ORIGINAL PAPER

Anthelmintic Efficacy and Phytochemical Screening of Ethanolic Extract of the Discarded *Schumannianthus dichotomus* **Stem‑a Waste Product of the Local Handicraft Industry of Cooch Behar, West Bengal, India**

Manjil Gupta1,2 [·](http://orcid.org/0000-0001-9763-0217) Rachita Saha1 · Subrata Saha1 · Pradip Kumar Kar[1](http://orcid.org/0000-0003-2656-6873)

Received: 1 April 2024 / Accepted: 17 July 2024 © The Author(s), under exclusive licence to Springer Nature B.V. 2024

Abstract

Purpose This study aims to explore the anthelmintic potential of the ethanolic extract derived from the discarded stem of *Schumannianthus dichotomus* on the cestode *Raillietina* spp. Additionally, phytochemical screening of the extract seeks to elucidate the presence of bioactive compounds responsible for the observed anthelmintic activity.

Methods *Raillietina* spp., the model parasite, was collected from the intestine of freshly slaughtered fowl and treated with diferent doses of ethanolic extract and fractions of *Schumannianthus dichotomus* for motility assays to determine the most efficacious dose. Changes in the ultrastructure of the worms were investigated through TEM and SEM. Qualitative and quantitative analysis of phytochemicals in the crude extract as well as GCMS analysis of the ethyl acetate fraction were also done. **Results** The worms showed dose dependent reduction in motility and survival. The most efficacious dose and fraction were determined to be 20 mg/ml and ethyl acetate fraction respectively. Changes in tegument and internal structures were evidenced by SEM and TEM observations. The crude extract was found rich in alkaloids, favonoids and terpenoids. GCMS analysis of the ethyl acetate fraction identifed fve major compounds out of which Phthalic acid, di(2-propylpentyl) ester may be the major bioactive component responsible for the anthelmintic activity.

Conclusion Our study frmly establishes the anthelmintic potential of the waste part of *Schumannianthus dichotomus* and prospects its valorisation.

 \boxtimes Pradip Kumar Kar karpradip@gmail.com

- ¹ Parasitology Laboratory, Department of Zoology, Cooch Behar Panchanan Barma University, Cooch Behar, West Bengal, India
- ² Department of Zoology, Dinhata College, Dinhata, Cooch Behar, West Bengal, India

Graphical Abstract

Keywords *Schumannianthus* · *Raillietina* · Anthelmintic · Phytochemical · Ultrastructure · GC–MS

Statement of Novelty

In this paper, we have established the anthelmintic potential of the ethanolic extract of discarded stem of Schumannianthus dichotomus, a waste product from the local handicraft industry in Cooch Behar, West Bengal, India by morphological and ultrastructural studies. Additionally, we have characterized the extract for qualitative and quantitative analysis of phytochemicals that may be responsible for the anthelmintic effect. This is the first study on the discarded part of the stem of Schumannianthus dichotomus. This knowledge could aid in creating anthelmintic drugs. Additionally, using the plant's discarded stem could offer sustainable solutions for managing helminth infections in chickens, benefting rural communities that raise livestock non-intensively for extra income.

Introduction

Agriculture stands as one of the most substantial biological sectors, yielding extensive biomass that serves as a crucial input for the bioeconomy. To meet the escalating demands of a burgeoning global population, there has been a noteworthy increase in both livestock and crop production, consequently leading to the generation of agricultural wastes [[1\]](#page-14-0). On an annual basis, India contributes signifcantly to solid waste production, with agricultural wastes accounting for a substantial portion ranging from approximately 350 to 990 million tonnes per year [[2\]](#page-14-1). Traditionally, certain crop residues have found applications in combustion, animal fodder, roof thatching, composting, soil mulching, as well as in the production of matchsticks and paper. The valorisation of agricultural wastes presents an opportunity to generate value-added products, support farmers' livelihoods, create job opportunities for the youth, and promote sustainability in agriculture [\[3](#page-14-2)].

Agricultural wastes serve as abundant reservoirs of bioactive compounds and phytochemicals, contributing to the development of sustainable practices in waste utilization [\[4](#page-14-3), [5](#page-14-4)]. These compounds, derived from various agricultural residues, exhibit diverse biological activities and potential applications in pharmaceutical, nutraceutical, agrochemical industries [[6\]](#page-14-5) and have demonstrated antioxidant, antiinflammatory, antimicrobial, and anticancer properties, showcasing their pharmacological signifcance [[7\]](#page-14-6). Harnessing these bioactive compounds from agricultural wastes not only aligns with the principles of green chemistry and circular economy, contributing to waste valorisation and sustainable resource management $[6, 8]$ $[6, 8]$ $[6, 8]$ $[6, 8]$, but also promotes the development of eco-friendly and economically viable processes for the production of bioactive-rich extracts with potential health and industrial benefts [\[9](#page-14-8)].

Schumannianthus dichotomus is a rhizomatous shrub belonging to the family Marantaceae growing in some low-lying wetland areas of India, Bangladesh, Thailand, Myanmar, and Malaysia [\[10](#page-14-9)]. In the Cooch Behar district of West Bengal, India, parts of Assam, India and many parts of Bangladesh, the plant is cultivated to produce a type of mat locally called "*Sital pati*" (meaning cool mat) which is popular for its utility, durability, and cultural signifcance. Apart from mats, the plant is used to create prayer seats, schoolbags, handbags, etc. [[11](#page-14-10), [12](#page-14-11)]. Craft preparation involves utilizing the stems and branches of the plant. The harvested stems, known as *bets*, are washed, and subsequently spliced using a sharp knife. Each *bet* is longitudinally split into two parts, referred to as *chittor*. The *chittor* can be further divided longitudinally into two or more segments, and these segments can be split lengthwise, resulting in two slips—the outer *saloi* used for crafting *bets* and the inner *maji* which is discarded (Fig. [1](#page-2-0)). This discarded part of the stem is sometimes used as a tying or thatching material, but is mostly dumped around the households and adjoining areas as waste $[10]$ $[10]$.

Research on the physiochemical properties of the rhizome, stem and leaves of *Schumannianthus dichotomus* have highlighted the tensile strength of its epoxy composites [[13\]](#page-14-12), scavenging behaviour $[14]$ $[14]$ $[14]$, adsorbent property $[15]$ $[15]$ $[15]$ and potential for phytoremediation [[16](#page-14-15), [17\]](#page-14-16). The leaf and twig extracts of the plant has also shown remarkable phytotoxic activity and compounds like syringic acid, methyl syringate, schumannione, 8-(5-oxo-2,5-dihydrofuran-2-yl) octanoic acid (ODFO) and (E)-6-hydroxy-2,6-dimethylocta-2,7-dienoic acid (8-carboxylinalool) have been isolated in diferent studies [[10,](#page-14-9) [18,](#page-14-17) [19](#page-14-18)]. Ethnobotanical studies report the use of the plant parts among the Dimasa tribe of Assam, India [\[20](#page-14-19)], Garo tribes of Meghalaya, India [[21\]](#page-14-20), Southern Thailand [\[22](#page-14-21)] and Bangladesh [[23\]](#page-14-22) to cure a variety of ailments like fever, urinary tract infections, stomach ache, ear ache, gingivitis and intestinal worms. Experimentally, the rhizome and leaf extracts have shown hepatoprotective, hypoglycaemic, anti-nociceptive and antipyretic effects [[24,](#page-14-23) [25](#page-14-24)]. Most of the studies have used the rhizome and leaves for the extraction of phytochemicals. Among the few that have utilised the stem, none of the studies on the putative medicinal properties have used the discarded part of the stem for the extraction of bioactive components.

Parasitic worms, or helminths, are responsible for chronic and often fatal diseases with signifcant socio-economic ramifcations worldwide [[26\]](#page-15-0). Human infections caused by these worms afect approximately 14 million individuals

Fig. 1 a Photograph of a *Sitalpati* craftsman slicing the stem of *Schumannianthus dichotomus*. Arrow indicates the discarded/waste part of the stem **b** Cross section of a half *chittor* (half slice of the stem).

Saloi is the external part used for handicrafts which may further be divided into the *sital*/*mota* part and the *buka* part. The inner part of the stem called *maji* is discarded

globally, collectively termed neglected tropical diseases (NTDs) [[27](#page-15-1)]. In agricultural animals, parasitic diseases result signifcant economic losses annually on a global scale [\[28\]](#page-15-2). Domestic poultry, a primary source of dietary protein worldwide through meat and eggs, plays a crucial role in nutrition [[29](#page-15-3)]. Despite advancements in poultry industry productivity, helminth infections caused by nematodes, cestodes, and trematodes remain signifcant challenges to production efficiency [[30\]](#page-15-4). Cestodes, particularly *Raillietina* spp., account for 66% of global helminth infections, with *Raillietina* spp. being prevalent in numerous prevalence studies [\[31](#page-15-5)]. Pathogenicity associated with *Raillietina* infections in poultry includes intestinal villi disruption, degeneration and necrosis of intestinal epithelial cells, parasitic granulomas, enteritis, anemia, weight loss, and decreased egg production [[32\]](#page-15-6). Accidental *Raillietina* spp. infections in humans have been reported due to the inadvertent ingestion of cysticercoid-infected ants or beetles [[33,](#page-15-7) [34](#page-15-8)]. *Raillietina* spp. is therefore used as a model organism for the study of anthelmintic activity in many studies [\[35](#page-15-9)[–42\]](#page-15-10).Widespread use of over-the-counter anthelmintics has resulted in drug resistance in many animal populations [[43\]](#page-15-11). In numerous underdeveloped regions, livestock producers lack access to basic veterinary services and medications, leading to the continued utilization of medicinal plants in conjunction with veterinary pharmaceuticals to treat animal ailments. Therefore, traditional, indigenous, or ethnomedicinal knowledge of local populations can offer valuable insights for the development of anthelmintic remedies derived from natural products and many compounds isolated from such studies have shown promising anthelmintic potential [\[44](#page-15-12), [45](#page-15-13)].

Whole worm-based assays are frequently employed for the identifcation of novel anthelmintic compounds, evaluating features such as worm motility, morphological changes, ATP production, and enzyme activity [\[46,](#page-15-14) [47](#page-15-15)]. This study aims to explore the anthelmintic potential of the ethanolic extract derived from the discarded stem of *Schumannianthus dichotomus* through morphological and ultrastructural analyses. Additionally, phytochemical screening of the extracts seeks to elucidate the presence of bioactive compounds responsible for the observed anthelmintic activity. Validating the anthelmintic efficacy of the extract sourced from the plant's waste material, specifcally the stem, holds promise for valorising this waste by recognizing its medicinal properties. This could lead to further avenues of research for drug discovery and applications, benefting both local communities and global initiatives.

Materials and Methods

Collection of Plant Material and Preparation of Ethanolic Extract and its Diferent Fractions

The freshly discarded stem of *Schumannianthus dichotomus* was collected from the local craftsmen of the Ghughumari village $(26.280552^0N, 89.461233^0E)$ of Cooch Behar district, West Bengal, India in March–April each year from 2018 to 2023. The plant was identifed and preserved at the herbarium of the Department of Botany, University of North Bengal, Darjeeling, West Bengal with accession number 12339. Following collection, the plant materials underwent fne chopping, were air-dried for 24 h and then immersed in ethanol (100 g in 500 ml) for 15 days with regular stirring. The solution was fltered using Whatman Filter Paper (No. 14) and then subjected to drying through a Rotary Vacuum Evaporator (Buchi Rotavapor R-100). Post-drying, the crude extracts were stored under refrigeration at 4 °C until further use. Approximately 2–2.5 g of plant extract were obtained from 100 g of plant material soaked in 500 ml of ethanol.

To separate diferent fractions of the ethanolic extract, solvents with varying polarities such as Hexane, Chloroform, Ethyl acetate, and n-Butanol were employed using a separating funnel and fractional distillation process [[41\]](#page-15-16). A 50 ml aqueous solution of crude extract (2.5 gm in 50 ml distilled water) was mixed with 50 ml of Hexane and allowed to stand for 2 h. The Hexane fraction was then separated from the upper phase using the liquid–liquid separation technique. This process was repeated thrice using Chloroform (lower phase), Ethyl acetate, and n-Butanol. The final volume of each fraction (150 ml) was collected and subsequently dried using a Rotary Vacuum Evaporator (Buchi Rotavapor R-100). From 2.5 g of crude extract, approximately 0.15 g, 0.19 g, 1.2 g, and 1 g of Hexane, Chloroform, Ethyl acetate, and n-Butanol fractions were obtained, respectively.

Collection of Parasites

Recently acquired intestines from *Gallus gallus domesticus* were sourced from a nearby market. Live worms, specifcally *Raillietina* spp., were dissected out from the intestine, kept in 0.9% Phosphate-Buffered Saline (PBS) at pH 7.4 in petri dishes subsequently maintained in an incubator set at 37 ± 1 °C throughout the experiments. Worms with approximately the same weight (about 20 mg) and vigour were used for the experiments.

Motility Test on Parasites

The worms were initially divided into the following groups namely- control (C) (incubated in only PBS without plant extract), praziquantel treated (PZ) (incubated in PBS with 0.05 mg/ml Praziquantel), and crude ethanolic extract treated (CEE) (incubated in PBS with increasing doses of the crude ethanolic extract viz. 5 mg/ml, 10 mg/ml, 20 mg/ ml and 50 mg/ml respectively). The doses were selected and standardized by treating the worms with gradually increasing range of concentrations of the extract. We initially treated the worms at 0.5 mg/ml, 1 mg/ml, 2 mg/ml, 5 mg/ml, then with 2.5 mg/ml, 5 mg/ml, 10 mg/ml, 20 mg/ml and then with 5 mg/ml, 10 mg/ml, 20 mg/ml and 50 mg/ml. The last range was selected based on lower and paralysis and death times of the worms. Praziquantel, a common anthelmintic drug, served as the reference drug in these experiments. Each petri dish had three worms and each group i.e. C, PZ, CEE (5 mg/ ml), CEE (10 mg/ml), CEE (20 mg/ml) and CEE (50 mg/ml) had three replicates. The experiments were repeated 5 times on separate days. The parasites were monitored at a time interval of 1 h, 3 h, 6 h, 12 h and 24 h for recording paralysis and death. The evaluation of motility scores required inspecting the worms through a stereomicroscope, employing criteria derived from a technique used by Lorsuwannarat et al. (2014) [[48\]](#page-15-17) and described by Kiuchi et al. (1987) [\[49](#page-15-18)]. The scoring system comprised the following- 3: active movement throughout the entire body (indicating no paralysis), 2: movement observed in specifc body parts (indicating partial paralysis), 1: immobile but moves when transferred to warm PBS at 40 °C (indicating complete paralysis) and 0: immobile and does not move even when transferred to warm PBS at 40 °C (indicating death). The same set of experiments were also performed with four more groups formed by incubating worms in PBS with equal doses (20 mg/ml) of the hexane fraction (HXF), chloroform fraction (CHF), ethyl acetate (EAF) fraction and n-butanol fraction (BUF) of the ethanolic extract respectively in PBS. The minimum effective concentration and most efficacious fraction were determined and worms threated with them were used for further examination through SEM and TEM.

Relative Motility (RM)

The relative motility (RM) values were calculated using the following formula [[49](#page-15-18)]:

Motility Index(MI) =
$$
\frac{\Sigma nN}{N} \times 100
$$

$$
\%RM = \frac{MI \text{ test}}{MI \text{ control}} \times 100
$$

where, $n =$ motility score, $N =$ number of tapeworms with the score of ''n''.

The worms in the control group (C) had an RM value of 100. The worms in the groups treated with drugs and extracts had RM values lower than 100. Lower RM values indicated stronger anthelmintic activity.

Survival Index

Survival indices refect the proportions of viable tapeworms at a specifc time following treatment. Worms assigned a motility score 0 were considered deceased, while those with scores of 3, 2, or 1 were considered alive. The survival indices were computed using the provided formula, with a survival index of 0 indicating the absence of surviving fukes.

Survival Index (SI) = $\frac{\text{Number of live flukes}}{\text{Number of all flukes}} \times 100$

IC_{50}

In our experiments, the IC_{50} value represents the concentration of extract needed to achieve 50% inhibition of parasite movement after a 6-h in vitro incubation in the drug and extracts. We used the ED50V10 Excel add-in program, which calculated IC_{50} values based on RM values at various concentrations of the extract [\[48\]](#page-15-17).

Scanning Electron Microscopy (SEM)

For Scanning Electron Microscopy (SEM), the control and treated parasites underwent fxation in 10% Neutral Bufered Formalin (NBF) at 4 °C for 4 h. Subsequently, they were thoroughly washed in double-distilled water, subjected to dehydration through acetone grades, underwent criticalpoint-drying (CPD) using liquid $CO₂$, were coated with a layer of gold palladium, and fnally examined using a JEOL-JSM-35 CF scanning electron microscope [[50\]](#page-15-19).

Transmission Electron Microscopy (TEM)

Both control and treated worms underwent fxation in Karnovosky's fxative, consisting of 4% paraformaldehyde and 1% glutaraldehyde, in 0.1 M sodium phosphate bufer (pH 7.4). Subsequently, they were processed for Transmission Electron Microscope (TEM), specifcally the TECNAI G20 HR-TEM, using the standard method for detailed ultrastructural studies [[51](#page-15-20), [52](#page-15-21)].

Qualitative Test for Phytochemicals

The crude ethanolic extract was used for the qualitative detection of phytochemicals following standard protocols [[53\]](#page-15-22).

 $24hr$

 12^h

Fig. 2 Relative motility (RM) and survival index (SI) values recorded in *Raillietina* spp. after treatment with (**a**, **b**) diferent doses of crude ethanolic extracts of *Schumannianthus dichotomus* and (**c**, **d**) its diferent fractions at diferent time intervals after incubation

 $\overline{3h}$

Incubation Time (hrs)

 $\ddot{\mathsf{6}}$ hi

Test for Carbohydrates

 0_h

 (c)

 1_{hr}

Two drops of an alcoholic solution of α -naphthol to was added to 2 ml of plant sample extract. The mixture was shaken thoroughly and gradually a few drops of concentrated sulfuric acid (H_2SO_4) was added along the test tube's sides. The presence of a violet ring signifes the existence of carbohydrates.

Test for Proteins

The Biuret test involved mixing 2 ml of an aqueous solution of the extract with 1 ml of 40% NaOH and then adding 2 drops of $CuSO₄$. A violet colour indicates presence of proteins.

(C=Control, Treated with: PZ=Praziquantel, CEE=Crude ethanolic extract, EAF=Ethyl acetate fraction, BUF=n-Butanolic fraction, HXF=Hexane fraction, CHF=Chloroform fraction). Data are expressed as mean \pm SE

Test for Steroids

Steroid presence was detected by adding glacial acetic acid and concentrated sulfuric acid (H_2SO_4) to the aqueous extract, resulting in a green colour at the liquid interface.

Test for Phenols

For phenolic compounds, a 10 ml methanolic extract was mixed with $4-5$ drops of 2% ferric chloride (FeCl₃) solution. A colour change in the solution, ranging from green to blue, signals the presence of phenolics.

Test for Alkaloids

A few drops of Mayer's reagent {prepared by dissolving 1.36 g mercuric chloride (HgCl₂) and 5 g potassium iodide

Table 1

tion, HXF

=Hexane fraction, CHF

diferent fractions at diferent time intervals after incubation (C

Relative motility (RM) and survival index (SI) values recorded in *Raillietina* spp. after treatment with diferent doses of crude ethanolic extracts of *Schumannianthus dichotomus* and its

=Praziquantel, CEE

=Crude ethanolic extract, EAF

=Ethyl acetate fraction, BUF

=n-Butanolic frac-

=Control, Treated with: PZ

±SE

=Chloroform fraction). Data are expressed as mean

(KI) in water, adjusting the volume to 100 ml)} were added to 2 ml of ethanolic extract in a test tube. The formation of a white creamy precipitate confrms the presence of alkaloids.

Test for Tannins

Ferric chloride (FeCl₃) solution (0.1%) was added to 10 ml of the ethanolic extract. A blue-black precipitate confrms presence of tannins.

Test for Saponins

Saponins were assessed by shaking 5 ml of the ethanolic extract with sodium bicarbonate (NaHCO₃) solution. The stable froth formation confrms the presence of saponins.

Test for Flavonoids

To identify favonoids, 2 g the extract was extracted with 10 ml of ethyl acetate and 1 ml of 10% diluted ammonia $(NH₃)$ solution was added and shaken. The development of a yellow colour indicated favonoid presence.

Test for Terpenoids

The extract was combined with 2 ml of chloroform, followed by the careful addition of 3 ml of concentrated H_2SO_4 to form a distinct layer. A positive indication of the presence of terpenoids was observed as the interface developed a reddish-brown coloration.

Quantifcation of phytochemicals

The flowing procedures were followed for the quantitative estimation of the phenols, alkaloids and favonoids in the crude ethanolic extract [[53](#page-15-22), [54](#page-15-23)]

Determination of Total Phenolic Content

The Folin-Ciocalteu method was used to calculate the crude ethanolic extract's total phenolic content (TPC). Gallic acid standard solutions containing 100–500 µg/ml of water were made. A standard or extract solution (1 mg/ml) was combined with 50 µl of distilled water. In a 96-well plate, this mixture was mixed with 50 µl of a 1 M sodium carbonate (Na_2CO_3) solution and 10% Folin-Ciocalteu's (F–C) phenol reagent. As a blank, distilled water was utilized. For 60 min, the reactions were incubated at room temperature with protection from light. A Multi-mode Reader (SYNERGY|LX, Biotek) was used to detect absorbance at 750 nm. The total phenolic content was expressed in Gallic Acid Equivalents (GAE) per mg of dried plant. All determinations were conducted in triplicate.

Fig. 3 Combined relative motility (RM) and survival index (SI) values recorded in *Raillietina* spp. after treatment with (**a**) diferent doses of crude ethanolic extracts of *Schumannianthus dichotomus* and (**b**) its diferent fractions at diferent time intervals after incubation (C=Control, Treated with: PZ=Praziquantel, CEE=Crude ethanolic

extract, EAF=Ethyl acetate fraction, BUF=n-Butanolic fraction, HXF=Hexane fraction, CHF=Chloroform fraction). The RM and SI values from all time points of each dose were pooled and expressed as mean \pm SE

Fig. 4 SEM images of head showing the sucker region (a, b, e, f, i, j, m, n) and proglottids (c, d, g, h, k, l, o, p) of control and treated *Raillietina* spp at diferent magnifcations. a–d: Control, e–h: PZ

treated, i–l: CEE treated, m-p: EAF treated. Scale bars: a, d, e, h, i, l, m, p=10 μm; b, f, j, n=5 μm; c, g, k, o=20 μm

Fig. 5 TEM images of control (**a**, **e**) and treated (**b**–**d**, **f**–**h**) *Raillietina* spp. a–d: showing microtrix layer (MT) and distal cytoplasm (DC); e–h: showing nuclear membrane (NM), nucleolus (NL) and mitochondria (MC). Scale bars: a–d=500 μm, e–h=1 μm

Table 3 Results of the qualitative test for diferent phytochemicals present in the ethanolic extract of *Schumannianthus dichotomus* ("− $"$ = absent, "+" = present, "+ +" = present in higher concentration)

Determination of Total Flavonoid Content

To assess the total favonoid content of (TFC) the crude ethanolic extract, the aluminium chloride colorimetric test was employed. In a nutshell, a mixture was prepared by combining 2 ml of distilled water, 0.15 ml of sodium nitrite solution (5% NaNO₂, w/v), and 0.5 ml aliquots of the extract and a standard solution (0.01–1.0 mg/ml) of rutin. After 6 min, 0.15 ml of a solution containing 10% aluminum chloride (AlCl₃, w/v) was added. Following an additional 6 min of standing time, 2 ml of sodium hydroxide solution (4% NaOH, w/v) was introduced into the mixture. The fnal volume was adjusted to 5 ml with the immediate addition of distilled water, ensuring thorough mixing, and left to stand for an extra 15 min. The absorbance of each mixture was measured at 510 nm using a multimode reader (SYNERGY|LX, Biotek), comparing it to a blank sample of the same mixture without the extract. TFC was determined using the rutin calibration curve and expressed as mg rutin equivalent per gram of material. All determinations were conducted in triplicate.

Determination of Total Alkaloid Content

The total alkaloid content (TAC) was assessed utilizing the reaction between alkaloids and bromocresol green (BCG). The plant extract (1 mg/ml), dissolved in 2 N HCl, was fltered. The pH of the phosphate bufer solution was adjusted to neutral with 0.1 N NaOH. Subsequently, 5 ml each of the BCG solution and phosphate bufer were added to 1 ml of this solution of the plant extract in a separating funnel. Vigorous shaking facilitated the extraction of the complex with chloroform. After collecting the extract in a 10 ml volumetric fask, chloroform was used to dilute it to volume. The absorbance of the chloroform complex was quantifed at 470 nm in a multi- mode reader (SYNERGY|LX, Biotek). All measurements were conducted in triplicate.

Table 4 List of compounds with SI, RSI, retention time and relative area identifed from the GCMS analysis of ethyl acetate fraction of the ethanolic extract of *Schumannianthus dichotomus*

Fig. 6 Gas chromatogram of the ethyl acetate fraction of the ethanolic extract of *Schumannianthus dichotomus*

GCMS

The most efficacious fraction *i.e.* the ethyl acetate fraction of the ethanolic extract was further subjected to GCMS analysis following standard protocols [[55\]](#page-15-24). An Auto System TRACE 1310 Gas Chromatograph (Thermo Scientifc, US) coupled with an ISQ 7000 Single Quadrupole Mass Spectrometer (Thermo Scientifc, US) was utilized, employing the electron impact ionization (EI) method. A fused silica capillary column with dimensions of 30 m length, 0.25 mm diameter, and a flm thickness of 0.25 µm (TG1MS) was employed. Specifc run conditions were set for the GC, with the injection port temperature programmed at 250 °C, and the column temperature ranging from 70 to 250 \degree C at a rate of 10 °C/min increase. Helium served as the carrier gas at a constant pressure of 100 kPa and a fow rate of 1 ml/min. Samples dissolved in methanol were thoroughly analyzed within the range of 60–550 amu. The obtained results were compared using the National Institute of Standards and Technology (NIST) 2017 Spectral library search program. Chemical compounds were identifed using the NIST match factor or similarity index (SI) and reverse match factors or reverse search index (RSI) of the mass spectra available in the NIST GC–MS Library 2017. Identifcation followed the NIST library guidelines, which categorize match factor (SI) and reverse match factor (RSI) thresholds for mass spectral match as follows:>900—excellent match, 800–900—good match, 700–800—fair match, and <600 —poor match.

Statistical Analyses

The motility experiment followed a completely randomized design with three replications and fve repeats. Statistical analysis was performed using the R based software Jamovi (Version 2.2.5) [[56\]](#page-15-25). The Kruskal Wallis test was conducted followed by Dunn's post hoc test at a signifcance level of 0.05 to assess diferences among the RM values of different treatment and doses. The concentration needed for 50% growth inhibition (IC₅₀ value) was determined using a regression equation calculated by the ED50V10 Excel addin program.

Results and Discussion

Results of Motility Test on Parasites

As depicted in Fig. [2](#page-5-0)a, 2b and Table [1](#page-6-0), all worms within the control group exhibited active movement and remained alive throughout the experimental duration $(RM=100, SI=100)$. In the group subjected to 0.05 mg/ml praziquantel treatment, the fukes experienced reduction in RM values at 1 h and 3 h and become completely immobile at 6 h. All the other groups treated with increasing doses of the crude ethanolic extract viz. 5 mg/ml, 10 mg/ml, 20 mg/ml and 50 mg/ml started showing a gradual reduction in RM values at and after 12 h, 6 h, 3 h and 1 h respectively. Worms treated with 5 mg/ml of the extract were alive throughout the experimental duration. Worms treated with 10 mg/ml, 20 mg/ml and 50 mg/ml showed complete immobility at 24 h, 12 h and 6 h respectively. Correspondingly, SI values of praziquantel treated parasites reduced to 11.11 at 3 h and touched 0 at 6 h. Worms treated with 5 mg/ml, 10 mg/ml, 20 mg/ml and 50 mg/ml of the crude ethanolic extract started showing a gradual reduction in SI values after 12 h, 6 h, 6 h and 3 h respectively. Results of Kruskal Wallis test and Dunn's post hoc test indicate that signifcant diference in the RM values of the treated and control worms are observed at 6 h, 12 h and 24 h for CEE doses 50 mg/ml, 20 mg/ml, 10 mg/ ml respectively (Table [2](#page-7-0)). PZ shows signifcant diference in RM values from C from 1 h. We considered 20 mg/ml as the most efficacious dose and used it for further studies.

The RM and SI values of the worms treated with 20 mg/ ml each of hexane fraction, chloroform fraction, ethyl acetate fraction and n-butanolic fraction of the crude ethanolic extract are shown in Fig. [2c](#page-5-0), d. It is clearly evident that the

Fig. 7 MS spectra along with the reported structural formula of the ◂fve major compounds identifed through the GCMS analysis of ethyl acetate fraction of the ethanolic extract of *Schumannianthus dichotomus* [**a**: n-Hexadecanoic acid, **b**: 2,6,10,14-Tetramethylpentadecan-6-ol, **c**: Octadecanoic acid, **d**: Phthalic acid, di(2-propylpentyl) ester, **e**: Squalene]

ethyl acetate fraction is more efficacious than the other three fractions.

The overall anthelmintic effect of the different doses of CEE as well as its diferent fractions is depicted in Fig. [3](#page-7-1) where the RM and SI values of all the time points are pooled together. The absolute IC50 value was calculated to be 21.76 ± 0.07 mg/ml at 6 h of incubation time [[34\]](#page-15-8).

SEM Observations

In control worms, the scolex and proglottids exhibit a smooth surface adorned with dense microtriches, as illustrated in Fig. [4](#page-8-0)a–d. The suckers appear smooth with clearly defned hooks. Conversely, in worms subjected to the plant extract, discernible distortions manifest in the head region, characterized by tegument folding, eversion of the suckers, and the absence of encircling hooks. Within the proglottids, the tegument displays a folded and cracked appearance, as depicted in Fig. [4i](#page-8-0)–p. Comparable observations were also noted in worms treated with praziquantel Fig. [4e](#page-8-0)–h. Notably, the extent of damage is more pronounced in worms treated with both praziquantel and the ethyl acetate fraction.

TEM Observations

Transmission electron microscopic studies revealed that the control worm exhibited normal features across its surface, proximal and distal cytoplasm adorned with microtriches, basal lamina, nucleus enclosed by a double nuclear membrane, nucleolus, chromatin granules, and typical mitochondrial characteristics (Fig. [5](#page-8-1)a, e). However, parasites subjected to praziquantel treatment displayed severe damage in the microtrix layer and distal cytoplasm, accompanied by swollen nuclei featuring anomalous singlet nuclear membranes (Fig. [5](#page-8-1)b). Furthermore, these treated parasites exhibited deformed mitochondria lacking cristae (Fig. [5f](#page-8-1)). Similarly, exposure to the crude plant extract led to complete erosion of the distal cytoplasm, exposing the basal lamina of the microtriches to the outer surface (Fig. [5c](#page-8-1)). Additionally, disintegration of the nucleolus and observation of swollen nuclei with uneven nuclear membranes were noted. Most mitochondria in these treated parasites displayed deformities (Fig. [5g](#page-8-1)). *Raillietina* spp. treated with the ethyl acetate fraction exhibited similar detrimental efects, including fully damaged microtriches and distal cytoplasm, rupture of the nuclear membrane, condensation of chromatin granules, and disintegration with vacuolization of mitochondrial membranes (Fig. [5d](#page-8-1), h).

Qualitative Test for Phytochemicals

The results depicted in Table [3](#page-9-0) indicate the presence of a host of diferent phytochemicals including proteins, steroids, phenols, alkaloids, tannins, saponins, favonoids and terpenoids. Judging by the intensity of the reaction products formed it was likely that phenols, alkaloids and favonoids were present in relatively higher concentration.

Quantifcation of Phytochemicals

The phenolic compound content in the crude extract, expressed in gallic acid equivalent, was determined to be 262.99 ± 6.9 (SD) mg/g of crude extract, using the regression equation of the calibration curve $(y=1347.6x-10.09$, R^2 = 0.9834). The concentration of flavonoids (mg/g) in rutin equivalent was found to be 816.41 ± 31.71 (SD), calculated from the regression equation of the calibration curve $(y=5465.6x, R^2=0.9988)$. Additionally, the total alkaloid amount, expressed in atropine equivalent, was determined to be 951.83 ± 86.85 mg/g of plant extract, utilizing the regression equation of the calibration curve $(y=706.49x+16.566)$, R^2 = 0.9815).

GCMS

The initial gas chromatogram of the ethyl acetate fraction of the ethanolic extract of *Schumannianthus dichotomus* identifed 64 compounds. However, an area percentage composition greater than 0.21% was used to analyse the results, which yielded a list of 17 compounds (Table [4](#page-9-1) and Fig. [6](#page-10-0)). The identifed compounds are mostly fatty acids and their esters, esters of dicarboxylic acids, and terpenoids. The fve major compounds identifed based on maximum relative area are Phthalic acid, di(2-propylpentyl) ester (38.83%), n-Hexadecanoic acid (13.01%), 2,6,10,14-Tetramethylpentadecan-6-ol (9.13%), Squalene (6.58%) and Octadecanoic acid (5.26%) (Fig. [7](#page-12-0)). The relative area of Phthalic acid, di(2-propylpentyl) ester (38.83%) is much higher in comparison to the other compounds.

Discussion

In our study, the worms treated with CEE exhibited a dosedependent decrease in both RM and SI, suggesting the promising anthelmintic efficacy of *Schumannianthus dichotomus*. In comparison, the control worms endured signifcantly longer than those subjected to either praziquantel or plant extracts under identical conditions, which is refected in the

greater RM and SI values recorded in the control worms. Similar results have been reported in *Raillietina* spp [[57\]](#page-15-26) and other parasites in similar experiments [\[48\]](#page-15-17). Notably, among the fractions of the ethanolic extract, those treated with the Ethyl acetate fraction displayed the most substantial decrease in RM and SI.

The tegument of cestodes serves as a multifunctional surface at the interface between the host and parasite, providing digestive, absorptive, and protective functions [\[58,](#page-16-0) [59\]](#page-16-1). Ultrastructural examinations have unveiled the presence of diverse microtriches throughout the scolex region and in both immature and mature proglottids, indicating their involvement in nutrient absorption across the entire body surface $[60]$ $[60]$ $[60]$. The efficacy of most anthelmintic drugs relies on their passive difusion through this external tegumental layer. Consequently, alterations in tegumental ultrastructure serve as a dependable indicator of a compound's anthel-mintic activity [[61\]](#page-16-3). Scanning electron microscopy (SEM) studies have revealed distortions in the smooth texture of the tegument, as well as cracking and folding in treated worms, which are likely to impede nutrient uptake and energy metabolism in the parasite. Similar tegumental alterations caused by phytoproduct treatments have been documented by numerous researchers [\[35,](#page-15-9) [41,](#page-15-16) [42](#page-15-10), [57](#page-15-26), [62](#page-16-4)–[64\]](#page-16-5). The TEM images reveal notable damage to various cellular components in the phytoproduct-treated worms, including the microtrich layer, nuclear membrane, chromatin, and mitochondria. These observations suggest that the phytoproducts disrupt the energy metabolism of the worms and impair the nucleus's function. Additionally, the plant extract distorts the surface topography and subcellular structures. These fndings align with previous studies utilizing diferent plant extracts [\[39](#page-15-27), [41](#page-15-16), [42](#page-15-10), [57](#page-15-26), [65](#page-16-6), [66\]](#page-16-7).

Most of the products isolated from diferent plants that have shown anthelmintic activity either in vitro or in vivo mainly belong to the class of fatty acids, tannins, phenols, flavonoids, alkaloids and saponins [[67–](#page-16-8)[72\]](#page-16-9). Earlier studies carried out with the methanolic extract of the leaves and twigs of *Schumannianthus dichotomus* yielded two phenolics namely syringic acid and methyl syringate and a butanolide named Schumannione, all of which have shown phytotoxic potential [\[18](#page-14-17), [19\]](#page-14-18). Another study conducted on the discarded stem of the plant identifed two compounds with phytotoxic potential namely 8-Carboxylinalool, a cyclic monoterpene acid, and 8-(5-oxo-2,5-dihydrofuran-2-yl) octanoic acid (ODFO), a butanolide $[10]$ $[10]$ $[10]$. Out of the five major compounds identifed in our study, two are fatty acids, and the other three are phthalate, terpenoid alcohol and triterpene respectively. Phthalic acid, di(2-propylpentyl) ester is a phthalate reported in extracts of bacteria [\[73,](#page-16-10) [74\]](#page-16-11), fungi [\[75](#page-16-12)] and some plants [\[76](#page-16-13)[–78](#page-16-14)]. The compound has reported cytotoxic [\[78](#page-16-14)] and anti trypanosomal activity [[79\]](#page-16-15). Both n-Hexadecanoic acid and Octadecanoioc acid are commonly found in diferent plant extracts that have reported anthelmintic activity [[80–](#page-16-16)[85](#page-16-17)]. The anthelmintic activity of 2,6,10,14-Tetramethylpentadecan-6-ol, a terpenoid alcohol, is reported in a few plant extracts [\[86\]](#page-16-18). Squalene, a triterpene has been isolated in the ethanolic extract of an edible mushroom [\[87](#page-16-19)] as well as the anthelmintic decoction of pumpkin seeds [[88\]](#page-16-20). So, the anthelmintic effect of the ethyl acetate fraction can be attributed to the presence of a combination phytochemicals with reported anthelmintic activity (Fig. [7](#page-12-0)). Phthalic acid, di(2 propylpentyl) ester may be the major bioactive component responsible for the anthelmintic activity and further studies are required to explore its anthelmintic potential.

Conclusion

The ethanolic extract and the ethyl acetate fraction derived from the discarded stem of *Schumannianthus dichotomus* exhibit notable anthelmintic activity. The crude extract is particularly abundant in phenols, alkaloids, and favonoids, which may contribute to its biological activity. Phytochemical screening of the ethyl acetate fraction reveals higher concentrations of phthalates, fatty acids, and terpenoids, among which Phthalic acid, di(2-propylpentyl) ester emerges as a potential major bioactive component responsible for the anthelmintic activity. Our fndings confrm the anthelmintic potential of *Schumannianthus dichotomus* extract. However, further investigations are warranted to precisely identify the active constituents of both the ethanolic extract and the ethyl acetate fraction, as well as to elucidate their mechanisms of action. This knowledge could facilitate the development of anthelmintic drugs. Moreover, there is potential in utilizing the discarded stem of the plant to formulate solutions for managing helminth infections in chickens, providing a sustainable, integrated, and localized approach to addressing the global issue of helminthiasis in livestock, particularly those reared through non-intensive methods by rural communities as a supplementary source of income. Additional biological activities of the waste can also be explored to valorize it to the full potential.

Acknowledgements The authors gladly appreciate the constant support and help in conducting the experiments with instrumental and infrastructural facility of the Department of Zoology, Cooch Behar Panchanan Barma University, Cooch Behar. We are very much thankful to Dr. Monoranjan Chowdhury, Department of Botany, University of North Bengal, Darjeeling, West Bengal for the identifcation and accession number of the plant. The authors are grateful to The Sophisticated Analytical Instrument Facility (SAIF), North Eastern Hill University (NEHU), Shillong and Centre for Research in Nanoscience and Nanotechnology (CRNN), Kolkata for their technical support. We acknowledge the TEM facility of The Sophisticated Analytical Instrument Facility (SAIF), All India Institute of Medical Science (AIIMS), New Delhi for their kind cooperation. We also thank the Faculty of Agriculture, Uttar Banga Krishi Viswavidyalaya, Cooch Behar, for

providing their GCMS facility. The authors also acknowledge the valuable help of Dr. Rima Majumder during the study.

Author Contributions All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Manjil Gupta, Rachita Saha and Subrata Saha. The work was supervised by Pradip Kumar Kar. The frst draft of the manuscript was written by Manjil Gupta and all authors commented on previous versions of the manuscript. All authors read and approved the fnal manuscript.

Funding The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Data Availability The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Declarations

Competing Interests The authors have no relevant fnancial or nonfnancial interests to disclose.

References

- 1. Duque-Acevedo, M., Belmonte-Ureña, L.J., Cortés-García, F.J., Camacho-Ferre, F.: Agricultural waste review of the evolution, approaches and perspectives on alternative uses. Glob. Ecol. Conserv. (2020).<https://doi.org/10.1016/j.gecco.2020.e00902>
- 2. Kimothi, S.P., Panwar, S., Khulbe, A. (2020) Creating wealth from agricultural waste. Indian Counc Agric Res New Delhi. 0–172
- 3. Koul, B., Yakoob, M., Shah, M.P.: Agricultural waste management strategies for environmental sustainability. Environ. Res. **206**, 112285 (2022).<https://doi.org/10.1016/j.envres.2021.112285>
- 4. Azeez, S., Narayana, C.K., Oberoi, H.S.: Extraction and utilisation of bioactive compounds from agricultural waste. Util. Bioact. Compd. Agric. Food Prod. Waste **5**, 127–158 (2017)
- 5. Santana-Méridas, O., González-Coloma, A., Sánchez-Vioque, R.: Agricultural residues as a source of bioactive natural products. Phytochem. Rev. **11**, 447–466 (2012). [https://doi.org/10.1007/](https://doi.org/10.1007/s11101-012-9266-0) [s11101-012-9266-0](https://doi.org/10.1007/s11101-012-9266-0)
- 6. Kalita, P., Basumatary, S., Nath, B., Baruah, M.B.: Chapter 8 agricultural waste: sustainable valuable products. In: Verma, S., Khan, R., Mili, M., Hashmi, S.A.R., Srivastava, A.K. (eds.) Advanced materials from recycled waste, pp. 155–178. Elsevier (2023)
- 7. Ben-Othman, S., Jõudu, I., Bhat, R.: Bioactives from agri-food wastes: present insights and future challenges. Molecules **25**, 510 (2020)
- 8. Sadh, P.K., Chawla, P., Kumar, S., Das, A., Kumar, R., Bains, A., Sridhar, K., Duhan, J.S., Sharma, M.: Recovery of agricultural waste biomass: a path for circular bioeconomy. Sci. Total. Environ. **870**, 161904 (2023). [https://doi.org/10.1016/j.scito](https://doi.org/10.1016/j.scitotenv.2023.161904) [tenv.2023.161904](https://doi.org/10.1016/j.scitotenv.2023.161904)
- 9. Capanoglu, E., Nemli, E., Tomas-Barberan, F.: Novel approaches in the valorization of agricultural wastes and their applications. J. Agric. Food Chem. **70**, 6787–6804 (2022). <https://doi.org/10.1021/acs.jafc.1c07104>
- 10. Rob, M.M., Iwasaki, A., Suenaga, K., Ozaki, K., Teruya, T., Kato-Noguchi, H.: Potential use of *Schumannianthus dichotomus* waste: the phytotoxic activity of the waste and its identifed

compounds. J. Environ. Sci. Heal. Part B. **55**, 1099–1105 (2020).<https://doi.org/10.1080/03601234.2020.1822716>

- 11. Gupta, M., Saha, S., Thapa, K.K.: Musculoskeletal symptoms among Sital Pati weavers of Koch Bihar district, West Bengal, India. In: Alam, A., Rukhsana, I.N., Sarkar, B., Roy, R. (eds.) Population, sanitation and health: a geographical study towards sustainability, pp. 137–152. Springer Nature Switzerland, Cham (2023)
- 12. Ahmed, R., Islam, A.F., Rahman, M., Halim, M.A.: Management and economic value of *Schumannianthus dichotoma* in rural homesteads in the Sylhet region of Bangladesh. Int. J. Biodivers. Sci. Manag. **3**, 252–258 (2007). [https://doi.org/10.](https://doi.org/10.1080/17451590709618178) [1080/17451590709618178](https://doi.org/10.1080/17451590709618178)
- 13. Barbhuiya, A.H., Ismail, K.: Efect of fber length and loading on the properties of Schumannianthus dichotomus (murta) fber–reinforced epoxy composites. Int. J. Polym. Anal. Charact. **21**, 221–227 (2016). [https://doi.org/10.1080/1023666X.2016.](https://doi.org/10.1080/1023666X.2016.1139282) [1139282](https://doi.org/10.1080/1023666X.2016.1139282)
- 14. Ahmaruzzaman, M., Reza, R.A., Ahmed, J.K., Sil, A.K.: Scavenging behavior of *Schumannianthus dichotomus*-derived activated carbon for the removal of methylene blue from aqueous phase. Environ. Prog. Sustain. Energy **33**, 1148–1157 (2014). <https://doi.org/10.1002/ep.11896>
- 15. Reza, R.A., Ahmed, J.K., Sil, A.K., Ahmaruzzaman, M.A.: A non-conventional adsorbent for the removal of clofbric acid from aqueous phase. Sep. Sci. Technol. **49**, 1592–1603 (2014). <https://doi.org/10.1080/01496395.2014.894060>
- 16. Rahman, M.A., Rahaman, M.H., Yasmeen, S., Rahman, M.M., Rabbi, F.M., Shuvo, O.R., Usamah,: Phytoremediation potential of *Schumannianthus dichotomus* in vertical subsurface fow constructed wetland. Environ. Chall. **9**, 100631 (2022). [https://](https://doi.org/10.1016/j.envc.2022.100631) doi.org/10.1016/j.envc.2022.100631
- 17. Reza, R.A., Ahmaruzzaman, M.: A facile approach for elimination of ibuprofen from wastewater: an experimental and theoretical study. Water Environ. J. **34**, 435–443 (2020)
- 18. Rob, M.M., Hossen, K., Iwasaki, A., Suenaga, K., Kato-Noguchi, H.: Phytotoxic activity and identifcation of phytotoxic substances from *Schumannianthus dichotomus*. Plants (2020). <https://doi.org/10.3390/plants9010102>
- 19. Rob, M.M., Ozaki, K., Teruya, T., Kato-Noguchi, H.: Schumannione, a new butenolide derivative isolated from *Schumannianthus dichotomus* as a potential phytotoxic agent. Tetrahedron Lett. **61**, 152168 (2020). [https://doi.org/10.1016/j.tetlet.2020.](https://doi.org/10.1016/j.tetlet.2020.152168) [152168](https://doi.org/10.1016/j.tetlet.2020.152168)
- 20. Nath, M. (2013): Ethnobotanical studies on the Dimasa tribe of Barak valley,South Assam. Department of Environmental Science, Assam University, Silchar.
- 21. Bain, W.K., Biswas, S.: Ethnomedicinal plants and associated traditional wisdom of garo community of Rongram West Garo hills district, Meghalaya, India. Am. J. Ethnomed. (2014). [https://doi.](https://doi.org/10.32474/JCCM.2021.03.000170) [org/10.32474/JCCM.2021.03.000170](https://doi.org/10.32474/JCCM.2021.03.000170)
- 22. Chuakul, W., Soonthornchareonnon, N., Boonjaras, T., Boonpleng, A.: Survey on medicinal plants in Southern Thailand. Thai J. Phytopharm. **11**, 2 (2004)
- 23. Khatun, M.M., Jone, M.J.H., Ashrafuzzaman, M.: Ethnobotanical study of the family Marantaceae R. Br in Bangladesh agricultural university botanical garden. Arch. Agric. Environ. Sci. **8**, 191–197 (2023)
- 24. Akter, A., Roy, R., Basher, M.A.: In-vivo hepatoprotective and hypoglycemic efects of methanolic extract of *Schumannianthus dichotomus* rhizome. Phytomed. Plus. **3**, 100459 (2023). [https://](https://doi.org/10.1016/j.phyplu.2023.100459) doi.org/10.1016/j.phyplu.2023.100459
- 25. Basher, M.A., Hoque, M.R., Roy, R., Hosen, S., Karim, I., Bhowmik, T., Akter, A.: Sex-dependent variations in anti-nociceptive and antipyretic efects of rhizome and stem extract of

Schumannianthus dichotomus Roxb. in male and female mice. Indones. J. Pharm. (2020). <https://doi.org/10.22146/ijp.602>

- 26. Fenwick, A.: The global burden of neglected tropical diseases. Public Health **126**, 233–236 (2012). [https://doi.org/10.1016/j.](https://doi.org/10.1016/j.puhe.2011.11.015) [puhe.2011.11.015](https://doi.org/10.1016/j.puhe.2011.11.015)
- 27. Hotez, P.J., Bottazzi, M.E., Strych, U.: New vaccines for the world's poorest people. Annu. Rev. Med. **67**, 405–417 (2016). <https://doi.org/10.1146/annurev-med-051214-024241>
- 28. Knox, M.R., Besier, R.B., le Jambre, L.F.: 2010 novel approaches meeting-6th novel approaches to the control of helminth parasites of livestock conference, pp. 15–20. Melbourne, Australia (2012)
- 29. Permin, A.: Impact of helminth infections on production of chickens. Biomed. J. Sci. Tech. Res. (2020). [https://doi.org/10.26717/](https://doi.org/10.26717/bjstr.2020.29.004819) [bjstr.2020.29.004819](https://doi.org/10.26717/bjstr.2020.29.004819)
- 30. Permin, A., Hansen, J.W.: The Epidemiology, Diagnosis and Control of Poultry Parasites. (1998)
- 31. Shifaw, A., Feyera, T., Walkden-Brown, S.W., Sharpe, B., Elliott, T., Ruhnke, I.: Global and regional prevalence of helminth infection in chickens over time: a systematic review and meta-analysis. Poult. Sci. **100**, 101082 (2021). [https://doi.org/10.1016/j.psj.2021.](https://doi.org/10.1016/j.psj.2021.101082) [101082](https://doi.org/10.1016/j.psj.2021.101082)
- 32. Samad, M.A., Alam, M.M., Bari, A.S.M.: Efect of Raillietina echinobothrida infection on blood values and intestinal tissues of domestic fowls of Bangladesh. Vet. Parasitol. **21**, 279–284 (1986)
- 33. Chandler, A.C., Pradatsundarasar, A.: Two Cases of Raillietina infection in infants in Thailand, with a discussion of the taxonomy of the species of Raillietina (Cestoda) in man. Rodents Monkeys. J. Parasitol. **43**, 81–88 (1957)
- 34. Baer, J.G., Sandars, D.F.: The frst record of Raillietina (Raillietina) celebensis (Janicki, 1902), (Cestoda) in man from Australia, with a critical survey of previous cases. J. Helminthol. **30**, 173– 182 (1956).<https://doi.org/10.1017/S0022149X00033137>
- 35. Roy, B., Lalchhandama, K., Dutta, B.K.: Anticestodal efficacy of *Acacia oxyphylla* on *Raillietin echinobothrida*: a light and electron microscopic studis. Pharmacologyonline **287**, 279–287 (2007)
- 36. Roy, B., Swargiary, A., Syiem, D., Tandon, V.: Potentilla fulgens (Family Rosaceae), a medicinal plant of north-east India: A natural anthelmintic? J. Parasit. Dis. **34**, 83–88 (2010). [https://doi.org/](https://doi.org/10.1007/s12639-010-0018-z) [10.1007/s12639-010-0018-z](https://doi.org/10.1007/s12639-010-0018-z)
- 37. Tandon, V., Pal, P., Roy, B., Rao, H.S., Reddy, K.S.: In vitro anthelmintic activity of root-tuber extract of Flemingia vestita, an indigenous plant in Shillong. India. Parasitol. Res. **83**, 492–498 (1997)
- 38. Dasgupta, S., Roy, B., Venkataswamy, M., Giri, B.R.: Efects of Acacia oxyphylla and Securinega virosa on functional characteristics of Raillietina echinobothrida (Phylum: Platyhelminthes; Class: Cestoidea), a poultry cestode parasite. J. Parasit. Dis. **37**, 125–130 (2013).<https://doi.org/10.1007/s12639-012-0145-9>
- 39. Giri, B.R., Roy, B.: Resveratrol induced structural and biochemical alterations in the tegument of Raillietina echinobothrida. Parasitol. Int. **63**, 432–437 (2014). [https://doi.org/10.1016/j.parint.](https://doi.org/10.1016/j.parint.2013.12.008) [2013.12.008](https://doi.org/10.1016/j.parint.2013.12.008)
- 40. Kar, P.K., Tandon, V., Saha, N.: Anthelmintic efficacy of genistein, the active principle of Flemingia vestita (Fabaceae): Alterations in the free amino acid pool and ammonia levels in the fuke. Fasciolopsis buski. Parasitol. Int. **53**, 287–291 (2004). [https://doi.](https://doi.org/10.1016/j.parint.2004.04.001) [org/10.1016/j.parint.2004.04.001](https://doi.org/10.1016/j.parint.2004.04.001)
- 41. Saha, R., Gupta, M., Majumdar, R., Saha, S., Kar, P.K.: Anthelmintic efficacy of Holarrhena pubescens against Raillietina spp. of domestic fowl through ultrastructural, histochemical, biochemical and GLCM analysis. PLoS One. 18, 1–18 (2023). [https://doi.org/](https://doi.org/10.1371/journal.pone.0282033) [10.1371/journal.pone.0282033](https://doi.org/10.1371/journal.pone.0282033)
- 42. Majumdar, R., Kar, P.K., Giri, B.R., Roy, B.: Biosynthesis, characterization and anthelmintic activity of silver nanoparticles of Clerodendrum infortunatum isolate. Sci. Rep. **13**, 7415 (2023). <https://doi.org/10.1038/s41598-023-34221-9>
- 43. Fissiha, W., Kinde, M.Z.: Anthelmintic Resistance and Its Mechanism: A Review. Infect. Drug Resist. **14**, 5403–5410 (2021). <https://doi.org/10.2147/IDR.S332378>
- 44. Romero-Benavides, J.C., Ruano, A.L., Silva-Rivas, R., Castillo-Veintimilla, P., Vivanco-Jaramillo, S., Bailon-Moscoso, N.: Medicinal plants used as anthelmintics: Ethnomedical, pharmacological, and phytochemical studies. Eur. J. Med. Chem. **129**, 209–217 (2017)
- 45. Tchetan, E., Olounladé, P.A., Azando, E.V.B., Khaliq, H.A., Ortiz, S., Houngbeme, A., Alowanou, G.G., Koura, B.I., Akouedegni, G.C., Houinato, M.R.B., Hounzangbe-Adote, S.M., Gbaguidi, F.A., Quetin-Leclercq, J.: Anthelmintic Activity, Cytotoxicity, and Phytochemical Screening of Plants Used to Treat Digestive Parasitosis of Small Ruminants in Benin (West Africa). Animals. 12, (2022).<https://doi.org/10.3390/ani12192718>
- 46. Herath, H.M.P.D., Taki, A.C., Rostami, A., Jabbar, A., Keiser, J., Geary, T.G., Gasser, R.B.: Whole-organism phenotypic screening methods used in early-phase anthelmintic drug discovery. Biotechnol. Adv. 57, 107937 (2022). [https://doi.org/10.1016/j.biotechadv.](https://doi.org/10.1016/j.biotechadv.2022.107937) [2022.107937](https://doi.org/10.1016/j.biotechadv.2022.107937)
- 47. Kotze, A.C.: Target-based and whole-worm screening approaches to anthelmintic discovery. Vet. Parasitol. 186, 118–123 (2012). <https://doi.org/10.1016/j.vetpar.2011.11.052>
- 48. Lorsuwannarat, N., Piedrafta, D., Chantree, P., Sansri, V., Songkoomkrong, S., Bantuchai, S., Sangpairot, K., Kueakhai, P., Changklungmoa, N., Chaichanasak, P., Chansela, P., Sobhon, P.: The in vitro anthelmintic efects of plumbagin on newly excysted and 4-weeks-old juvenile parasites of Fasciola gigantica. Exp. Parasitol. 136, 5–13 (2014). [https://doi.org/10.1016/j.exppara.](https://doi.org/10.1016/j.exppara.2013.10.004) [2013.10.004](https://doi.org/10.1016/j.exppara.2013.10.004)
- 49. Kiuchi, F., Miyashita, N., Tsuda, Y., Kondo, K., Yoshimura, H.: Studies on crude drugs effective on visceral larva migrans. I. Identifcation of larvicidal principles in betel nuts. Chem. Pharm. Bull. 35, 2880–2886 (1987)
- 50. Giri, B.R., Roy, B., Dasgupta, S., Roy, B., Tandon, V., Dasgupta, S., Giri, B.R.: Ultrastructural alterations of the tegument of Raillietina echinobothrida treated with the stem bark of Acacia oxyphylla (Leguminosae). J. Ethnopharmacol. 127, 1000–1005 (2010).<https://doi.org/10.1016/j.jep.2009.10.017>
- 51. Chafey, N.: Hayat MA. 2000. Principles and techniques of electron microscopy: biological applications. 4th edn. 543pp. Cambridge: Cambridge University Press. £65 (hardback). Ann. Bot. 87, 546–548 (2001).<https://doi.org/10.1006/anbo.2001.1367>
- 52. Roy, B., Giri, B.R.: α-Viniferin-Induced Structural and Functional Alterations in Raillietina echinobothrida, a Poultry Tapeworm. Microsc. Microanal. **21**, 377–384 (2015). [https://doi.org/10.1017/](https://doi.org/10.1017/S1431927614014603) [S1431927614014603](https://doi.org/10.1017/S1431927614014603)
- 53. Alamgir, A.N.M.: Methods of Qualitative and Quantitative Analysis of Plant Constituents. In: Therapeutic Use of Medicinal Plants and their Extracts: Volume 2: Phytochemistry and Bioactive Compounds. pp. 721–804. Springer International Publishing, Cham (2018)
- 54. Tabasum, S., Khare, S., Jain, K.: Spectrophotometric quantifcation of total phenolic, favonoid, and alkaloid contents of abrus precatorius L. Seeds. Asian J. Pharm. Clin. Res. **9**, 371–374 (2016)
- 55. Ishnava, K.B., Konar, P.S.: In vitro anthelmintic activity and phytochemical characterization of Corallocarpus epigaeus (Rottler) Hook. f. tuber from ethyl acetate extracts. Bull. Natl. Res. Cent. 44, 1–10 (2020).<https://doi.org/10.1186/s42269-020-00286-z>
- 56. The jamovi project (2024). jamovi (Version 2.5) [Computer Software]. Retrieved from<https://www.jamovi.org>
- 57. Dey, P., Roy, B.: Biochemical and ultrastructural changes in Raillietina echinobothrida in vitro exposed to extract of Lysimachia ramosa. J. Parasit. Dis. **42**, 212–219 (2018). [https://doi.org/10.](https://doi.org/10.1007/s12639-018-0985-z) [1007/s12639-018-0985-z](https://doi.org/10.1007/s12639-018-0985-z)
- 58. Lumsden, R.D.: The Tapeworm Tegument: A Model System for Studies on Membrane Structure and Function in Host-Parasite Relationships. Trans. Am. Microsc. Soc. **94**, 501–507 (1975)
- 59. Thompson, D.P., Geary, T.G.: 12 - The Structure and Function of Helminth Surfaces. In: Marr, J.J., Müller, M. (eds.) Biochemistry and Molecular Biology of Parasites, pp. 203–232. Academic Press, San Diego (1995)
- 60. Radha, T., Satyaprema, V.A., Ramalingam, K., Indumathi, S.P., Venkatesh, C.: Ultrastructure of polymorphic microtriches in the tegument of Raillietina echinobothrida that infects Gallus domesticus (fowl). J. Parasit. Dis. **30**, 153–162 (2006)
- 61. Becker, B., Mehlhorn, H., Andrews, P., Thomas, H.: Ultrastructural investigations on the efect of praziquantel on the tegument of fve species of cestodes. Zeitschrift für Parasitenkd. **64**, 257– 269 (1981).<https://doi.org/10.1007/BF00927373>
- 62. Roy, B., Giri, B.R.: α-Viniferin-Induced Structural and Functional Alterations in Raillietina echinobothrida, a Poultry Tapeworm. Microsc. Microanal. **21**, 377–384 (2014). [https://doi.org/10.1017/](https://doi.org/10.1017/S1431927614014603) [S1431927614014603](https://doi.org/10.1017/S1431927614014603)
- 63. Kar, P.K., Murmu, S., Saha, S., Tandon, V., Acharya, K.: Anthelmintic efficacy of gold nanoparticles derived from a phytopathogenic fungus. Nigrospora oryzae. PLoS One. **9**, 1–9 (2014). <https://doi.org/10.1371/journal.pone.0084693>
- 64. Kar, Pradip Kumar; Tandon, V; Saha, N.: Anthelmintic efficacy of Flemingia vestita: genistein -induced efect on the activity of nitric oxide synthase inthe trematode parasite, Faciolopsis buski. Parasitol. Int. 51, 249–257 (2002)
- 65. Challam, M., Roy, B., Tandon, V.: In vitro anthelmintic efficacy of Carex baccans (Cyperaceae): Ultrastructural, histochemical and biochemical alterations in the cestode. Raillietina echinobothrida. J. Parasit. Dis. **36**, 81–86 (2012). [https://doi.org/10.1007/](https://doi.org/10.1007/s12639-011-0087-7) [s12639-011-0087-7](https://doi.org/10.1007/s12639-011-0087-7)
- 66. Dasgupta, S., Roy, B.: Antiparasitic activity of methanolic extract of Acacia oxyphylla (Leguminosae) against Raillietina echinobothrida. J. Parasit. Dis. **34**, 14–19 (2010). [https://doi.org/10.1007/](https://doi.org/10.1007/s12639-010-0001-8) [s12639-010-0001-8](https://doi.org/10.1007/s12639-010-0001-8)
- 67. Liu, M., Panda, S.K., Luyten, W.: Plant-based natural products for the discovery and development of novel anthelmintics against nematodes. Biomolecules (2020). [https://doi.org/10.3390/biom1](https://doi.org/10.3390/biom10030426) [0030426](https://doi.org/10.3390/biom10030426)
- 68. Jayawardene, K.L.T.D., Palombo, E.A., Boag, P.R.: Natural products are a promising source for anthelmintic drug discovery. Biomolecules (2021).<https://doi.org/10.3390/biom11101457>
- 69. Bahmani, M., Rafeian-Kopaei, M., Hassanzadazar, H., Saki, K., Karamati, S.A., Delfan, B.: A review on most important herbal and synthetic antihelmintic drugs. Asian Pac J Trop Med **7**, S29– S33 (2014). [https://doi.org/10.1016/S1995-7645\(14\)60200-5](https://doi.org/10.1016/S1995-7645(14)60200-5)
- 70. Manjusa, A., Pradeep, K.: Herbal anthelmintic agents: a narrative review. J. Tradit. Chinese Med. **42**, 641 (2022)
- 71. Spiegler, V., Liebau, E., Hensel, A.: Medicinal plant extracts and plant-derived polyphenols with anthelmintic activity against intestinal nematodes. Nat. Prod. Rep. **34**, 627–643 (2017). [https://doi.](https://doi.org/10.1039/C6NP00126B) [org/10.1039/C6NP00126B](https://doi.org/10.1039/C6NP00126B)
- 72. Ramdani, D., Yuniarti, E., Jayanegara, A., Chaudhry, A.S.: Roles of essential oils, polyphenols, and saponins of medicinal plants as natural additives and anthelmintics in ruminant diets: a systematic review. Animals (2023).<https://doi.org/10.3390/ani13040767>
- 73. Al-Dhabi, N.A., Esmail, G.A., Ghilan, A.K.M., Arasu, M.V., Duraipandiyan, V., Ponmurugan, K.: Chemical constituents of *Streptomyces* sp. strain Al-Dhabi-97 isolated from the marine region of Saudi Arabia with antibacterial and anticancer properties. J. Infect. Public Health **13**, 235–243 (2020). [https://doi.org/](https://doi.org/10.1016/j.jiph.2019.09.004) [10.1016/j.jiph.2019.09.004](https://doi.org/10.1016/j.jiph.2019.09.004)
- 74. Chakraborty, B., Kumar, R.S., Almansour, A.I., Perumal, K., Nayaka, S., Brindhadevi, K.: Streptomyces flamentosus strain KS17 isolated from microbiologically unexplored marine ecosystems

exhibited a broad spectrum of antimicrobial activity against human pathogens. Process Biochem. **117**, 42–52 (2022). [https://](https://doi.org/10.1016/j.procbio.2022.03.010) doi.org/10.1016/j.procbio.2022.03.010

- 75. Deka, D., Jha, D.K.: Endophytic fungi associated with *Brucea mollis Wall*. ex Kurz.: a hidden source of antimicrobial and antioxidant metabolites. Biotechnol. Genet. Eng. Rev. (2023). [https://](https://doi.org/10.1080/02648725.2023.2216967) doi.org/10.1080/02648725.2023.2216967
- 76. Alabi, K., Oyeku, T.: The chemical constituents extractable from teak tree (Tectona grandis Linn) obtained from fountain university. Osogbo. Niger. J. Basic Appl. Sci. **25**, 73–80 (2017)
- 77. Osuntokun, O.T., Cristina, G.M.: Bio-guided isolation, chemical purification, identification, antimicrobial and synergistic efficacy of extracted essential oils from stem bark extract of *Spondias mombin* (Linn). Int. J. Mol. Biol. Open Access. **4**, 135–143 (2019)
- 78. Ukwubile, C.A., Ikpefan, E.O., Malgwi, T.S., Bababe, A.B., Odugu, J.A., Angyu, A.N., Otalu, O., Bingari, M.S., Nettey, H.I.: Cytotoxic efects of new bioactive compounds isolated from a Nigerian anticancer plant *Melastomastrum capitatum* Fern. leaf extract. Sci. African **8**, e00421 (2020). [https://doi.org/10.1016/j.](https://doi.org/10.1016/j.sciaf.2020.e00421) [sciaf.2020.e00421](https://doi.org/10.1016/j.sciaf.2020.e00421)
- 79. Tauheed, A.M., Mamman, M., Ahmed, A., Suleiman, M.M., Balogun, E.O.: Antitrypanosomal properties of *Anogeissus leiocarpa* extracts and their inhibitory efect on trypanosome alternative oxidase. J. Phyther. Phytopharm. Phytomed. Plus Int (2022). [https://](https://doi.org/10.1016/j.phyplu.2022.100223) doi.org/10.1016/j.phyplu.2022.100223
- 80. Ishnava, K.B., Konar, P.S.: In vitro anthelmintic activity and phytochemical characterization of *Corallocarpus epigaeus* (Rottler) Hook. F. tuber from ethyl acetate extracts. Bull. Natl. Res. Cent. **44**, 33 (2020). <https://doi.org/10.1186/s42269-020-00286-z>
- 81. Koorse, K.G., Samraj, S., John, P., Narayanan, P.M., Devi, S.S., Usha, P.T., Sunilkumar, S., Gleeja, V.L.: Anthelmintic activity of fruit extract and fractions of Piper longum L. In vitro. Pharmacogn. J. **10**, 333–340 (2018).<https://doi.org/10.5530/pj.2018.2.57>
- 82. Lalthanpuii, P.B., Lalchhandama, K.: Phytochemical analysis and in vitro anthelmintic activity of *Imperata cylindrica* underground parts. BMC Complement. Med. Ther. **20**, 332 (2020). [https://doi.](https://doi.org/10.1186/s12906-020-03125-w) [org/10.1186/s12906-020-03125-w](https://doi.org/10.1186/s12906-020-03125-w)
- 83. Pedraza-Hernández, J., Elghandour, M.M.M.Y., Khusro, A., Salem, M.Z.M., Camacho-Diaz, L.M., Barbabosa-Pliego, A., Salem, A.Z.M.: Assessment on bioactive role of Moringa oleifera leaves as anthelmintic agent and improved growth performance in goats. Trop. Anim. Health Prod. **53**, 318 (2021). [https://doi.org/](https://doi.org/10.1007/s11250-021-02745-9) [10.1007/s11250-021-02745-9](https://doi.org/10.1007/s11250-021-02745-9)
- 84. Dogra, N.K., Kumar, S., Thakur, K., Kumar, D.: Antipsoriatic efect of fatty acid enriched fraction of *Vernonia anthelmintica Wild* fruits. J. Ethnopharmacol. **224**, 85–90 (2018). [https://doi.](https://doi.org/10.1016/j.jep.2018.05.038) [org/10.1016/j.jep.2018.05.038](https://doi.org/10.1016/j.jep.2018.05.038)
- 85. Pineda-Alegría, J.A., Sánchez, J.E., González-Cortazar, M., von Son-de Fernex, E., González-Garduño, R., Mendoza-de Gives, P., Zamilpa, A., Aguilar-Marcelino, L.: In vitro nematocidal activity of commercial fatty acids and β-sitosterol against *Haemonchus contortus*. J. Helminthol. **94**, e135 (2020). [https://doi.org/10.1017/](https://doi.org/10.1017/S0022149X20000152) [S0022149X20000152](https://doi.org/10.1017/S0022149X20000152)
- 86. Nabi, M., Zargar, M.I., Tabassum, N., Ganai, B.A., Wani, S.U.D., Alshehri, S., Alam, P., Shakeel, F.: Phytochemical profling and antibacterial activity of methanol leaf extract of *Skimmia anquetilia*. Plants (2022). <https://doi.org/10.3390/plants11131667>
- 87. Cruz-Arévalo, J., Sánchez, J.E., González-Cortázar, M., Zamilpa, A., Andrade-Gallegos, R.H., Mendoza-de-Gives, P., Aguilar-Marcelino, L.: Chemical composition of an anthelmintic fraction of *Pleurotus eryngii* against eggs and infective larvae (L3) of haemonchus contortus. Biomed. Res. Int. **2020**, 4138950 (2020). <https://doi.org/10.1155/2020/4138950>
- 88. Saleh, A.S., El-Newary, S.A., Mohamed, W.A., Elgamal, A.M., Farah, M.A.: Pumpkin seeds (Cucurbita pepo subsp. ovifera) decoction promotes Trichinella spiralis expulsion during intestinal

phase via "Weep and Sweep" mechanism. Sci. Rep. **14**, 1548 (2024).<https://doi.org/10.1038/s41598-024-51616-4>

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional afliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.