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Abstract
Biodiesel production from microalgae is considered a sustainable alternative to fossil fuel sources. The economic feasibility 
of algae-based biodiesel is highly related to biomass, lipid and FAME yield of the species. Thus, optimization of the culture 
conditions plays an important role in biodiesel production. The aim of this study is to compare lipid and FAME yield and 
biodiesel quality of two green algae species, Chlorella vulgaris, and Botryococcus sudeticus, under nitrogen deficiency condi-
tions. For this purpose, algae species were cultured under optimum conditions until the stationary phase, then in the second 
phase the effect of nitrogen stress on total lipid, FAME content, and biodiesel quality were assessed. Although nitrogen-
deficiency had negative impact on the growth and survival of both species, complete nitrogen removal from the medium 
stimulated the total lipid and FAME yield and the level of enhancement varied among species. FAME yield increased by 21% 
in B. sudeticus and 28% in C. vulgaris cultures under nitrogen deficiency conditions. The biodiesel properties of both cultures 
met European standards, on the other hand the absence of nitrogen did not reveal a significant effect on the cetane number 
values of C. vulgaris. However, it caused a reduction in B. sudeticus cultures. Nitrogen deficiency had a negative impact on 
the oxidative stability of B. sudeticus, reducing its ability to resist oxidation. However, it enhanced the oxidative stability of 
C. vulgaris in long-term storage. The results highlighted the importance of species-specific approaches to maximize both 
lipid content and biodiesel quality.
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IV  Iodine value
LCSF  Long chain saturated factors
MUFAs  Monounsaturated fatty acids
SFAS  Saturated fatty acids
PUFAs  Polyunsaturated fatty acid
SV  Saponification value
Acyl CoA  Diacylglycerol acyltransferase
wt%  Weight percentage (%)
DW  Dry weight percentage (%)
UTEX  Culture Collection of Algae at the University 

of Texas at Austin
CCAP  Culture collection of algae and protozoa
FID  Flame ionization detector
GC  Gas chromatography

Statement of Novelty

This paper considers the implications of two different micro-
algae species to produce high-quality biodiesel and assesses 
the significance of nutrient deficiency conditions to create 
stress on organisms to produce higher biodiesel yields. Fur-
thermore, the study represents one of the first investigations 
on the potential of B. sudeticus as an alternative feedstock in 
biodiesel production under nitrogen-manipulated conditions. 
Overall, this investigation makes an important contribution 
to biodiesel production and quality and provides practical 
information on culturing conditions for enhanced biodiesel 
yield.

Introduction

The use of fossil sources, such as oil, natural gas, and coal 
is known to have a negative effect on the environment by 
increasing greenhouse gas emissions [1]. The demand for 
sustainable energy resources has increased due to not only 
the damage caused by fossil resources to the environment, 
but also their limited availability. Thus, biodiesel is con-
sidered one of the important alternative fuel sources that is 
renewable, nontoxic, non-flammable, and eco-friendly [2, 3]

Biodiesel production from microalgae has been high-
lighted as a promising approach compared to other resources 
such as vegetable oils and recycled greases [4–6]. Microal-
gae has a greater biomass growth rate than that terrestrial 
crops as well as they do not compete with crops for land 
and water in cultivation which are significant advantages 
over terrestrial crops [3, 7]. Microalgae have the potential 
to produce a wide range of high-value bioactive compounds, 
along with their rapid growth rates, high lipid productivity, 
and the ability to efficiently manage  CO2 capture through 
photosynthesis [8]. Therefore, it further increases its attrac-
tiveness as a sustainable feedstock for biodiesel production.

Although algae-based biodiesel production provides 
advantages over crude oil, one of the main drawbacks is the 
production costs that conflict with the marketing of biodiesel 
[9, 10]. The economic feasibility of algae-based biodiesel 
depends on high biomass yields and lipid productivity, as 
well as improved biodiesel properties [4, 11]. Therefore, 
process optimization is necessary to increase lipid content 
and reduce the environmental impacts and costs of the over-
all process. Achieving a balance between maximizing lipid 
yield and maintaining desired biodiesel properties can sig-
nificantly reduce the cost of producing microalgal biodiesel 
[12]. This may involve optimizing the duration and intensity 
of nutrient stress to achieve the desired fatty acid profile.

Nitrogen deficiency is a well-known strategy for increas-
ing lipid accumulation in microalgae [13, 14]. Optimiz-
ing nutrient-stressed conditions to obtain high biomass as 
well as lipid yield has been taken into consideration by 
many researchers [10, 15, 16]. Nitrogen deficiency leads to 
more lipid accumulation compared to other stress condi-
tions, since nitrogen is related to lipid metabolism in algae 
[16–18] Diacylglycerol Acyltransferase (Acyl CoA) is a key 
enzyme involved in triglyceride synthesis [19], and in nitro-
gen-stressed conditions, stimulation of Acyl CoA has been 
observed in which the overstimulation leads to the accumu-
lation of lipids [20]. Furthermore, nitrogen stress conditions 
reveal differences in total lipid and fatty acid compositions 
[17, 23]. The effect of nitrogen stress on the Fatty Acid 
Methyl Ester (FAME) composition, which is the basis for 
determining biodiesel properties, may vary depending on the 
species [10]. Biodiesel properties are assessed based on the 
overall composition of Fatty Acid Methyl Esters (FAME), 
which includes saturated fatty acids (SFAs), monounsatu-
rated fatty acids (MUFAs), and polyunsaturated fatty acids 
(PUFAs) [22]. These properties of biodiesel should com-
ply with worldwide biodiesel standards such as European 
standards (EN14214) [23], and The American Society for 
Testing and Materials (ASTM D6751) [24]. It is important 
to conduct further studies on the optimization of species-
specific culture conditions on FAME composition and bio-
diesel properties.

The ease of growing conditions of Chlorella [25] and 
the high hydrocarbon content and favorable fatty acid com-
position of Botryococcus [26] have made them the most 
extensively studied freshwater genera for biodiesel produc-
tion. In particular, Chlorella vulgaris, is a commonly used 
species for large-scale cultivation due to its small cell size, 
which makes it easy to circulate in the growing medium 
[27]. Additionally, it has a high oil content and ability to 
withstand extreme environments [25, 28]. For these reasons, 
C. vulgaris was chosen as a reference strain to compare the 
analysis of the FAME production to B. sudeticus.

There are numerous studies showing B. braunii has the 
potential to serve as a viable biomass for biodiesel due to 
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its favorable fatty acid composition [3, 29–31]. Although B. 
sudeticus has a higher growth rate compared to B. braunii 
and other strains [32, 33], there is a relatively less amount of 
literature that is concerned with biodiesel production from 
the alga B. sudeticus [3, 34]. Gaining insights into how B. 
sudeticus reacts under nutrient stress conditions can offer 
valuable knowledge for refining its cultivation to achieve 
improved biodiesel yield and quality. This study represents 
the one of the first investigations evaluating the potential of 
B. sudeticus as an alternative feedstock in biodiesel produc-
tion under nitrogen-manipulated conditions.

Maximum biodiesel yield from microalgae can be 
obtained with high biomass and appropriate FAME com-
position. This study aims to compare the main advantages, 
including growth rate and biodiesel quality, and provide 
insights into the potential of nutrient limitation as biodiesel 
feedstocks for C. vulgaris and B. sudeticus. Therefore, a 
two-step experiment was planned within the scope of this 
study. The first step aimed to obtain high biomass from Bot-
ryococcus and Chlorella under optimum conditions until 
the stationary phase of algal growth. In the second stage, in 
order to investigate to examine the effect of nitrogen stress 
on total lipid %, FAME content (wt%), and biodiesel quality, 
nutrient-replenishment and nitrogen-deficiency conditions 
were tested.

The study intends to contribute valuable information 
regarding the suitability of these algae species for biodiesel 
production under nutrient-limited conditions.

Materials and Methods

Microalgal Species and Experimental Set Up

Strains of green microalgae were obtained from culture col-
lections of Culture Collection of Algae at the University of 
Texas at Austin (UTEX) and Culture Collection of Algae 
and Protozoa (CCAP). Botryococcus sudeticus (UTEX B 
2629) and Chlorella vulgaris (CCAP 211/79) were main-
tained in batch cultures (5 L Erlenmeyer flask) and grown 
at 25 μmol  m−2  s−1 light provided by cool white fluorescent 
lights in a photoperiod regime (12:12 h light: dark) at 24 °C. 
Aeration and agitation of the cultures were achieved by bub-
bling with dry air gasses twice a day.

Media and flasks were sterilized in an autoclave at 
121 °C for 20 min to avoid contamination before starting 
the experimental sets. Sterile BG-11 [35] culture medium 
was used in this experiment which consisted of (g  L−1): 1.5, 
 NaNO3 (sodium nitrate); 0.04,  K2HPO4 (potassium phos-
phate); 0.075,  MgSO4·7H2O (magnesium sulfate); 0.0036, 
 CaCl2·2H2O (calcium chloride); 0.006,  (NH4)5[Fe(C6H4O7)2 
(ferric-ammonium citrate); 0.006,  C6H8O7 (citric acid); 
0.001, EDTA-2Na (EDTA, disodium salt); and 0.02, 

 Na2O3 (sodium carbonate). 1 ml of trace metals mixer was 
used in BG-11 medium, having 2.86 g of  H3BO3, 1.81 g 
of  MnCl2.4H2O, 0.39  g of  NaMoO4.2H2O, 0.079  g of 
 CuSO4.5H2O, and 0.494 g of Co(NO3)2.6H2O in 1 L of 
ultrapure water.

The experiment was conducted in two stages. In the first 
stage, which lasted for 6 weeks, stock cultures with an ini-
tial cell density of approximately 15 ×  106 cells  ml−1 were 
inoculated into BG-11 medium containing  NaNO3. During 
6 weeks, all cultures were kept under the same growth con-
ditions. In the second stage, which lasted for 3 weeks, two 
different conditions were applied to the cultures.

• Nutrient-replenishment set: The cultures were centri-
fuged at the end of the 6th week, and after removal from 
the medium, they were re-inoculated into normal BG-11 
medium.

• Nitrogen–deficiency set: The cultures were centrifuged 
at the end of the 6th week, and after removal from the 
medium, they were re-inoculated into BG-11 medium 
without  NaNO3.

Biomass Estimation

Culture growth was monitored weekly by Chlorophyll-a 
(chl-a) measurement. Chl-a was determined according to 
the ISO 10260 standard method [28]. The specific growth 
rate was determined based on chl-a values according to [29]. 
The specific growth rate (µ) was calculated from the Eq. (1):

where, N2 and N1 are the chl-a values at the times t2 and 
t1, respectively.

Harvesting and Lipid Extraction

Cultures were harvested by centrifuging at 3500 rpm for 
5 min. After centrifugation, the pellets were removed from 
the medium and washed several times with distilled water. 
All pellet was collected and placed in a centrifuge tube and 
then dried using a freeze dryer.

The lipids were extracted using the modified Bligh and 
Dyer [36] protocol, with chloroform: methanol: water 
(1:2:0.8 v/v). Briefly, 100 mg lyophilized microalgae culture 
was extracted with 1.25 ml chloroform, 2.5 ml methanol, and 
1 ml distilled water and the mixture was kept for 4 h at 22 °C 
in the incubator at 300 rpm rotation (N-Biotek NB-205lf). 
After incubation, it was filtered through 0.45 µm PVDF 
membrane (MillexHV) for the separation of cell debris. 
The filtrate was centrifuged for 10 min at 4500 rpm and 
the top layer with water and methanol was poured off, and 

(1)μ =
ln(N2 − N1)

t2 − t1
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the bottom layer containing the lipid and chloroform was 
transferred to a clean pre-weighed tube. Then the chloroform 
was evaporated under  N2 gas and remaining lipids measured 
gravemetrically. The lipid yield was calculated using the fol-
lowing Eq. (2):

Transesterification and FAME Analyses

The extracted lipids were transesterified to fatty acid methyl 
ester (FAME) form according to Lepage and Toy [37] and 
the composition of FAME was determined from crude bio-
diesel. Briefly, lipids were saponified with 1 mL of 2 N 
methanolic KOH–CH3OH solution at 75 °C for 10 min and 
then exposed to methanolysis with 5% HCl in methanol at 
75 °C for another 10 min. After the reaction was completed, 
FAMEs were extracted with 5 mL hexane. For the phase 
separation, 1 mL Milli-Q water was added and the hexane 
layer was filtered with anhydrous sodium sulphate. Thereaf-
ter, hexane evaporated under  N2 gas and weighed for deter-
mination of transesterified FAME amount as mass. Samples 
were redissolved in 1 ml of hexane and for quantification 
of FAME content 1 mL solution of methyl nonadecanoate 
(C19:0) in hexane (mg  mL−1) was spiked as an internal 
standard. FAME was analyzed by a gas chromatography (A 
Clarus 680, Perkin Elmer, USA) equipped with a flame ioni-
zation detector (FID) using an HP-88 column (100 m length 
0.25 mm ID, 0.2um film thickness). Hydrogen was used as 
a carrier gas with a flow rate of 1 mL  min−1. The split ratio 
was 50:1. GC oven temperature was programmed from 50 °C 
(5 min) to 230 °C (11 min) at a rate of 4 °C  min−1. GC peaks 
were identified by the mixture of 37 fatty acids methyl esters 
(Supelco™ 37 Component FAME Mix). FAME content was 
determined as mass percentage according to EN14103:20 
[38] method using the following Eq. 3.

AX is the peak area of individiual meyhl ester X, RX is 
GC-FID corrector factor for relative to the internal stand-
ard, AEI is the peak area corresponding to C19:0 standard, 
WEI is the weight in mg of the C19:0 being used as internal 
standard, W is the weight, in mg of transesterified fatty acid 
methyl ester.

FAME yield was calculated as follows: Eq. 4.

(2)Lipid yield(DW%) =
Weight of extracted lipids

Weight of dry biomass

(3)Fame content% =

∑

(AX × RX) − AEI

AEI
×
WEI

W
× 100

(4)

FAMEyield(wt%) =
Lipid yield(wt.%) × FAMEcontent%

100

Evaluation of Biodiesel Quality

The property of biodiesel was determined from FAME com-
position. The carbon chain sizes and the number and position 
of double bonds which determine the molecular structure of 
FAME, affect the quality of biodiesel [39, 40]. These main 
parameters that greatly affect the biodiesel property are cetane 
number (CN), Iodine Value (IV), Cold Filter Plugging Point 
(CFPP), oxidation stability, Degree of Unsaturation (DU) and 
Long-Chain Saturated Factor (LCSF).

The cetane number (CN) shows the time delay in the igni-
tion of fuel for diesel cycle engines. A shorter CN indicates a 
longer ignition time. In the present work, CN was estimated 
using an empirical correlative model (CN = a + b/x + cy) based 
on various vegetable oils that were previously characterized 
according to Krisnangkura et al. (1986) [41]. The x value in 
the model is associated with the saponification number (SV), 
measured in milligrams of Potassium Hydroxide required to 
saponify 1 g of oil, while the Y value is associated with the 
iodine number (IV), which represents the number of double 
bonds in the oil.

CN, SV, and IV for each microalgae biodiesel were esti-
mated by derived from Krisnangkura (1986) [41] in Eq. 5–7.

 where D is the number of double bonds, M is the FA molec-
ular mass, and N is the percentage of each FA component of 
the microalgae oil.

Parameters such as other (CFPP), oxidation stability, DU 
and long chain saturated factor (LCSF) related to the quality 
of biodiesel used empirical equations as the other studies [39, 
41, 42] that have been accurately before.

Degree of unsaturation (DU) is the amount of monounsatu-
rated (MUFA) and polyunsaturated (PUFA) FAs present in the 
microalgae oil and they were shown in Eq. 8.

The long-chain saturated factor (LCSF) was also directly 
used to calculate Cold Filter Plugging Point (CFPP). These 
two factors are related to chain saturation and the length of 
FAME. LCSF and CFPP were shown in Eq. 9, 10.

(5)CN = 46.3 + (5458∕SV) − (0, 225 × IV)

(6)SV =
∑

(560 × N)∕M

(7)IV =
∑

(254 × DN)∕M

(8)DU = MUFA + (2 × PUFA)

(9)
LCSF =

(

0.1 × C16
)

+
(

0.5 × C18
)

+
(

1 × C20
)

+
(

1.5 × C22
)

+
(

2 × C24
)

(10)CFPP = (3.1417 × LCSF) − 16.477
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Statistical Analysis

The data were analyzed by one-way analysis of variance 
(ANOVA) and Tukey HSD test with a significance level of 
P < 0.05. Statistical analyses were performed using SPSS 
17.0 (Statistical Product and Service Solutions).

Results and Discussions

Microalgal Biomass Production

The optimization of cultivation conditions of microalgae 
plays a crucial role in biomass yields and lipid amounts, 
as well as cost-effectiveness [43]. Selecting an appropriate 
medium is essential for achieving rapid growth and high 
lipid content in microalgae [44]. Previous studies have high-
lighted the importance of having a certain nitrogen concen-
tration in the medium to promote biomass production. Choi 
et al. [45] reported that initial nitrate concentration below 
0.37 mM resulted in low biomass but high lipid production. 
Similarly, Vishwakarma et al. [21] found that a  NaNO3 con-
centration of 1.5 g  L−1 in the BG-11 medium increased bio-
mass yield compared to the BBM medium. BG-11 medium 
is known to be rich in nitrogen (N), phosphorus (P), and 
carbon (C), which are essential nutrients for the growth of 
green algae [21]. Therefore, in this study, the BG-11 medium 
with sufficient nitrogen concentration was used to achieve 
high biomass production at the first stage.

The growth rates, determined through weekly chloro-
phyll-a (chl-a) analysis, indicated that the stationary phase 
was observed by the end of the 6th week (Fig. 1). During the 
first stage of the experiment, the weekly variation of chl-a 
values was in a range of 599 to 2575 µg  L−1 for B. sudeticus 
and 222 to 1377 µg  L−1 for C. vulgaris (Fig. 2). In the second 
stage of the experiment, higher chl-a values were observed 
in the nutrient-replenishment set compared to the nitrogen 
deficiency set. The chl-a values in the nutrient-replenish-
ment set ranged from 2553 to 3796 µg  L−1 in B. sudeticus 
and from 1798 to 2642 µg  L−1 in C. vulgaris. On the other 
hand, in the nitrogen deficiency set, the chl-a values ranged 
from 2464 to 2997 µg  L−1 in B. sudeticus and from 1643 to 
2285 µg  L−1 in C. vulgaris.

A declining trend was observed in the growth rates of the 
nitrogen deficiency set and cell death was started after the 
2nd week. These observations indicated that lack of nitrogen 
has a negative impact on both the viability and growth of 
the microalgae.

Generally, during the stationary phase of algal growth, 
essential nutrients such as nitrogen and phosphorus are 
likely to deplete. In this phase, microalgae allocate a sig-
nificant portion of the photosynthetically reduced carbon to 
the biosynthesis of hydrocarbons [46]. Nitrogen deficiency 

has been shown to reduce chlorophyll content in microal-
gae [47]. Furthermore, under nitrogen-deficient conditions, 
the metabolic products of photosynthesis shift from protein 
synthesis to the production of carbohydrates and lipids [48]. 
This metabolic adjustment allows microalgae to redirect 
their resources towards the accumulation of energy-rich 
compounds, such as lipids, which are of particular interest 
for biodiesel production.

Comparing the chl-a contents of the two sets revealed 
that B. sudeticus reached higher chl-a values than that of C. 
vulgaris. Several studies showed that the cell growth rate of 
Botryococcus strains is slower than other green algae [31, 
44, 49]. However, depending on culture conditions (light, 
temperature, etc.) there may not be a linear relationship 
between cell growth rate and chlorophyll content [50]. Addi-
tionally, other studies highlighted the importance of light 
sources on photosynthetic active radiation (PAR) [1, 7, 50]. 

Fig. 1  Weekly changes in chlorophyll a levels and growth rate of the 
cultures
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The higher chl-a content of B. sudeticus may be explained 
by the fact that the use of the white light source may have 
promoted PAR on B. sudeticus rather than the growth rate.

Lipid Yield and Total FAME Content

The results indicated that the nitrogen deficiency had a clear 
effect on the total lipid yields. There was a significant vari-
ance between the nitrogen deficiency and nutrient-replen-
ishment set (ANOVA p < 0.05). In both cultures, the highest 
fatty acid content was obtained in the nitrogen deficiency 
set (Fig. 2).

The total lipid content of C. vulgaris increased from 
24.1% to 28.4% in the nitrogen deficiency set compared to 
the nutrient-replenishment set. These results reflect those 
of Converti et al. [51] who also found the significant impact 
of reducing the nitrogen concentration on the total lipid 
content of C. vulgaris. They stated that by decreasing the 
nitrogen concentration by 75% compared to the optimum 
nitrogen value (1.5 g  L−1  NaNO3), the total lipid content of 
C. vulgaris increased substantially from 5.90% to 16.41%. 
Additionally, the Tan et al. [25] have examined the effects 
of various amounts of nutrients addition in the cultivation 
medium, and reported a wider range of total lipid content, 
ranging from 26 to 37% wt%. Overall, these findings suggest 
that manipulating nitrogen concentration and other culture 
conditions can significantly impact the total lipid content of 
C. vulgaris.

On the other hand, in both sets, B. sudeticus exhibited 
lower total lipid content compared to C. vulgaris. In the 
nitrogen deficiency set, the total lipid content increased 
from 21.1% to 23.8% compared to the nutrient replen-
ishment set. This is in line with previous findings by 
Ashokkumar et al. [3], who reported a total lipid content 
of 22.6% wt% for B. sudeticus. However, there is a very 

limited information on the fatty acid composition and 
biodiesel quality of B. sudeticus in response to nitrogen 
deficiency.

Under N-limiting conditions, cells prioritize the synthe-
sis of fatty acids and lipids as a means of efficient carbon 
and energy storage instead of the synthesis of N-containing 
compounds such as proteins, nucleic acids, and chlorophyll 
[10, 52]. The fatty acids required for biodiesel serve as an 
efficient carbon and energy source that can be produced 
without requiring as much nitrogen [53]. FAME content in 
many microalgae may vary in response to different envi-
ronmental factors in culture conditions [45, 54]. Several 
studies showed that a decrease in nitrogen concentration 
in the medium leads to an increase in FAME content % in 
microalgae [17, 45]. The total FAME content (wt%) was 
detected in the range of 20.9 to 22.6% in C. vulgaris, 21.1 
to 22.5 in B. sudeticus, in the nutrient replenishment set 
and nitrogen deficiency set respectively (Fig. 3.). The total 

Fig. 2  Lipid yield %, FAME 
content wt% and FAME yield 
of B. sudeticus and C. vulgaris 
used in the experimental sets

Fig.3  FAME content (wt%) of significant fatty acids for B. sudeticus 
and C. vulgaris the different experimental sets 
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FAME contents (wt%) of C. vulgaris were significantly 
higher in the nitrogen-deficiency set compared with the 
nutrient replenishment set (Anova P < 0.05). On the other 
hand, there were no statistically significant differences 
between the sets in B. sudeticus (Anova P > 0.05).

Total FAME yield % varied with a range of 4.45–5.4 in 
B. sudeticus and 5.0–6.4 in C. vulgaris in nutrient replen-
ishment and nitrogen deficiency sets, respectively (Fig. 2.). 
Nitrogen deficiency led to an increase in FAME yield for 
both species. Specifically, in B. sudeticus, nitrogen defi-
ciency resulted in a 21% increase in FAME yield, while in 
C. vulgaris, the yield was 28% higher under nitrogen defi-
ciency conditions compared to the nutrient-supplemented 
set.

The Composition of Fame and its Effect 
on the Biodiesel Quality

The fatty acid composition of algal species affects the qual-
ity of biodiesel, such as engine performance and emission 

characteristics [55]. Therefore, it is essential to analyze the 
fatty acid composition of algae to understand their potential 
as a feedstock. The fatty acid profile of C. vulgaris and B. 
sudeticus is shown in Table 1. Although the derivatives of 
C16:0 (palmitic acid), C18:0 (Stearic acid), C18:1cis (oleic 
acid), and γ- C18:3n6 (linolenic acid) were the main fatty 
acids in both species, the percentage of FAME composi-
tion of individual fatty acids varied between the sets. When 
the nitrogen-deficiency set compared with the nutrient-
replenishment set, the FAME content (wt%) of C16:0 (pal-
mitic acid), C18:0 (Stearic acid), C18:1trans (Elaidic acid), 
C18:1cis (oleic acid), C18:2cis (linoleic acid), C18:2 trans 
(linolelaidic acid), γ- C18:3n6 (linolenic acid) were statisti-
cally significant in both species (Anova P < 0.05).

The carbon chain length, degree of unsaturation, and per-
centage composition of FAME are known to affect biodiesel 
properties [13]. The C16–C18 chain length is the most sig-
nificant range of FAME composition for biodiesel applica-
tion [56, 57]. In the present study, the C16–C18 chain length 
ranged between 87.5–93.7 in B. sudeticus and 90.2–91.9 in 

Table 1  Fatty acid profiles 
of Botryococcus sudeticus 
and Chlorella vulgaris in the 
Nutrient replenishment and 
Nitrogen deficiency sets

Data are mean—SD values
ab Means sharing a common superscript letter are significantly different at P < 0.05 based on Tukey’s Highly 
Significant Difference multiple comparison tests following a significant one-way analysis of variance 
(ANOVA)
n.d not dedected

FAME component B.sudeticus C. vulgaris

Nutrient 
replenishment

Nitrogen deficiency Nutrient 
replenishment

Nitrogen deficiency

c14:0 0.6 ±  0a 0.5 ± 0.2a 1.2 ± 0.1a 1 ± 0.1b

c16:0 41.1 ± 0.5a 34.9 ± 1.9b 36.3 ± 0.6a 37.8 ± 1.2a

c16:1 3 ± 0.1a 2.2 ± 0.2b 1.9 ± 0.2a 1.7 ±  0a

c17:0 0.7 ± 0.5a 0.2 ± 0.1a 0.1 ± 0.1a 0.3 ±  0a

c17:1 1.0 ± 0.3a 0.7 ± 0.1a 1.6 ± 0.1ba 1.5 ± 0.1a

c18:0 11.3 ± 0.3a 9.7 ± 1.1a 9.2 ± 1.1a 8.3 ± 0.3a

c18:1 trans 0.8 ±  0a 0.4 ±  0b 2.2 ± 0.1a 5.6 ± 0.2b

c18:1 cis 11.5 ± 0.3a 16.5 ± 1.7b 15.3 ± 0.6a 20.0 ± 0.2b

c18:2 cins 3 ±  0a 2.1 ± 0.2b 4.8 ± 0.2a 5.1 ± 0.1a

c20:0 0 ±  0a 0 ±  0a 0.2 ±  0a 0.1 ± 0.1a

c18:3n6 14.3 ± 0.6a 26.7 ± 2.8b 17.8 ± 0.7a 11.5 ±  1b

c20:1 6.2 ± 0.2a 3 ±  1b 8.4 ± 0.2a 7.0 ± 0.2b

c18:3n3 1 ±  0a 0.4 ±  0b 1.0 ± 0.1a 0.2 ±  0b

c21:0 2.7 ± 0.1a 1.2 ± 0.3b n.d n.d
c22:0 1.1 ± 0.1a 0.5 ±  0b n.d n.d
c20:4n6 0.7 ± 0.5a 0 ±  0a n.d n.d
c22:2n6 0.9 ± 0.1a 0.9 ±  0a n.d n.d
C16-C18 87.5 ± 0.2a 93.7 ± 2.2b 90.2 ± 0.3a 91.9 ± 0.2b

Total SFAs 57.5 ± 0.7a 45.0 ± 3.1b 47.1 ± 1.6a 47.4 ± 1.2a

Total MUFAs 22.5 ± 0.2a 22.8 ± 2.5a 29.3 ± 0.8a 35.8 ± 0.1b

Total PUFAs 20 ± 0.5a 32.2 ± 2.6b 23.6 ±  1a 16.8 ± 1.1b

FAME content(wt%) 21.1 ± 0.1a 22.6 ± 0.9a 20.9 ± 0.2a 22.6 ± 0.3b
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C. vulgaris (Table 1). These results agree with the findings 
of other studies, in which Ashokkumar et al. [58] found that 
the percentage of total FAME C16-C18 in B. sudeticus was 
87.4%, while Moradi-Kheibari et al. [59] found that it was in 
the range of 87.7- 89.4% in C. vulgaris. Furthermore, Previ-
ous studies have reported that fatty acids such as C16:0 and 
C18:1 are commonly synthesized fatty acids by the Chlo-
rophyceae family and are desirable fatty acids for biodiesel 
production [17, 29, 60]. Our results are also in agreement 
with those studies in which C16 had the highest percent-
age of FAME composition while C18:1 was a significant 
fatty acid in both cultures. The C16-C18 of the total FAME 
composition was higher in the nitrogen deficiency set in 
both species revaling that the nitrogen stress promotes the 
accumulation of fatty acids suitable for biodiesel production.

The biodiesel properties of C. vulgaris and B. sudeti-
cus has been compared with ASTM 6751-3 and EN 14214 
and are shown in Table 2. Cetane number (CN) of fuel is 
related to the ignition delay time, which means to shorter 
the ignition delay time, the higher the CN. It is one of the 
key parameter in determining the quality of biodiesel [11, 
17] The higher CN value of biodiesel also means that it 
has better ignition characteristics and gives better engine 
performance [17]. The high percentage of saturated fatty 
acids (SFAs) in biodiesel can contribute to a higher cetane 
number, which is desirable for better combustion properties 
[61]. According to the worldwide biodiesel quality stand-
ards such as ASTM D6751, and Fuel Standard (Biodiesel) 
Determination, minimum CN values should be above 47 and 
51, respectively. As seen in Table 2, CN values for both spe-
cies were above 51 the CN values (57.5–58.5) did not show 
significant variation in C. vulgaris sets (ANOVA P > 0.05). 
However, there was a remarkable variation in B. sudeticus 
(55.6–61.9) sets (Anova P < 0.05). Since microalgae gener-
ally contain saturated fatty acids, mainly palmitic (C16:0) 
and stearic (C18:0) acids, these fatty acids have a great effect 
on cetane number. Previous research has shown that nitrogen 
deficiency tends to increase fatty acid saturation [15, 62]. 
However, the nitrogen threshold required to optimize the 

production of these fatty acids may vary between micro-
algae species. For instance, Wu et al. [63] reported that a 
nitrogen-free medium (0 g  L−1 nitrogen) in Scenedesmus 
obliquus led to a decrease in C16:0 and total SFAs, and a 
minimum of 0.3 g  L−1 nitrogen was necessary to achieve 
maximum C16:0 value. Contrarily, they also found that a 
nitrogen-free medium resulted in maximum SFAs values in 
Chlorella pyrenoidosa. In our study, it was found that the 
nitrogen-deficiency set (45 wt%) resulted in a lower per-
centage of SFAs compared to the nutrient-replenishment 
set (57.4 wt%) in the B. sudeticus. The use of a nitrogen-
free medium (0 g  L−1 nitrogen) in the case of B. sudeticus 
may limit the increase of saturated fatty acids (SFAs), such 
as C16:0. These results suggest that the presence of a cer-
tain amount of nitrogen in the medium is likely to promote 
higher saturation levels and cetane number (CN) values in 
B. sudeticus. On the other hand, nitrogen deficiency did not 
significantly affect the saturation of fatty acids in C. vulgaris 
(ANOVA P > 0.05). This further supports the notion that the 
effects of nitrogen deficiency on saturated microalgae may 
vary in a species-specific manner.

The saponification value (SV) is defined as to measure of 
milligrams of potassium hydroxide required to completely 
saponify one gram of oil [64]. Although the SV is not evalu-
ated by the Biodiesel standards, it is an important value that 
is used to calculate the CN of biodiesel. As seen in Table 2, 
SV values changed in B. sudeticus in the range of 179.3- 
182.5 and in Chlorella 183.4–185.0 between the sets. The 
results showed that nitrogen deficiency had no significant 
effect on SV values of both species (ANOVA P > 0.05).

According to European Standards (EN14214), biodiesel 
must have the specified limits of 12% linolenic acid methyl 
ester (C18:3). The presence of higher amounts of C18:3 is 
not preferred as it leads to the lower stability of biodiesel 
due to oxidation [60]. In our study, C18:3 varied between 
14.3–26.7% in B. sudeticus and 11.5–17.8% in C. vulgaris. 
Stephenson et al. [20] showed that the C18:3 fatty acid per-
centage of C. vulgaris decreased from 21 wt% to 15 wt% 
resulting of under nitrogen-limitation conditions. In the 

Table 2  Estimated biodiesel properties and comparison with EN14214 and D6751 standards

ab Means sharing a common superscript letter are significantly different at P < 0.05 based on Tukey’s HighlySignificant Difference multiple com-
parison tests following a significant one-way analysis of variance (ANOVA)

Species Experimental CN IV DU SV LCSF CFPP
Sets

B.sudeticus Nutrient replenishment 61.9 ± 0.7a 65.9 ± 2.4a 62.6 ± 1.2a 179.3 ± 1.4a 11.5 ± 0.2a 19.7 ± 0.5a

Nitrogen deficiency 55.6 ± 1.3b 91.7 ± 6.1b 87.2 ± 5.1b 182.5 ± 2.3a 9.2 ± 0.6b 12.4 ±  2b

C. vulgaris Nutrient replenishment 58.5 ± 0.9a 78.1 ± 2.6a 74.6 ± 2.4a 183.4 ±  2a 8.4 ± 0.6a 10 ± 1.9a

Nitrogen deficiency 57.5 ± 0.4a 81.2 ± 1.8a 63.7 ± 1.1b 185 ± 1.1a 7.9 ± 0.1b 8.3 ± 0.3b

European standards (EN 14214) 51 (min) 120 (max) – – – –
US standards STM D6751 47 (min) – – – – –



2765Waste and Biomass Valorization (2024) 15:2757–2768 

1 3

present study, a-linolenic acid (C18:3) fell from 17.8% 
(nutrient-replenishment set) to 11.5% (nitrogen-deficiency 
set) in C. vulgaris which did not meet with the upper limit 
of 12% of European standards (EN14214). On the other 
hand, C18:3% of all sets of B. sudeticus was above the pre-
ferred limit for biodiesel production. In several studies on 
the fatty acid composition of B. braunii, C18:3 fatty acid was 
reported to be one of the main components [34, 65]. How-
ever, the presence of C18:3 was not reported in B. sudeticus.

High PUFA (≥ 2 double bonds) content in the fatty acid 
composition negatively impacts the oxidative stability of 
biodiesel making them more susceptible to oxidation and 
free radical attack [56]. Especially during storage high 
PUFA content of biodiesel undergoes oxidation reactions, 
resulting in the formation of peroxides, and other degra-
dation products [39]. Therefore, to ensure good oxidative 
stability and improve the quality of biodiesel, it is generally 
preferred to have a higher proportion of saturated and mono-
unsaturated fatty acids in the composition [56]. According to 
European regulation EN 14214, fatty acids with more than 
three double bonds (≥ 4 double bonds) should not exceed 
1%. In this study, the amount of FAME with more than three 
double bonds was measured at a maximum of 0.7 in B. sude-
ticus under the nutrient-replenishment set, while it was not 
detected in C. vulgaris showing that both cultures exhibit a 
percentage within this range.

The iodine value (IV) defines the content of unsaturated 
fatty acids. IV increases with the number of double bonds 
in the fatty acid chain and expresses the mass of iodine in 
grams consumed by 100 g of the chemical substance [57]. 
When higher unsaturated fatty acids are heated, they cause 
the polymerization of glycerides and lead to deposit forma-
tion or degradation of the lubricating oil [42]. As a result, 
biodiesel with a higher IV, indicating higher unsaturation, 
is more likely to undergo oxidative degradation. Therefore, 
biodiesel with a lower IV value, indicating lower unsatura-
tion and fewer double bonds in the fatty acid composition, 
tends to have higher oxidative stability and is considered 
more suitable for long-term storage without significant deg-
radation [63]. For this reason, it is not desirable for the IV 
to be above a certain amount in terms of the suitability of 
biodiesel fuel. The European standard (EN 14214) defines a 
maximum value for IV as 120 g  I2 100  g−1 for biodiesel. In 
the present study, the maximum IV was found in the nitrogen 
deficiency set for both cultures, with 91.7 g  I2 100  g−1 in B. 
sudeticus and 81.2 g  I2 100  g−1 in C. vulgaris. It is deter-
mined that all biodiesel samples produced by both species in 
both sets had lower IV than the upper limits set by European 
standards (EN14214).

The degree of unsaturation (DU) is the sum of the MUFA 
and PUFA masses. DU affects the oxidative stability of 
biodiesel conditions and low DU makes the more stable 
of biodiesel in long-term storage [17]. Although European 

standards (EN 14214), and American Biodiesel Standards 
ASTM D6751 do not include any limits for DU, it has a 
direct effect on the determination of the iodine number of 
biodiesel [66]. In our study, the DU values changed within 
the range of 62.6 to 87.2 in B. sudeticus and 63.7 to 74.6 in 
C. vulgaris. Interestingly, nitrogen deficiency had contrast-
ing effects on the DU values of B. sudeticus and C. vulgaris. 
In B. sudeticus, nitrogen deficiency resulted in an increase 
in DU values, indicating a decrease in oxidative stability. 
On the other hand, in C. vulgaris, nitrogen deficiency led 
to a decrease in DU values, suggesting an improvement in 
oxidative stability. This observation suggests that nitrogen 
deficiency negatively affected the oxidative stability of B. 
sudeticus, while it contributed to enhancing the oxidative 
stability of C. vulgaris during long-term storage.

The Cold Filter Plugging Point (CFPP) is one of the 
important biodiesel quality parameters used mainly to deter-
mine the low-temperature flow performance of biodiesel 
[17]. The CFPP is defined as the lowest temperature that 
40 mL of oil safely passes flow through the filter within 
60 s. It is an indicator of the cold flow properties of biodiesel 
and helps determine its suitability for specific climatic con-
ditions [67]. The low-temperature properties of biodiesel 
are influenced by the percentage of saturated fatty acids in 
the total FAME. A higher CFPP value indicates poor low-
temperature biodiesel properties [68], showing that biodiesel 
has a higher tendency to precipitate and clog the filter [69]. 
CFPP is correlated with the long-chain saturated factor 
(LCSF). In this study, lower CFPP and LCSF values were 
observed in both B. sudeticus and C. vulgaris cultures under 
a nitrogen-deficiency set. The LCSF values for B. sudeticus 
ranged from 9.2% to 11.5%, andfor C. vulgaris ranged from 
7.9% to 8.4%. The CFPP values for B. sudeticus was between 
12.4 °C and 19.7 °C, and for C. vulgaris between 8.3 °C and 
10.0 °C (Table 2). It was found that nitrogen stress decreased 
the CFPP values of biodiesel, thereby increasing its usability 
in colder climates. The findings indicated that C. vulgaris 
may exhibit better flow performance in colder climates due 
to its lower CFPP values compared to B. sudeticus. Besides, 
it shows that nitrogen stress decreases the CFPP values of 
biodiesel and improves its low-temperature properties.

Overall nitrogen deficiency is a well-known strategy for 
increasing lipid content in various microalgae species, which 
can significantly impact biodiesel production. However, it's 
important to consider that while initially having sufficient 
amount of nitrogen in the growth medium is advantageous 
for achieving high biomass and maintaining healthy cell 
cultures, completely removing nitrogen from the medium 
to enhance lipid and FAME content may involve additional 
energy and labor costs. Therefore, for sustainable and com-
mercial-scale biodiesel production, it is essential to optimize 
nitrogen manipulation based on the specific needs and char-
acteristics of the microalgae species being used.
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Conclusion

The findings of this study showed that microalgae exhibit 
complex lipid production metabolisms, and the response to 
nitrogen manipulation varies among species. The nitrogen 
deficiency generally increased lipid levels in both Chlo-
rella vulgaris and Botryococcus sudeticus. However, their 
response to the nitrogen deficiency showed high variation in 
terms of the growth rate, total lipid content, and biodiesel 
properties. These findings highlighted that green algae 
exhibit complex and species-specific responses to nitrogen 
deficiency and nutrient conditions should be optimized to 
achieve high biomass and lipid content. This research con-
tributes to the growing body of knowledge in the field of 
microalgae-based biodiesel production and highlights the 
importance of species-specific approaches to maximize both 
lipid content and biodiesel quality.
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