thus, the viewpoints with
higher KL(v) values indicate more topology information.

Results of the topology quality measure are shown in Fig. 7 with the same evolution event in Fig. 3.
According to the experimental results, users are able to capture more topology information from the selected
viewpoint.

5.3 Viewpoint quality evaluation

To quantify the viewpoint quality for time-varying volume datasets, we combine the visual information
HðvÞvis and the topology information HðvÞtopo into a hybrid manner as follows:

HðvÞ ¼ aHðvÞvis þ ð1� aÞHðvÞtopo; ð3Þ

where H(v) is the viewpoint quality measure. The parameter a is a weight in the range [0, 1] to balance the
appearance with regard to HðvÞvis and HðvÞtopo; which are both normalized values.

We find that the combination is a good control over the relative importance of two appearances. The
parameter a affects the static viewpoint selection. The lower weight parameter is, the more topology
information is presented. On the contrary, the higher the weight parameter is, the more visual information is
captured.

The parameter a also affects the view path generation. The skeleton is composed of infinite skeleton
points, and is relatively sensitive to the changes in adjacent time steps. Therefore, the frequency of view-
point transition will arise with a lower value, as illustrated in Fig. 8.

Fig. 7 Viewpoint selection results of the turbulent vortex dataset based on the topology information measure. a The optimal
viewpoint and b the worst viewpoint. c The rendered image of feature skeletons from two viewpoints: a is from the optimal
viewpoint and b is from the worst one. d The viewing sphere of the topology information measure and the color mapping from
blue to red corresponds to the topology information measure from low to high

Fig. 6 An amalgamation event under a topology information aware viewpoint at time step 1 (a) and time step 2 (b)
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The parameter a can be adjusted according to the specific data and the generated result. In practice, the
initial weight a ¼ 0:5 is already good enough. The weight can be fine-tuned to explore optimal results. A
larger weight facilitates to generate a stable view path and a smaller weight tends to acquire more detailed
information about feature evolution.

6 View path generation

Animation for time-varying volume visualization involves several parameter space transitions, such as the
transitions of view parameters, lighting parameters, temporal data, and transfer functions. In fact, most time-
varying volume datasets generated by the simulation process do not possess enough temporal granularities.
In this case, the transition in both data transition and viewpoint transition at the same time will result in
camera shake effects. To address this problem, we separate the data transition and viewpoint transition, i.e.,
there is only one transition over a period of time. In the data transition, the viewpoint stays at a fixed
position, and this viewpoint can cover most evolution events. In the view transition, data remains static, and
the viewpoint moves along a smooth path to next viewpoint.

6.1 Data transition

We utilize a novel concept of viewpoint coherence to provide a suitable division of temporal segments. The
viewpoint coherence is comprised of viewpoint spatial coherence and viewpoint temporal coherence.

Viewpoint spatial coherence means that the neighboring viewpoints on the viewing sphere usually
contain close information in rendered images. We cluster viewpoints on the viewing sphere at each time step
by means of a seeded region growing algorithm (Adams and Bischof 1994).

As another character for time-varying volume visualization, viewpoint temporal coherence means that
internal features often exhibit a similar behavior in adjacent time steps. For example, one random viewpoint
is selected for a turbulent combustion dataset and the focused feature group is colored in purple as shown in
Fig. 9a. The corresponding information value curve through the whole time span is presented in Fig. 9b.

Fig. 9 An illustration of viewpoint temporal coherence. a The rendered image of purple colored feature group under a random
viewpoint. b The information value curve of the purple colored feature group through the whole time span

Fig. 8 Results of the generated view path with difference weights. a–e The view path generated with the weight value 0.0, 0.2,
0.4, 0.6 and 0.8, respectively. The color mapping from blue to red corresponds to the time of each viewpoint sample on the
view path from start to end
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This curve can be roughly separated into two stable segments: the first segment from time step 1 to time step
29, and the other one from time step 40 to time step 51.

Given viewpoint temporal coherence, we can obtain the time range, in which viewpoint clusters mainly
remain stable. The clusters are sorted based on the average information value. As illustrated in Fig. 10a,
there are five viewpoint clusters in this time span, and for convenience sake, we call this graph as the
lifecycle graph.

Next, data transition is determined by selecting the viewpoint cluster with the maximum information
value based on the lifecycle graph. In Fig. 10a, the first data transition is viewpoint cluster C1, which lasts
from time t1 to time t14. Following is the viewpoint cluster C3 and C2 , and the data transitions are ½t14; t22�
and ½t23; t30�, respectively.

When the data transitions are determined, we accumulate the viewpoint information in the temporal
segment and select the viewpoint with the maximum view information value as the representative
viewpoint.

6.2 Viewpoint transition

The viewpoint transition starts from the representative viewpoint of the previous temporal segment, and
ends at the representative viewpoint of the current temporal segment. To avoid the camera shake effects, we
complete this transition process without data transition.

To keep the viewpoint transition smooth, we link the endpoints by the B-spline curve. In addition to the
start viewpoint and the end viewpoint, we also find an intermediate viewpoint as another control point for
the viewpoint interpolation.

Given the start point and the end point, we determine a plain passing through the two points. The plain
divides the sphere surface into two parts with the maximum area ratio. By selecting every viewpoint on the
smaller sphere surface as the intermediate viewpoint, we compute the B-spline curve. Then, we project the
B-spline curves onto the viewing sphere. According to this projected curve on the viewing sphere, we can
compute the perceived information and select the curve with the maximum amount of information as the
view transition. After constructing the viewpoint transition between two representative viewpoints, we
generate the view path by connecting all viewpoint transitions.

7 Results and discussion

We implemented our view path design method on a quad-core Intel i5-760 (8M Cache, 3.38 GHz) with 8GB
memory and NVIDIA GeForce GTX 460 graphics card. Direct volume rendering is utilized to implement
entire pipeline. The viewing sphere is generated using the HEALPix package (Gorski et al. 2005) and is
constructed by 1200 sample viewpoints. We demonstrate the effectiveness of our approach using two
datasets. The first is a turbulent vortex dataset and the second is a turbulent combustion dataset.

7.1 Turbulent vortex dataset

The main task of view path design for the 1283 turbulent vortex dataset is to study the evolution and
interactions of vortex tubes. The feature evolution graph has been shown in Fig. 2a. We demonstrate the
effectiveness of this approach by selecting two representative feature evolutions.

Fig. 10 a An illustration of lifecycles. There are five viewpoint clusters in this time span, from C1 to C5. b An illustration of
viewpoint transition. The view transition happens at time step 12 and time step 26
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Figure 11 shows the results of an evolution with a typical bifurcation event. The DAG of the evolution is
shown in Fig. 11a. There is just one optimal viewpoint from birth to death and the transition graph of the
view path is shown as Fig. 11e. The parameter a is set as 0.5. The snapshots of the view path is shown in
Fig. 11. It is obvious that the bifurcation event can be clearly seen from the selected viewpoints. It took 112
s to obtain the visual information 6 and 111 s to obtain the topology information for all the 1200 views of 6
time steps. After being assigned weights, it took 0.3 s to compute the path information.

Figure 12 shows the results of another blue colored DAG, as shown in Fig. 2. Considering that the
turbulent vortex dataset only lasts for 100 time steps, the feature evolution with 31 time steps is relatively
complex and long. During the feature evolution, there are three viewpoint transitions, as shown in Fig. 10b.
The viewpoint transitions happen at time step 12, and time step 26. The smoothed view path can be seen
from the subpicture at the top right of Fig. 12a and the selected snapshots of the view path is shown as other
subpictures of Fig. 12a. It took 571 s to obtain the visual information and 584 s to obtain the topology
information for all the 1200 views of 31 time steps. After being assigned weights, it took 0.9 s to compute
the path information.

In addition, we compare the effectiveness of our method with the existing view path approach addressed
by Ji and Shen (2006). The transfer function setting is the same with our method, and the speed is within
(0.4, 0.5). The generated view path is shown in from the subpicture at the top right of Fig. 12b and the
selected snapshots of the view path are shown in other subpictures of Fig. 12b. Comparison between two
methods show that there is no obvious difference before the 14th time step. Starting from the 16th time step,
our method shows obvious advantage of displaying more topology change of the feature. The viewpoint of
our method is almost vertical to skeleton plane, and the topology change of the purple colored feature can be
clearly observed, while the viewpoint of the dynamic view selection method does not place enough
emphasis on the evolution.

7.2 Turbulent combustion dataset

The turbulent combustion dataset contains 122 time steps, and the resolution is 480� 720� 120. The main
object of this dataset is to understand the correlation of scalar fields such as temperature, mixing rates, and
species concentrations in turbulent flames. In this paper, we focus at designing a view path to observe the
feature evolution in OH attribute.

Figure 13 shows the feature evolution graph of the turbulent combustion dataset from time step 1–73
with one DAG highlighted. The parameter a is set as 0.4, and the view path is displayed in Fig. 14. During
the feature evolution there are two viewpoint transitions, as shown in Fig. 14a. The viewpoint transitions
happen at time step 3, and time step 22. Between time step 3 and 22, there exists one small green feature

Fig. 11 Results of the six time step lasting evolution with a typical bifurcation event. a The DAG of its evolution. e The
transition graph of the view path. b–d Snapshots captured at time step 1–3. f–h Snapshots captured at time step 4–6
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bifurcation event. Through analyzing Fig. 14b–d, we can conclude that the view path can clearly acquire
this evolution information. After the second view transition, the viewpoint remains static from time step
23–73. It can be seen from Fig. 14e, f, h that this selected view direction keeps vertical to most of the feature
evolutions. It took 1829 s to obtain the visual information and 1930 s to obtain the topology information for
all the 1200 views of 73 time steps. After being assigned weights, it took 12 s to compute the path
information.

Fig. 12 Comparison of our approach with dynamic viewpoint selection approach. a Results of our approach applying to the
purple colored feature evolution. The generated view path can be see at the top-right. Other subpictures are the rendered
images of even number time step from time 14–26. b Results of dynamic viewpoint selection approach (Ji and Shen 2006)
applying to the purple colored feature evolution. The generated view path can be see at the top-right. Other subpictures are the
rendered images of even number time step from time 14–26. The color mapping from blue to red corresponds to the time of
each viewpoint sample on the view path from start to end

Topology aware view path design for time-varying volume data 807



8 Conclusion and future work

In this paper, we presented a novel view path design method tailored for time-varying volume datasets. This
method pipeline is based on the phenomena of feature evolution. We compute the visual information and
topology information for each time step to better reveal feature evolution. The view path is designed by
linking adjacent viewpoint transitions. Our experiments further demonstrated its practicality and effec-
tiveness with two time-varying volume datasets.

Currently our view path is confined on the viewing sphere, thus the internal changes may be occluded by
the external structure. In future work, we will extend our method to view path design with improvement of
placing the viewpoint inside the volume. In this way, users could observe more detailed and hidden
evolutions.

Fig. 13 Feature evolution graph of turbulent combustion dataset with one DAG highlighted from the first time step to the 73th
time step

Fig. 14 Results of one selected DAG in the combustion dataset. a The generated view path and the color mapping from blue to
red corresponds to the time of each viewpoint sample on the view path from start to end. b–h Snapshots captured at time step 4,
12, 20, 43, 53, 63 and 73, respectively
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