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Abstract 
The continuous depletion of fossil resources, energy-crisis, and environmental pollution has become the main drivers for the 
transition of linear petroleum-refinery to a sustainable biorefinery. Lignocellulosic biomass (LCB) remains the most abun-
dant underutilized renewable biomaterial on our earth that offers a sustainable production of various value-added products 
like biofuels and other platform chemicals. However, presence of impenetrable lignin sheath along with highly crystalline 
structure of holocellulose barricades its commercial utilization. In this context, a suitable pretreatment method is manda-
tory to reduce the recalcitrance of the LCB material. Pretreatment capabilities derived from the extraordinary conditions 
for its effectiveness in laboratories and even at industrial scale for conversion of LCB are limited. In order to make these 
LCB bioconversion processes economically viable, more research is needed to focus on developing biorefinery approach. 
In current scenario, a pretreatment method that can fractionate the variety of LCB to produce lignin free carbohydrates with 
negligible waste biomass generation is of utmost need. Therefore, to promote the emerging technologies, the present review 
summarizes the recent advances in the most advanced pretreatment technologies being utilized for the LCB based biorefinery. 
Pros and cons associated with various pretreatment methods have been critically reviewed. Further, efforts have been made 
to create a better understanding of the already researched pretreatment technologies to facilitate the future research direction 
to realize the idea of biorefinery an actuality.

 * Gaurav Chaudhary 
 gauravchaudhary@hau.ac.in

1 Department of Renewable and Bio-Energy Engineering, 
College of Agricultural Engineering and Technology, 
Chaudhary Charan Singh Haryana Agricultural University 
Hisar, Hisar, Haryana 125004, India

2 Innovation Center for Agriwaste Management, Chaudhary 
Charan Singh Haryana Agricultural University Hisar, Hisar, 
Haryana 125004, India

3 Centre for Energy and Environment, Malaviya National 
Institute of Technology, Jaipur 302017, Rajasthan, India

4 Department of Processing and Food Engineering, 
AICRP-PHET, Chaudhary Charan Singh Haryana 
Agricultural University Hisar, Hisar, Haryana 125004, India

http://crossmark.crossref.org/dialog/?doi=10.1007/s12649-023-02219-z&domain=pdf
http://orcid.org/0000-0003-4049-3527


2 Waste and Biomass Valorization (2024) 15:1–36

1 3

Graphical Abstract

Physical
Chemical

Physico-chemical
Biological

Pretreatment

Lignin
Biorefinery Carbohydrates

Biorefinery

Recovery

Pretreated
Biomass

Lignocellulosic
Biomass

Lignocellulose 
macrostructure

Lignin

Cellulose

Hemicellulose

Highlights 
• Pretreatment methods for valorization of LCB have been extensively reviewed
• Applicability of pretreatment methods to LCB biorefinery has been discussed
• Mechanisms of pretreatment methods have been discussed
• Challenges associated with pretreatment methods have been highlighted
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AFEX  Ammonia Fiber Explosion
COD  Chemical oxygen demand
CRI  Cellulose crystallinity index
CSF  Combined severity factor
DES  Deep Eutectic Solvent
GVL  g-valerolactone
HMF  5-hydroxymethyl furfuraldehydes
IL  Ionic liquid
MW  Microwave
MWAP  Microwave Assisted Pretreatment

NADES  Natural Deep Eutectic Solvent
LCB  Lignocellulosic biomass
PEF  Pulsed Electric Field
S/L  Solid/Liquid
Sc-CO2  Supercritical Carbon Dioxide
SDS  Sodium dodecyl sulfate
Temp  Temperature
TRS  Total reducing sugars
TS  Total solids
US  Ultrasound
US DOE  US Department of Energy
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Statement of Novelty

The novelty of this review lies in its comprehensive analy-
sis of recent advances in pretreatment technologies espe-
cially for lignocellulosic biomass, with a focus on frac-
tionating the biomass to produce lignin-free carbohydrates 
while minimizing waste biomass generation. By critically 
evaluating the pros and cons of various pretreatment meth-
ods, this review not only consolidates existing knowledge 
but also provides insights into the future research direc-
tions required to realize the concept of a LCB-based biore-
finery. This comprehensive review serves as a valuable 
resource for researchers and industry professionals aiming 
to overcome the barriers associated with LCB utilization 
and facilitate the transition towards a sustainable and eco-
nomically viable biorefinery approach.

Introduction

Energy is placed in the core of the most crucial sectors for 
development of human race. It acts as an essential factor 
for determining the socio-economic and high living stand-
ards of a country. Drastic increase in global human popula-
tion and industrialization has exponentially increased the 
energy demand. Currently, fossil-based energy sources 
such as oil, coal, and natural gas are the major non-renew-
able resources are being used to accomplish the increasing 
energy demands. Concern over the exhausting fossil fuel 
resources and environmental pollution has extremely influ-
enced the global scientific interest towards biofuels and 
other renewable energy sources. The transition from lin-
ear petroleum refinery to renewable biorefinery process is 
identified as a crucial step towards the progress of a viable 
industrialization, energy independence, and efficient man-
agement of greenhouse gas emissions. The US Department 
of Energy (US DOE) has identified 15 ideal target chemi-
cals including biofuels and value-added bio-chemicals, as 
a result of conversion of biomass through a biorefinery 
platform [1]. Different types of biological materials such 
as agricultural residues, forest residues, and municipal 
solid waste; generally referred as lignocellulosic biomass 
(LCB) are being produced globally in massive capacities 
and remained underutilized. These biomasses are com-
posed of several types of chemical entities, which may 
act as starting points for the production of large variety 
of value-added products, platform chemicals, or interme-
diates through different biochemical/chemical conversion 
routes. The value addition to the hugely abundant, cheaper, 

and renewable carbon source in the form of biomass may 
deliver substantial benefits in response to reducing fossil 
fuel resources and increasing environmental concerns [2].

Lignocellulosic biomass has diverse potential for value-
added chemicals like biofuels, platform chemicals and 
materials production just because of dissimilarities in their 
compositions. The cellulose and hemicellulose are the two 
main carbohydrates present in LCB and are strongly bound 
with lignin making a complex and recalcitrant structure 
(Fig. 1). This complex structure is highly strong and resist-
ant to depolymerization, therefore demands an effective pre-
treatment process to break the recalcitrance and avail the 
sugars for further processing steps [3–6]. The fractions of 
lignin, cellulose, and hemicellulose may differ with the type 
of plant and even at species level too. Plants of same species 
growing in different geographical locations and seasons may 
have different fractions of their chemical constituents’. Even 
the harvesting time may also contribute the difference in bio-
chemical composition [7, 8]. This compositional variation 
in biomass suggests that a pretreatment method may suite or 
not for a particular biomass, and may require further optimi-
zation and standardization studies to scale up the process [9].

Pretreatment is the primary step posing crucial role in 
the economic viability of the overall bioconversion of LCB 
[10, 11]. A recent study has estimated the cost linked with 
the pretreatment process of LCB around 70–150 US dol-
lars per ton of biomass [12]. The selection of pretreatment 
method and its conditions are highly dependent on the type 
and the chemical composition of the biomass. In the last few 
decades, a large number of pretreatment methods have been 
developed and validated for different types of LCB. These 
methods are broadly categorized under physical, chemical, 
physico-chemical, and biological methods [11]. For eco-
nomic feasibility of any pretreatment method the energy and 
solvent requirements, depolymerization, conversion of lig-
nocellulose, generation of inhibitory compounds, losses in 
terms of fermentable sugars should be taken into considera-
tion. In addition to above requisites, the pretreatment method 
should be simple in operation and possesses minimum cost 
of operation and capital cost. Considering above points, 
the physical, chemical, and physico-chemical pretreatment 
methods are most likeable as compared to biological meth-
ods [13]. Since biological methods can incur higher costs 
compared to other pretreatment approaches. The higher cost 
and potentially lower productivity associated with biological 
methods and depends upon the type of biomass and specific 
process chosen for lignin fractionation. However, it is worth 
noting that biological pretreatment remains highly popular 
for anaerobic digestion [14, 15].
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Biorefinery and Pretreatment: At a Glance

The biorefinery is a sustainable model that facilitates the 
usage of underutilized renewable natural biomass to replace 
the wide range of non-renewable fossil-based products and 
also focuses on minimizing the waste generation. The uti-
lization of waste LCB especially agricultural residues as 
feedstock for biorefinery has great potential to bring down 
negative socio-economic and environmental impacts of lin-
ear petroleum economy. It is noteworthy that LCB do not 
demand additional crop land, thus have no adverse effect 
on the human or animal food economies [16]. However, a 
pretreatment method is an essential necessity to fractionate 
the biomass into its chemical constituents that can be further 
processed to liquid biofuels, biogas, biofertilizer, biopes-
ticide, antimicrobial agent, cement composites, bioplastic, 
paints, coatings, resins, lubricants, single cell protein, ani-
mal feed, industrial enzymes, organic acids, carotenoids, 
xylose, xylitol etc. through biorefinery approach (Fig. 2). 
Pretreatment is recognised as the second most expensive 
processing step after downstream processing in bioconver-
sion of LCB to biofuels and other value-added products 
generation. It has been estimated that about 20% of over-
all LCB processing cost is being incurred by pretreatment 
methods. A versatile pretreatment should fulfil the desired 
goals viz., (i) The possibility to use high solid (biomass) 
to liquid concentration, (ii) Should disintegrate the ligno-
cellulosic structure by disrupting its structural bonds, (iii) 

Avoid the size reduction of biomass particles and inhibi-
tors generation, (iv) Production of highly digestible solids 
to enhances enzymatic saccharification, (v) Fewer or no loss 
of carbohydrates (hemicellulose fraction must be preserved), 
(vi) Disrupt the lignin polymer and increase of surface area, 
(vii) Break the cellulose crystallinity and enhance the poros-
ity of cellulose, (viii) Degradation of lignin polymers and 
partial depolymerization of hemicellulose, (ix) Allow the 
recovery of lignin fraction for reconstruction of valuable 
products, (x) Operation in reasonably sized and moderately 
priced reactors, and (xi) To be cost effective with low energy 
and power requirements. Previously, numerous pretreatment 
methods have been developed and employed for valorisation 
of various LCB (Fig. 3). They are encouragingly utilized to 
fractionate the LCB into intermediates for variety of indus-
trial sectors like food, paper; they may substitute petroleum 
or may have new functionalities or better properties than the 
traditionally manufactured products such as: liquid biofuels 
[17]; chemicals like furfuraldehydes [18], 5-hydroxymethyl 
furfuraldehydes (HMF) [19], 2,5-furandicarboxylic acid 
[20], g-valerolactone (GVL) [21, 22], polymers [23, 24] and 
organic acids [25–29]; carbon fiber, adhesives, additives, 
dispersants [30–35]; and biogas [36, 37]. However, most 
of the existing pretreatment processes have several limita-
tions such as sparse separation of holocellulosic and lignin 
complexes, elevated utilization of catalysts and/or energy, 
and liberation of by-products that inhibit successive conver-
sion steps.

Fig. 1  Structure and major components of lignocellulosic biomass
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Physical Methods of Pretreatment: Decisive 
But Cost Intensive

Physical pretreatment avoids the addition of chemicals, 
enzymes or microorganisms during the pretreatment pro-
cesses thus minimize the liberation of by-products and inhib-
itors for successive processes. Instead, physical pretreatment 
methods utilize the application of temperature, pressure, and 
mechanical force to obtain a smaller particle size and alter 
the lignocellulosic structure without modifying the chemical 
compositions of the component. Generally, physical treat-
ments increase the porosity and the surface area of biomass. 
Physical pretreatment helps in reducing the crystallinity and 
degree of polymerization of cellulose present in biomass 
[38]. The physical methods include mechanical extrusion, 
milling, microwave assisted methods, ultrasound, pulsed 
electric field etc. (Table 1). Some common drawbacks of 
physical pretreatment methods include: inability to remove 
sufficient amount of lignin, high energy and capital-cost 
investment, and limited information about the mode of 
action prohibiting its large-scale implementation. Never-
theless, physical pretreatment methods are often essential 
step employed prior to subsequent chemical or biochemical 
processes.

Mechanical Extrusion

Methods like mechanical extrusion are well known to 
produce char and gaseous products. The LCB treated 
at 50–200 °C in combination to shearing and mixing to 
remove and shorten the biomass fibers [39]. Zheng et al. 
(2014) applied the mechanical extrusion using modified twin 
screw extruder to remove the xylose from steam exploded 
corncobs at 205 °C, which resulted in structural variation 
and enhanced glucose from 41 to 66% depending on differ-
ent extrusion parameters. Optimization of extrusion method 
can be done by varying the operating temperature, screw 
speed and depend upon the cellulose content present in bio-
mass (Table 1) [40]. A comparative study to elaborate the 
effect of mechanical extrusion on switch grass, blue stem, 
and prairie cord grass reported the glucose yield of about 
28%, 66%, and 49% with screw speed of 200 rpm, 200 rpm, 
and 150 rpm and at 75 °C, 150 °C, and 100 °C temperature, 
respectively [41]. The mechanical extrusion method utilizes 
high amount of operational and energy cost, which makes it 
unsuitable for scale up to commercial setup [42].

Fig. 2  Assessments of pretreatment process to fractionate the lignocellulosic biomass into various value-added products
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Milling Pretreatment

The mechanical size reduction is generally recognized as 
a first type of physical pretreatment, where the biomass is 
subjected to various mechanical pretreatment processes 
to obtain smaller particles with a given size distribution. 
This size reduction of biomass triggers the mass and heat 
transfer for subsequent pretreatment steps. Coarse size 
reduction, hammering, shredding, chipping, grinding, and 
milling are several types of mechanical size reduction pro-
cesses employed in biomass conversion route (Table 1). The 
selection of the milling process usually depends up on the 
moisture content of the biomass. Generally, two-roll mills 
and knife mills are used for dry biomass having moisture 
content to about 10–15% (wet basis), whereas colloid mills 
are suitable for wet biomass having moisture content more 
than 15–20% (wet basis). Comparatively, vibratory ball mill-
ing is a much advance method than an ordinary milling pro-
cess in transforming cellulose crystallinity and magnifying 
biomass digestibility. Disk milling is recognized as a popu-
lar mechanical pretreatment which enhances the cellulose 

digestibility by producing fibres in comparison to hammer 
milling which produces finer bundles. On the other hand, 
the wet disk milling demands lower energy consumption 
over other traditional milling processes. Wet disk milling 
demands lower energy consumption and delivers efficient 
particle breakage, heat dissipation, reduced wear and tear 
of the milling equipment, improved process control (mill-
ing time, rotational speed, and concentration of the liquid 
medium), and increased throughput facilitated by the liquid 
medium [43]. According to an estimate, wet disk milling is 
30% more energy efficient than dry milling methods [44].

The native complex structure of cellulose i.e. crystal-
linity and degree of polymerization should be modified by 
milling to make it more amenable to further processing. 
Cellulases are responsible for the hydrolysis of cellulose, 
but can only perform best when substrate is accessible for 
the enzymes. The accessibility of substrate to the enzymes 
can be enhanced by increasing surface area, porosity and 
decreasing crystallinity. Hence, milling of the biomass 
should be done prior to hydrolysis to increase the surface 
area and porosity of biomass and to decrease the crystallinity 

Fig. 3  Classification of pretreat-
ment methods employed for 
the delignification of various 
lignocellulosic biomass
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and degree of polymerization of cellulose. For the milling 
of wet biomass colloid mill, dissolver and fibrillator are 
mostly used, while for dry biomass hammer mill, extruder, 
cryogenic mill and roller are most suited [45] whereas ball 
milling can be performed for both the types of biomass. The 
reduction in particle size up to a certain limit is beneficial 
for the successive chemical and enzymatic pretreatment. The 
particle size in finishing biomass is dependent on the nature 
of physical pretreatment applied. Harvesting and pre-con-
ditioning steps transform the wood stub and logs to coarse 
sizes of 10–45 mm, chipping can reduce the particles size to 
about 5–25 mm, and grinding/milling lowers the feedstock 
size to 0.4−2 mm [36]. It has been demonstrated that reduc-
tion in the particles size beyond 0.4 mm has no substantial 
impact on hydrolysis yields of lignocellulose, however it is 
mainly depends upon the type of biomass and subsequent 
processing techniques [46]. Biomass pretreatment with ball 
mill is cost expensive with respect to energy consumption, 
which is unfavorable for the industrial scale application. 
The ball milling method is also incapable of delignifica-
tion, which makes it undesirable for enzymatic hydrolysis 
which requires higher accessibility/porosity to the substrate. 
The changes in crystallinity, degree of polymerization and 
surface area are highly dependent upon the type of biomass, 
milling method and on the duration of pretreatment [47–49].

Microwave Assisted Pretreatment (MWAP) Methods

During the last few years, microwave assisted methods for 
pretreatment of LCB have received more research atten-
tion. The fractionation of composite LCB during MWAP 
is a result of molecular collisions possessed by dielectric 
polarization. The MWAP methods are studied under two 
categories namely, atmospheric and high-pressure treat-
ment. Comparatively, the high-pressure microwave treat-
ments are performed at an elevated pressure and temperature 
(150−250 °C) in a closed reactor. Significant increase in 
bioethanol yield has been reported by several researchers 
using MWAP methods (Table 1). These methods are being 
employed progressively from lab to pilot scale [50]. The 
MWAP methods confer the advantages of lower activation 
energy of the reaction and short duration of reaction, which 
makes them suitable pretreatment method for LCB [51]. 
The recalcitrant structure of the biomass breaks down when 
heated under microwave as the irradiation penetrates inside 
the rigid structure of LCB [52, 53]. The recent scientific 
advancements in the area of MWAP were more focused on 
the design of novel microwave reactors for better biomass 
handling to enhance the scalability [50, 54].

The use of microwave irradiation in combination to other 
pretreatment method has been proven to a positive strat-
egy for efficient degradation of LCB. It has been demon-
strated that combination of mild alkali reagent (NaOH at 

different loadings 0.05–0.3 g/g biomass) with microwave 
pretreatment yielded a high concentration of reducing sugars 
(70–90%) [55]. Similarly, Nomanbhay et al. (2013) reported 
that microwave (180 W for 12 min) assisted alkali (NaOH 
3% w/v) pretreatment increased the enzymatic hydrolysis 
to 5.8-fold from oil palm empty fruit bunch, in compari-
son to microwave pretreatment alone [56]. MWAP method 
using glycerol was found suitable to enhance the fermentable 
sugar yield from corncob along with eliminating the use 
of alkali metals [57]. Similarly, calcium chloride mediated 
microwave treatment enhanced the hemicellulose removal 
to 85.90% consequently specific surface area was increased 
to 168.93% as compared to untreated corn stalks [58]. In a 
recent study using maize distillery stillage, the high yield of 
enzymatic hydrolysis (75.8%) along with high sugar concen-
tration (104.4 mg/g dry weight) were obtained with very low 
inhibitory compound formation [53].

Ultrasound Pretreatment

The effects of ultrasound pretreatment method on LCB have 
been explored for delignification and to reduce the recalci-
trance of LCB to make it more accessible towards enzymatic 
hydrolysis (Table 1). The severity of the ultrasound pretreat-
ment depends upon the frequency of the ultrasound waves, 
solvent used and on the type of reactor used [59].

The ultrasound based pretreatment methods work on prin-
ciples of delignification and surface erosion. The benefits, 
it implies are: small pretreatment duration, lower heating 
requirement and use of lesser chemicals [60]. Increased 
biomethane production was reported using grape pomace 
when it was pretreated with ultrasound at 50 kHz and 25 °C 
for 40–70 min [61]. Chang et al. (2017) studied the effect 
of ultrasound in combination with ionic liquids along with 
SDS on the production of fermentable sugars. They observed 
that production of fermentable sugars, cellulose hydrolysis, 
and lignin removal were enhanced by 72.23%, 58.74%, and 
21.01%, respectively as compared to ultrasound plus ionic 
liquid pretreatment. They further reported the increased del-
ignification efficiency and decrease in cellulose crystallinity 
when SDS was added [62]. Saratale et al. (2020) developed 
an ultrasound assisted alkaline (NaOH) pretreatment method 
and were able to achieve 70% delignification of wheat straw 
and up to 84.5% hydrolysis yield along with 90% glucose 
and 65% xylose yield after enzymatic hydrolysis. The effi-
cacy of the combined pretreatment method was significantly 
higher as compared to alkali (NaOH 2% w/v) and ultrasound 
(20 kHz for 30 min) treatments applied individually. The 
physicochemical analysis of biomass revealed that ultra-
sound assisted alkaline pretreatment method can break com-
plex ultrastructure of LCB allowing enzymes to access the 
greater surface area of biomass [63]. Another study using 
ultrasound with 4% alkaline potassium permanganate for the 
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Table 1  Comparative analysis of different physical pretreatment methods

Pretreatment method Biomass Pretreatment conditions Key findings References

Mechanical extrusion pretreatment
 Twin screw extrusion Maize straw Temp.: 140 °C

Screw speed: 70 rpm
Moisture content: 25%

Increase in biogas and methane 
production: 7.5% and 8.51% 
respectively

[67]

Corn stover Barrel Temp.: 120 °C
Screw speed: 100 rpm
Moisture content: 25%
Feeding rate: 2 kg/h

Glucose yield increase: 25 g/L 
to 45 g/L

Xylose yield increase: 19 g/L 
to 40 g/L

Hydrolysis time reduction: 
48 h to 24 h

[68]

Vine trimming shoots Residence time: 55 s
Biomass feeding rate: 200 g/h
Water feed rate: 179 g/h

Methane production increase 
(sequential extrusion and 
enzymatic hydrolysis) by: 
40%

[69]

Milling pretreatment
 Ball milling Douglas fir residuals Rotation speed: 270 rpm

Rotation ratio: 1:2
Milling time: 30 min

Cellulose crystallinity 
decrease: 11.7%

Glucose yield: 59.67%
Xylose/mannose yield: 23.82%

[70]

 Ball milling + rumen fluid 
digestion

Rice straw (rumen-digested 
residue (DR))

Milling speed: 750 rpm
Time: 120 min

Ethanol yield for 10% DR: 
147.42 mg/g

[71]

 Attritor-type laboratory ball 
mill

Phragmites australis straw Rotor revolution rate: 600 rpm
Time: 20 min
Temp.: 180 °C

Non-diffusional removal of 
lignin with

heating promoting preliminary 
redistribution of lignin in cell 
walls

[72]

 Vibration ball milling Corn stover Volume ratio: 1:2
Temp.: <30 °C
Milling time: 120 min

Decrease in cellulose crystal-
linity: from 42.62–10.4%

Ethyl levulinate yield 
increased: from 36.16 mol% 
to 44.59 mol%

[73]

 Rod milling Wheat straw Temp.: <30 °C
Milling time: 30–240 min

Cellulose crystallinity 
decrease: from 51.3–11.6%

Increase in specific surface 
area and pore volume

[74]

Microwave pretreatment
 Microwave alone Maize distillery stillage MW Power: 300 W

Pressure: 54 psi
Time: 15 min

Max. Glucose conc. achieved: 
104.4 mg/g

Enzymatic hydrolysis yield: 
75.8%

[53]

Brewer’s spent grains (BSG) MW Power: 1800 W
Temp. 192.7 °C
Time: 5.4 min

Hemicellulose sugar recovery: 
64%

Glucose recovery: 70%
Butanol conc. achieved: 

8.3 g/L
Overall Butanol yield: 46 kg/t 

BSG

[75]

Kitchen waste S/L ratio: 1:5
MW intensity: 19.2 W/g
Time: 6 min

Reducing sugar yield: 
0.721 g/g TS

Ethanol yield: 0.344 g/g TS 
(52% increase)

[76]



9Waste and Biomass Valorization (2024) 15:1–36 

1 3

Table 1  (continued)

Pretreatment method Biomass Pretreatment conditions Key findings References

 Microwave +  CaCl2 Corn stover MW Power: 800 W
CaCl2: 62.5% (w/w)
Temp.: 162.1 °C
Time: 12 min
S/L ratio: 10% (w/v)

Hemicellulose degradation: 
85.90%

Increase in specific surface 
area: 168.93%

Decrease in CRI: 13.91%
Enzymatic hydrolysis ratio of 

cellulose: 90.66%
Glucose recovery: 65.47%

[58]

 Microwave + Ionic Liquid Eucalyptus sawdust MW Power: 375 W
[TBA][OH] conc.: 12.5%
Time: 6 min

Sugar yield: 410.67 mg/g [77]

 Microwave + Glycerol Corncob Frequency: 2.45 GHz
MW Power: 150 W
Time: 18 min
Corncob/glycerol ratio: 1:8

Increase in levoglucosan yield: 
189 times more than raw 
corncob

[57]

Microwave + Binary solvent Poplar wood MW Power: 400 W
Temp.: 120 °C
Time: 10 min
methanol/ dioxane

Glucan conversion by enzy-
matic hydrolysis: Over 99%

[78]

 Microwave +  FeCl3 +  H3PO4 Rice straw MW Power 700 W
FeCl3 conc.: 250 mM
H3PO4 conc.: 3%
Temp.:  1550 C
Time: 20 min

Maximum saccharification for 
pulp and biomass (48 h incu-
bation): 98.9% and 66.4% 
respectively

[79]

 Microwave + KCl +  H3PO4 Rice straw MW Power: 700 W
KCl conc.: 300 mM
H3PO4 conc.: 3%
Temp.:  1550 C
Time: 10 min

Maximum sugar yield: 30.6%
Maximum ethanol yield: 

12.2 g/L

[80]

 Microwave + Hydrotropic 
extraction

Maize stillage biomass MW power: 300 W
Biomass conc.: 5%
Pressure: 117 psi
Time: 30 min
Hydrotropic extraction:
Sodium cumene sulfonate 

conc.: 20% (v/v)

Delignification: 44%
Ethanol conc. achieved: 40 g/L
Fermentation yield: 95% of 

theoretical yield

[81]

Ultrasound pretreatment
 Ultrasound alone Grape pomace US Frequency: 50 kHz

US Power: 60 W
Solid loading: 50 g/L
Temp.: < 25 °C
Time: 70 min

Increase in biomethane poten-
tial: 10%

Increase in hydrolysis constant: 
35%

[61]

Microalgae (C. sorokiniana) 
biomass

US intensity: 0.35 W/mL
Exposure time: 20 min

Ethanol yield: 47.84 g/L [82]

 Ultrasound + NaOH Wheat waste biomass US Frequency: 20 kHz
Time: 30 min
NaOH: 2% w/v

Delignification: 63%
Hydrolysis yield: 77%
Glucose yield: 86%
Xylose yield: 62%

[63]

 Ultrasound +  KMnO4 Spent coffee waste S/L ratio: 1:10
US frequency: 47 kHz
US power: 310 W
Temp.: Room Temp.
Time: 20 min
KMnO4 conc.: 4%

Cellulose recovery: 98%
Maximum delignification: 46%
Increase in reducing sugar 

yield after enzymatic 
hydrolysis: 1.7 fold

[64]
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Table 1  (continued)

Pretreatment method Biomass Pretreatment conditions Key findings References

 Ultrasound + Ionic liq-
uid + SDS

Water hyacinth US Frequency: 20 kHz
Power: 100 W
Temp.: 133 °C
Time: 45 min
1-butyl-3-methylimidazolium 

chloride ([BMIM]Cl)
SDS: 0.5%

Increase in production of 
reducing sugars: 72.23%

Cellulose conversion: 30.51%
Delignification: 70.05%

[62]

 Ultrasound + NaOH + CaO Corn stover US frequency: 40 kHz
US power: 150 W
S/L ratio: 1:20 (w/w)
NaOH: 2%
CaO: 6%
Temp.: 50 °C
Time: 30 min

Lignin conversion: 60%
Increase in cumulative biogas 

production: from 330 to 510 
mL/g-TS (54%)

[83]

 Two stage ultrasonic + dilute 
acid pretreatment

Sugarcane bagasse First stage US
US power: 760 W
Time: 20 min
Second stage US with Dilute 

 H2SO4
US power: 190 W
Time: 60 min
Solid loading: 6%
H2SO4 conc.: 2%
Temp.:  900 C
Time: 2 h

Delignification: 57.41%
Cellulose recovery: 95.72%
Hemicellulose degradation: 

92.4%
Ethanol fermentation effi-

ciency: 93.37%

[84]

Pulsed electric field
 Pulsed electric field alone Maize silage Pulse frequency: 10 kHz

Pulse duration: 50 µs
Time: 180 s

Increase in biogas production: 
15%

[85]

Pig slurry Pulse frequency: 1.7 Hz
Pulse width: 4 µs
Intensity: 50 kWh/m3

Temp.: 25.3 °C

Methane production increased 
by: 58%

COD removal increased by: 
44%

[86]

Grape pomace Energy input: 153 kJ/kg
Temp.: <5 °C

Increase in methane content 
by: 4%

Increase in hydrolysis constant 
by: 14%

[61]

Rapeseed straw Electric pulse: 40 kV
Pulse width: 50 µs
Time: 5 min

Increase in methane produc-
tion: 14%

Increase in biogas production: 
15%

[87]

Corncob Electric field strength: 9 kV/cm
Time: 60 s

Increase in cellulose content 
by: 40.59%

Decrease in hemicellulose 
content: 12.9%

Decrease in lignin content: 
2.02%

[88]

 Pulsed Electric 
Field + Enzyme hydrolysis

Rice straw Electric field strength: 12 V/m
Supplied water content: 5 mL/ 

g substrate
Enzyme loading: 26.68 mg/ g 

substrate
pH: 4.5
Switchover time: 6 h

TRS yield: 506.6 mg/L
Enzymatic saccharification 

efficiency: 22.8%

[89]
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pretreatment of spent coffee waste reported the maximum 
cellulose recovery of 98% with 46% delignification and an 
increase of 1.7-fold reducing sugar yield was observed after 
enzymatic hydrolysis as compared to spent coffee waste pre-
treated with  KMnO4 alone [64].

Pulsed Electric Field (PEF) Pretreatment

Pulsed electric field is an emerging pretreatment technol-
ogy that utilizes high voltage (0.1–100 kV/cm) exposure 
to the LCB for very short pulse duration of nanoseconds 
to milliseconds. This is carried out by a device carrying 
two electrodes which are inserted into the biomass/biomass-
suspension. The exposure of the pulsed electric field to the 
LCB disrupts the structural components of biomass, causing 
an increase in permeability and hence facilitating the access 
of enzymes to the carbohydrate and lignin (Table 1) [65]. 
PEF is generally recognized as an energy efficient method 
to induce permeabilization of cellular components, while it 
has also been proposed as a novel stress promoter, capable of 
inducing the production of bioactive compounds. The elec-
tric pulses in the form of square or exponential waves are 
used for this pretreatment method. The setup of pulsed elec-
tric field consist of a pulse generator, a control system, data 
acquisition system and material handling vessel [45, 66]. 
This technology is at incipient stage, there are still signifi-
cant room exist for the improvement in fractionation capabil-
ity, for example, utilizing a combination of PEF method with 
organic solvent/salts may achieve higher yield.

Chemical Methods of Pretreatment: The 
Industrially Oriented Process

Chemical pretreatment methods utilize the application of 
special chemicals to destruct the rigid structure of LCB. In 
comparison to biological and physical pretreatment methods, 
chemical processes are employed more frequently because 
they are more effective to dissolve the complex lignocellu-
lose. They are mostly operated at atmospheric pressure and 
across a range of ambient temperature employing oxidizing, 
acidic or alkali reagent. These chemicals are responsible to 
disrupt the intra- and inter polymer linkages of main organic 
components which in turn facilitate the hydrolysis of poly-
meric structure and degradation of lignin units [90]. Com-
pared to other pretreatment methods, the chemical methods 
are considered to be very promising, since it can be quite 
effective in degrading more complex LCB and has incred-
ible potential for upgrades in efficiency [91]. A range of 
chemical pretreatment methods were devised by different 
researchers till date for the fractionation of diverse LCB. 
These chemical pretreatment strategies have been proved to 

be effective on variety of LCB but in case of softwoods the 
yield of sugars is low. The chemical pretreatment processes 
are mostly performed utilizing alkali, acid, oxidizing agents, 
ionic liquids, and organic solvents to improve the biodegra-
dability of LCB (Table 2).

Alkaline Pretreatment Methods

The alkaline pretreatment methods are more selective to 
delignify the biomass without disturbing carbohydrate con-
tent as much, though some amount of hemicellulose may 
also solubilize. Several strategies being followed by differ-
ent researchers, focused on using different alkaline reagents 
like sodium hydroxide, calcium hydroxide, lime, ammonium 
hydroxide etc. (Table 2) [7]. Alkaline pretreatment of LCB 
can be carried out at ambient temperature for a residence 
period varying from few minutes to number of days and 
depending upon the type of alkali and lignin content [66]. 
Generally, alkaline pretreatment involves the alkali concen-
tration between 1.0 and 8.0% and 90–220 °C temperature 
for a shorter residence time (5−100 min), or a dilute alkali 
concentration (0–2%) for several hours at 50–100 °C. The 
alkali processes affect the cellulosic residues by swelling 
mechanisms leading to a decrease in the crystallinity and 
degree of polymerization, subsequently improve the con-
venience of enzymes towards cellulosic fraction. It is effec-
tive in increasing the porosity and surface area accessible to 
enzymes of LCB, and hence improves the enzymatic hydrol-
ysis of the biomass. These advantages make the alkaline 
methods suitable for the pretreatment of LCB [92, 93]. How-
ever, there are some major drawbacks associated with these 
methods such as longer reaction time which may vary from 
hours to days, high downstream processing cost required 
for recycling of salts, high post pretreatment cost involved 
for the neutralization of slurry, inability to fractionate the 
feedstocks with high lignin content, and sometimes adverse 
impacts on environment as well [94].

Alkaline pretreatment methods in combination to other 
chemical and physical pretreatment methods are getting 
much interest as the pretreatment efficiency and further 
hydrolysis can be significantly improved by doing so. A 
recent study conducted with NaOH/Urea with high biomass 
loading shown an increase of 31.89% in reducing sugar con-
version as compared to untreated biomass. Further, FTIR 
and XRD analysis of cold NaOH/Urea pretreatment with 
100% (w/v) biomass loading demonstrated effective dis-
ruption in lignin along with cellulose crystalline structure 
[95]. You et al. (2019) devised a cost effective pretreat-
ment method (NaOH with CaO assisted by ultrasound), 
and were able to increase the lignin breakdown up to an 
extent of 60% and biogas production of more than 500mL 
per gram of total solid content of corn stover [83]. Another 
study optimized the combined effect of aqueous ammonia 
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and ozone and found that biogas production from rice straw 
can be increased by 114.2−172.8% after 90 min ozonation 
and 9 h soaking in aqueous ammonia [96]. Chaudhary et al. 
(2012) observed 85% yield of reducing sugars from Sac-
charum spontaneum after aqueous ammonia pretreatment 
(soaked in 30% ammonia at 10% biomass loading for 40 
days at 30 °C) followed by an acid hydrolysis  (H2SO4 60% 
(v/v), 10% biomass loading at 30 °C for 4 h) process [8]. The 
advantage of ammonia based methods is that the ammonia 
can be most easily recovered and reused for further pretreat-
ment [8]. Chundawat et al. (2020) reported a method using 
ammonia-salt based pretreatment at low temperatures, which 
decreased the cellulolytic enzyme requirements approxi-
mately by 50-fold [97].

Acidic Pretreatment Methods

Application of acids for the pretreatment of LCB is widely 
accepted especially in case of ethanol production (Table 2). 
During acid pretreatments, the hemicellulose present in bio-
mass solubilizes in majority and a little extent of delignifi-
cation takes place, this causes the increase in porosity of 
biomass [98]. Acid pretreatment methods are also capable of 
disrupting the lignocellulosic structure by cleaving interac-
tions namely van der Waals forces, hydrogen and covalent 
bonds leading to the conversion of polymeric carbohydrates 
to oligomer sugar and monomer sugars [93, 99]. Phosphoric, 
acetic, sulfuric and hydrochloric acid are most commonly 
used acids for acid pretreatments [100]. The effectiveness 
of these methods depends upon the reaction time, tempera-
ture, concentration of acid, and biomass loading [99]. The 
major advantages of these methods include the use of highly 
commercial acids such as organic and inorganic acids, com-
mercial level flexibility, greater hemicellulose removal and 
larger glucose yield. While the disadvantages associated are 
heavy cost of acid recovery, requirement of acid resistant 
vessels and equipment’s, and inhibitory/toxic compounds 
formation [93, 99]. However, it is important to know that in 
last two to three decades the economic and environmental 
aspects of the acid pretreatment methods have been greatly 
improved with time [93, 99].

Acidic pretreatment methods are studied under two cat-
egories (i) dilute acid pretreatment (ii) concentrated acid 
pretreatment. The dilute acid pretreatments (0–5% w/w) are 
generally performed at high temperature (120–210 °C) for a 
long residence time (5–30 min), whereas concentrated acid 
pretreatments (30–70% w/w) are carried out at low tempera-
tures (< 100 °C) for long duration (30–120 min). The dilute 
acid pretreatment has high reaction rate and sugar conver-
sion, but the energy required for the overall process is higher 
due to the higher temperature. Whereas, concentrated acid 
pretreatment requires relatively lower energy consumption, 
but the higher acidity leads to generation of fermentation 

inhibitors viz., furfurals, HMF, phenol derivatives, and 
aldehydes due to undesired degradation of carbohydrates. 
It has been estimated that the presence of these inhibitory 
compounds enhances the processing cost of the feedstock, 
ranging from 0.02 to 1.10 US dollars per kilogram of feed-
stock [12].

The dilute acid pretreatments are preferred, but harsh 
conditions of temperature and pressure are maintained for 
maximum recovery of fermentable sugars from LCB [101, 
102]. Several variations have been made to search out the 
best operating parameters of acid pretreatment methods in 
terms of techno-economic and environmental aspects. These 
variations include the reactor configurations, operating con-
ditions, severity factor etc. [99]. Among these parameters 
one of the most important parameter is combined severity 
factor (CSF) for low acid concentration, used to express the 
efficiency of the reaction parameters like temperature (T in 
oC), pH, reaction time (t in min), as given in the equation 
below [103, 104].

 Where  Tg is reference temperature  (100oC) and pH is the 
initial pH value of reaction mixture.

Tang et al. 2021 explored the effect of dilute sulfuric acid 
in combination with humic acid (a natural surfactant) on 
pretreatment of waste wheat straw and were able to achieve 
40.6% delignification and 96.2% hemicellulose removal, 
resulting in 92.9% enzymatic hydrolysis efficiency [105]. 
Pretreatment of Eucalyptus urophylla with GVL/H2O solu-
tion (4:1, v/v) containing 100 mM  H2SO4 at 120 °C for 
60 min, the highest glucose yield of 89.1% was achieved, 
furthermore 16.5% high purity lignin was also fractionated 
and could be used for its valorization applications [106].

Ionic Liquids Pretreatment Methods

Ionic liquids (ILs) have gained considerable attention 
recently for lignocellulosic biorefinery due to their recycla-
ble capabilities. Their high solvation capabilities towards 
LCB leading to high yield of lignin free fermentable sug-
ars make them promising candidate for future biorefinery 
platform [107, 108]. Ionic liquids are highly thermostable 
and possess low toxicity and work well at even low vapor 
pressure. They are highly selective in removing lignin and 
hemicellulose from LCB, yielding pure cellulose for subse-
quent hydrolysis process (Table 2) [4]. The main challenges 
with ionic liquid pretreatment are the complex processing, 
pH compatibility, toxicity, and higher costs involved [109]. 
Attempts have been made to synthesize low cost, environ-
ment friendly ILs using lignin and hemicellulose derived 
compounds such as  [FurEt2NH][H2PO4],  [VanEt2NH]

CSF = log

(

t × exp

(

T − Tg
)

14.75

)

− pH



13Waste and Biomass Valorization (2024) 15:1–36 

1 3

Table 2  Comparative analysis of different chemical pretreatment methods

Pretreatment method Biomass Pretreatment conditions Key findings References

Alkaline
 NaOH Energetic willow NaOH conc.: 4%

Temp.: 80 °C
Time: 3.75 h

Delignification: 50.1%
Hemicellulose removal: 73.2%
Glucose yield: 510.6 mg/g 

biomass

[143]

Wheat straw NaOH conc.: 2%
S/L ratio: 1:10
Temp.: 80 °C
Time: 2 h

Glucan recovery: 89.5%
Delignification: 71.8%
Increase in enzymatic sacchari-

fication efficiency: 32.4%

[144]

Corn straw NaOH conc.: 2%
S/L ratio: 1:10
Temp.: 80 °C
Time: 2 h

Glucan recovery: 81.8%
Delignification: 86.2%
Increase in enzymatic sacchari-

fication efficiency: 14.8%

[144]

Sugarcane bagasse NaOH conc.: 2%
S/L ratio: 1:10
Temp.: 80 °C
Time: 2 h

Glucan recovery: 90.4%
Delignification: 72.1%
Increase in enzymatic sacchari-

fication efficiency: 61.6%

[144]

Banana pseudo stem NaOH conc.: 30% (m/m)
Temp.: 121 °C
Time: 30 min

Increase in cellulose content: 
75.48%

Reduction in lignin content: 
7.65%

Reduction in hemicellulose 
content: 4.38%

[145]

 NaOH + Urea Rice straw NaOH conc.: 7% w/v
Urea conc.: 12% w/v
Solid loading: 100%
Temp.: − 12 °C
Time: 3 min

Cellulose retention: 91.27%
Hemicellulose retention: 

91.28%
Delignification: 56.87%
Reducing sugar conversion 

yield: 77.59%

[95]

  NH4OH Oil palm trunk fiber NH4OH conc.: 8%
Biomass loading: 1% (w/V)
Temp.: 100 °C
Time: 5 h

Conc. of extracted lignin: 
64 mg/L

[146]

Switch grass NH4OH conc.: 10%
S/L ratio: 1:9
Temp.: 160 °C
Time: 40 min

Glucose yield: >80%
Xylose yield: >40%

[147]

  NH4OH followed by Ozo-
nolysis

Rice straw S/L ratio: 1:10
NH4OH conc.: 27% w/w
Temp.: 50 °C
Ammonia treatment time: 10 h
Ozone conc.: 35 mg  O3/L
Ozonation treatment time: 

45 min

Increase in glucose conc.: 
54.48%

Increase in biogas production: 
172.8%

[96]

 CaO Limnocharis flava CaO conc.: 1%
Temp.: Room Temp.
Time: 72 h

Reducing sugar yield: 
28.88 g/L

Ethanol yield: 6.31 g/L

[148]

 KOH Corncob residue KOH conc.: 15%
Temp.: 700 °C
Time: 90 min

Glucose yield: 91%;
Lignin removal: 89%

[149]

 KOH + Ca(OH)2 Wheat straw KOH conc.: 2%
Co-pretreatment with Ca(OH)2: 

1%
Temp.:  250oC
Time: 24 h

Cumulative methane yield: 
239.8 mL/gVS;

Improvement in biodegradabil-
ity: from 56.37–66.1%

[150]
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Table 2  (continued)

Pretreatment method Biomass Pretreatment conditions Key findings References

 KOH + anthraqui-
none + sodium lignosulfate

Wheat straw KOH conc.: 15%
Supplemented with
Anthraquinone: (0.1%)
Sodium lignosulfate: (2%)
Temperature: 1200 °C
Time: 40 min

Total sugar yield (glu-
cose + xylose + soluble 
xylan): 80%

[151]

 Ca(OH)2 Wheat straw Ca(OH)2 conc.: 10%
Temp.:  300oC
Time: 5 days

Maximum biogas production: 
565.63 mL/gVS

[152]

 Ca(OH)2 + glycerol Sugarcane bagasse Ca(OH)2 conc. (in glycerol): 
2% (w/v)

S/L ratio: 1:10
Temp: 800 C
Time: 2 h

Glucan yield: 52.5%
Lignin recovery: 18.3%

[153]

Acidic
  H2SO4 Cassava residue H2SO4:0.05%

S/L ratio: 1:20
Temp.: 180 °C
Time: 10 min

Glucose recovery: 9.82%
Xylose recovery: 58.62%
Total sugar recovery: 22.08%

[154]

Banana pseudostem H2SO4:25% (m/m)
Temp.: 121 °C
Time: 30 min

Increase in cellulose content: 
66.28%

Reduction in lignin content: 
31.15%

[145]

Rapeseed straw H2SO4: 1%
Solid loading: 20% (w/v)
Temp.: 180 °C
Time: 10 min

Glucose yield: 80%
Ethanol yield: 125 kg EtOH/

Mg biomass

[155]

Elephant grass H2SO4: 20% (m/m)
Temp.: 121 °C
Time: 30 min

Glucose yield from
Leaf: 89.2%
Stem: 43.54%
Whole plant: 76.01%

[156]

Cotton straw, H2SO4 conc.: 2.28% (v/v)
Temp.: 121.7 °C
Time: 36.82 min

Maximum sugar conc.: 20 g/L
Maximum ethanol conc.: 

7.21 g/L

[157]

Sunflower straw H2SO4 conc.: 3.68% (v/v)
Temp.: 87.03 °C
Time: 36.82 min

Maximum sugar conc.: 
17.5 g/L

Maximum ethanol conc.: 
8.05 g/L

[157]

 HCl Agave plant HCl: 0.5% (v/v)
Temp.: 121 °C
Time: 15 min

Highest reducing sugars conc.: 
13 g/L

No furfural and HMF com-
pounds were detected

[158]

 HCl with γ-valerolactone Hybrid poplar γ-valerolactone /H2O ratio: 
90:10

S/L ratio: 1:10
HCl conc.: 0.1 M
Temp.: 100 °C
Time: 60 min

Delignification: 68%
Xylan removal: 80%
Glucan conversion: 65%

[159]

  HNO3 Artichoke stalks HNO3: 5%
Solid loading: 10% (w/v)
Temp.: 121 °C
Time: 60 min

Glucose yield after hydrolysis: 
89%

Increase in ethanol yield by: 
30%

[160]

  H3PO4 Sugarcane biomass H3PO4 conc.: 4.95%
S/L ratio: 1:15
Temp.: 80 °C
Time: 375 min

Monosaccharide yield: 
48.7 g/L (98% glucose)

[161]
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Table 2  (continued)

Pretreatment method Biomass Pretreatment conditions Key findings References

  H3PO4 +  H2O2 Wheat straw H3PO4 conc.: 79.6% (w/w)
H2O2 conc.: 1.9% (w/w)
S/L ratio: 1:10 (w/w)
Temp.: 40.2 °C
Time: 2.9 h

Cellulose recovery: 98.1%
Hemicellulose removal: 98.2%
Delignification: 69.2%
Ethanol yield on dry biomass: 

16%

[162]

 Maleic acid Cotton gin waste Maleic acid conc.: 500 mM
Solid loading: 10% (w/w)
Temp.: 150 °C
Time: 45 min

Saccharification yield: 
686.13 g/g

Ethanol conc. achieved: 
18.74 g/L

Delignification: 88%

[163]

 Acetic acid Switchgrass Acetic acid conc.: 3 g/L
S/L ratio: 1:10 (w/w)
Temp.: 170 °C
Time: 20 min

Biobutanol conc.: 8.6 g/L 
(yield of 0.16 g/g biomass)

[164]

Oil palm shell Acetic acid conc.: 8.24%
S/L ratio: 1:10
Temp.: 107.3 °C
Time: 30 min

Reducing sugar yield: 
40.408 mg/g biomass

[165]

Ionic liquids
  [Bmim]BF4 Corn stalk [Bmim]BF4 / water ratio: 50% 

(w/w)
Temp.: 60 °C
Time: 5 h

Enzymatic hydrolysis effi-
ciency: 81.68%

[112]

 Cholinium lysinate Corn stover ([Ch][Lys]): solid loading: 15%
Temp.:140 °C
Time 3 h

Delignification: 93%
Glucan recovery: 86%

[166]

 Microwave-assisted [Bmim]
Cl treatment

Rice straw S/L ratio: 1:20 (w/w)
MW power: 400 W
Temp.: 130 °C
Time: 45 min

Delignification: 57.02%
Increase in glucan conversion: 

61.14%

[167]

 Microwave-assisted [TBA]
[OH] treatment

Eucalyptus sawdust [TBA][OH] conc.: 12.5%
Temp.: 60 °C
Time: 2 h
Microwave treatment:
Microwave power: 375 W
Time: 6 min

Sugar yield: 410.67 mg/g [77]

 [Bmim]Cl with ultrasound 
and surfactants

Sugarcane bagasse Solid loading: 5%
Temp.: 90 °C
Time: 1 h
PEG-8000 conc.: 3.33%
US power: 100 W
US frequency: 20 kHz
US time: 60 min

Reducing sugar yield: 
254 mg/g biomass

[168]

 Ultrasound assisted ionic 
liquid-hydrochloric acid 
pretreatment

Rice straw Ionic liquid: AMIMCl
Biomass loading: 5% (wt)
HCl conc.: 2.4% (wt)
US power: 840 W
US frequency: 40 kHz
Temp.: 70 °C
Time: 180 min

Increase in production of 
reducing sugar: from 
20.13–28.96%

Increase in cellulose conver-
sion: from 31.69–35.23%

Increase in delignification: 
from 18.06–19.33%

[169]

 [AMIM]Cl with surfactants Rice straw Solid loading: 10%
Rhamnolipid surfactant conc.: 

1%
Temp.: 110 °C
Time: 1 h

Delignification: 26.14%
Cellulose conversion: 36.21%

[170]



16 Waste and Biomass Valorization (2024) 15:1–36

1 3

Table 2  (continued)

Pretreatment method Biomass Pretreatment conditions Key findings References

 [Bmim]Cl with acid Rice straw Aqueous [Bmim]Cl water 
content: 20%

Solid loading: 15%
HCl conc.: 0.5%
Solid loadings (5–20% w/v)
Temp. 130 °C
Time 2 h

Cellulose digestibility: 98.8%
Ethanol conc.: 21.86 g/L

[171]

Organosolv
 Ethanol Wheat straw Ethanol conc.: 60%

Temp.:  2000 C
Time: 2 h

Lignin yield: >90% [172]

 Ethanol +  H2SO4 catalyst Eucalyptus wood Ethanol conc.: 50%
H2SO4 (catalyst) conc.: 1%
Temp.: 160 °C
Time: 10 min

Glucose yield: 37.1%
Hemicellulose reduction: 

11.4%
Lignin yield: 22.6 g

[173]

 Ethanol + n-propylamine 
catalyst

Corn stover Ethanol conc.: 60% v/v
n-propylamine catalyst: 10 

mmol/g biomass
Temp.: 140 °C
Time: 40 min

Delignification: 81.7%
Total sugar yield: 83.2%

[174]

 Glycerol + Ammonia catalyst Sorghum Glycerol conc.: 51.11% w/w
Ammonia catalyst conc.: 5.14% 

w/w
Temp. 120 °C
Time: 1 h

Total sugar yield: 421.35 mg/g
cellulose digestibility: 72%
maximum ethanol conc.: 

36 g/L

[175]

 Glycerol +  H2SO4 catalyst Sugarcane bagasse Solid loading on glycerol: 1:10
H2SO4 (catalyst) conc.: 0.06%
Temp.: 200 °C
Time: 15 min

Cellulose retention: 98%
Hemicellulose removal: 82%
Delignification: 52%
Glucose yield: 70%

[176]

 Acetone +  H2SO4 catalyst Mustard straw and stalk (MSS) Aqueous acetone: 80% v/v
S/L ratio: 1:10
H2SO4 (catalyst) conc.: 0.4%
Temp.: 121 °C
Time: 90 min

Cellulose retention: 58.2%
Hemicellulose reduction: 

15.9%
Lignin reduction: 18.5%
Glucose yield: 13.67%

[177]

 Tetrahydrofurfuryl alco-
hol +  H2SO4 catalyst

Hybrid pennisetum Tetrahydrofurfuryl alcohol 
(THFA):

S/L ratio: 1:12
H2SO4 (catalyst) conc.: 

0.05 mol/L
Temp.: 100 °C
Time: 2 h

Enzymatic digestibility: 87.5%
Glucan recovery: 90.9%
Delignification: 50.3%

[178]

 Binary Solvent Poplar wood Methanol/dioxane ratio: 75/25 
(v/v)

MW power: 400 W
Temp.: 120 °C
Time: 10 min

Delignification: 88.3%
Hemicellulose removal: 70.4%
Cellulose retention: 83.1%
Glucan conversion: 99%

[78]

Ozonolysis
 Ozonolysis alone Eucalyptus grandis Ozone conc. 60 g  O3/m3

Moisture content: 30%
Time: 120 min

Reduction in lignin content: 
26.63–9.53%

Increase in saccharification 
yield: 20 to 68%

[179]

Rye straw Ozone conc. 100 g  O3/m3

S/L ratio: 1:10
Time: 60 min
Moisture content: 30%

Increase in conc. of reduc-
ing sugars, volatile fatty 
acids and chemical oxygen 
demand: 7.4, 32.3 and 11.7 
times higher respectively

Methane yield: 291.74  dm3/
kg VS

[180]
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Table 2  (continued)

Pretreatment method Biomass Pretreatment conditions Key findings References

 Ozonolysis followed by ther-
mal pretreatment

Rice straw Ozone dosage: 0.006 g  O3/g 
biomass

Time: 30 min
Thermal pretreatment:
Temp.: 55 °C
Time: 4d

Reducing sugar yield: 
1.18 mg/L/d

Increase in hydrolysis rate 
constant: 26%

Methane yield: 374 ml CH4/g 
VS substrate

[181]

 Ozonolysis + NaOH Sugarcane straw residue Ozone conc.: 0.24%
Time: 60 min
Moisture content: 35%
NaOH conc.: 0.1 mol/L
Temp.: 80 °C
Time: 8 h

Glucose yield: 60.8%
Increase in cellulose content: 

75%
Increase in hemicellulose 

content: 42%
Decrease in lignin content: 

47%

[123]

 Ozonolysis followed by 
 H2SO4 treatment

Sugarcane bagasse Ozone flow rate: 32 mg  O3 
 min− 1

Time: 60 min
Moisture content: 50%
Dilute acid washing:
Biomass loading: 5%
H2SO4 (catalyst) conc.: 

0.1 mol/L
Temp.: 25 °C
Time: 2 h

Delignification: 25%
Glucose yield: 310 mg/g
Xylose yield: 122 mg/g

[182]

 Ozone followed by Subcritical 
Water treatment

Wheat bran Ozone conc.: 60 mg/L
Time: 30 min
Moisture content: 50%
Subcritical water treatment:
Solid/liquid ratio: 1:10
Temp.: 160 °C
Time: 30 min

Hemicellulose removal: 86%
Glucose yield: 85%

[183]

Deep eutectic solvent (DES)
 Choline chloride-glycerol Hybrid Pennisetum Biomass loading: 1:10 (w/w)

Temp.: 120 °C
Time: 6 h

Cellulose retention: 95.2%
Cellulose saccharification: 

99.5%
Delignification: 78.88%
Hemicellulose removal: 

93.63%

[137]

 Choline chloride-glycerol Rice straw Solid loading: 5%
Temp.: 150 °C
Time: 15 h

Glucan retention: 96.5%
Delignification: 52.3%
Increase in glucan digestibility: 

21-87%

[184]

 Choline chloride: monoetha-
nolamine

Wheat straw Biomass loading: 1:20 (w/w)
Temp.: 70 °C
Time: 9 h

Delignification: 71.4%
Cellulose retention: 93.7%

[185]

 Choline chloride /glycerol 
followed by Ultrasound 
treatment

Sugarcane bagasse ChCl/glycerol ratio: 1:10 
(m/m)

Biomass loading: 3% (w/w)
Temp.: 121 °C
Time: 15 min
US power: 40 W
US frequency: 20 kHz
Time: 20 min

Sugar yield: 276.8 mg/g 
biomass

Ethanol yield: 142.09 mg/g 
biomass

[186]

Natural deep eutectic solvent (NADES)
 NADES Corncob Betain-amino acid

biomass loading: 1:10 (w/w)
Temp.: 60 °C
time: 5 h

Delignification: 57.01%
Glucose yield: 40.5%

[187]
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[H2PO4], and [p-AnisEt2NH][H2PO4] and were found effec-
tive compared to other ILs [110]. The ILs specifically rec-
ognized for the cellulose dissolution are imidazolium, pyri-
dinium, ammonium, phosphonium or morpholinium based 
cations and anions. The capability of these ionic liquids to 
form strong hydrogen bonds with hydroxyl groups make 
them efficient for the cellulose dissolution [60].

Beside all the encouraging features of ILs, their commer-
cial scale application is limited because of high viscosity, 
requirement of costly ionic liquids in large amounts, and 
negative effect of ILs on cellulases [111]. Hu et al. (2018) 
had overcome the problem of viscosity by adding 50% 
(w/w) water to the  [Bmim]BF4 ionic liquid and were able to 
increase enzymatic hydrolysis efficiency up to 81.68% [112]. 
Pretreatment of Eucalyptus sawdust using ionic liquid in 
combination with microwave increased the delignification 
and cellulosic crystallinity deconstruction, which in turn 
increased the enzymatic hydrolysis [77]. Acetate based ionic 
liquid along with probe sonication pretreatment method was 
found capable of completely dissolving the bamboo biomass 
in merely 40 min, showing significant reduction in time 
for complete LCB dissolution and considerably change in 
thermo-physical characteristics of regenerated cellulose rich 
material [113]. Recently, Chuetor et al. (2022) optimized the 
pretreatment conditions of rice straw using 1-ethyl-3-meth-
ylimidazolium acetate and reported 89% more ethanol pro-
duction than the untreated rice straw even after five recycles 
of IL [114]. Such findings have inspired the researchers to 
utilize the various IL pretreatment methods to make the idea 
of biorefinery an actuality.

Organosolv Pretreatment Methods

Organosolv pretreatment strategies have been established 
for industrial manufacturers of pulp & paper and bioethanol 
[11, 115]. Organosolv pretreatment method utilizes organic 
solvents like ethanol, acetone, ethylene glycol, formic acid, 

acetic acid, etc. for the delignification and hemicellulose 
solubilization (Table 2) [11]. The major advantage associ-
ated with organosolv pretreatment is that the solvent used 
can be recovered and reused. The organosolv methods of 
pretreatment are effective in fractionating LCB to its struc-
tural component: cellulose, hemicellulose, and lignin with 
high purity [93]. Organosolv pretreatment is in general car-
ried out at an elevated temperature stretching from 100 oC to 
more than 200 oC. The acid catalysts like hydrochloric acid, 
sulfuric acid, oxalic acids etc. can also be used to increase 
the lignin extraction efficiency and in promoting hemicel-
lulose breakdown [116, 117].

A recent study used methanol/dioxane binary solvent in 
addition to microwave irradiation to fractionate poplar wood 
into high quality cellulose, lignin, and monomeric sugar 
derivatives under mild condition of pretreatment i.e. 120 oC 
temperature for 10 min. Further, enzymatic hydrolysis of 
fractionated cellulose resulted in almost theoretical glucan 
conversion yield over 99% [78]. The high fractionation abil-
ity of organosolv pretreatment methods makes it the most 
encouraging biorefinery approach for meeting the objective 
of complete utilization of LCB without or minimal waste 
generation [118]. Kabakcı and Tanış (2020) compared dif-
ferent organosolv solvents (ethanol, alkaline glycerol, acetic 
acid, and formic acid/acetic acid/water) for the fractionation 
at atmospheric pressure and lower temperature and observed 
lignin precipitation yield ranging from 6.6% in ethanol orga-
nosolv and 42% in alkaline glycerol organosolv [119].

Ozonolysis Pretreatment

Ozonolysis is an oxidation reaction which utilizes ozone, a 
very strong oxidising agent for lignocellulose solubilization. 
The ozonolysis is much selective in breaking lignin compo-
nent of the LCB leaving behind the cellulose and hemicel-
lulose minimally affected (Table 2). Lignin is highly vulner-
able towards the attack of ozone because of its electron rich 
properties and high contents of C = C bonds[120, 121]. The 

Table 2  (continued)

Pretreatment method Biomass Pretreatment conditions Key findings References

 NADES + DMSO + Ultra-
sound

Corns straw Choline chloride/oxalic acid 
ratio: 1:1

Biomass to solvent ratio: 1:50
Biomass to catalyst  (SnCl4)

ratio: 2:3
Biomass to DMSO ratio: 1:20
Temp.: 140 °C
Time: 3 h
US frequency: 40 kHz
US power: 120 W
Temp.: 25 °C
Time: 30 min

Increase in Yield of
5-HMF: 27.54%
Furfural: 33.64%
Pentose: 95.63%
Hexose: 49.45%

[188]
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ozonolysis of lignin generates low molecular weight com-
pounds majorly organic acids like formic and acetic acid, 
which results in lowering the pH of the solution up to 2. It 
poses several advantages over other pretreatment methods 
like selective delignification, milder reaction conditions, 
minimal inhibitory compound formation etc., while it also 
poses risks of fire and corrosion along with high cost of 
ozone generation, which limits its usage at industrial scale 
[122]. In a recent study, sugarcane straw was subjected to 
ozonolysis in different soaking media (acid, neutral and 
basic) and compared. The method preserved almost all the 
holocellulose while lignin content was reduced by 47% 
along with significant reduction in recalcitrance of the bio-
mass, resulting in 60 and 71% yield of glucose and xylose 
respectively after enzymatic hydrolysis [123].

Deep Eutectic Solvent (DES) Pretreatment

In recent years, the development of mild and sustain-
able green process for industrial biorefining has got huge 
research attention (Table 2) [124]. Among different pretreat-
ment methods, deep eutectic solvents are deliberately used 
as unique green solvents for pretreating LCB with added 
advantages like easier synthesis, extraordinary purity, lesser 
toxicity, biodegradable in nature, low melting points, high 
thermal stability, low volatility, non-flammability, and high 
air stability [125, 126], and most important they possess all 
the twelve principles of green chemistry[127]. Above all 
these DESs have outstanding competence of delignification 
from LCB [128–135]. The capability of delignification and 
hemicellulose removal from LCB during pretreatment can 
be determined by the ability of dissociation of protons by 
the DESs [136].

A recent study with DESs in addition with  FeCl3,  ZnCl2, 
 CuCl2 and  AlCl3 was used to treat hybrid Fountain grasses, 
the authors observed high level of cellulose retention 
(95.2%) and up to 99.5% cellulose enzymatic hydrolysis 
with DES when used with  FeCl3 [137]. Whereas, in another 
study a two-step pretreatment strategy was followed, which 
includes liquid hot water extraction prior to mild acidic DES 
pretreatment. Out of three acidic DES (formic-, acetic-, and 
lactic acid-choline chloride) for selective delignification of 
poplar wood, the formic- and acetic acid DES contributed 
similar results with 76.4 and 76.5% delignification, while 
acetic acid deep eutectic acid was found most selective for 
the delignification with selectivity index of 7.9 [138].

In recent years, Natural deep eutectic solvents (NADES) 
have also gained more research interest for the delignifi-
cation of LCB in a biofuels production route (Table 2). 
NADES are basically advanced liquid salts and are gener-
ated by mixing of cheap and readily available components 
such as quaternary ammonium salt (cholinium chloride) 
and naturally occurring hydrogen bond donor like amines, 

sugars, alcohols and carboxylic acids [139]. NADES offer 
several eco-friendly and economic advantages which 
include; cheaper synthesis, easy availability of components, 
easy synthesis, less toxicity, and high sustainability. They 
possess very low melting point even below  0oC, negligi-
bly volatile, wide range of polarity, adjustable viscosity and 
great solubilization property for different molecules [139]. 
Few years back several stable NADES based on natural com-
pounds (primary metabolites like organic acids, amino acids 
and sugars) were reported [140, 141]. Kumar et al. (2016) 
reported a method for high quality lignin and holocellulose 
separation in a single step from rice straw using NADESs. 
More than 60% delignification was achieved with greater 
than 90% purity of extracted lignin [142].

Physico–Chemical Methods of Pretreatment

In general, physico-chemical pretreatment methods exploits 
the physical properties like high temperature or pressure 
along with some chemicals to pretreat the LCB. Most of 
these methods are conducted at high temperature and some-
times with high pressure. In physicochemical pretreatment, 
lignin and xylan fractions of the lignocellulose are broken-
down by altering the working conditions (like moisture, bio-
mass particles size, solid loading, temperature, and pressure) 
in the presence or absence of a catalyst. The physico-chem-
ical pretreatment methods include steam explosion, liquid 
hot water, wet oxidation, oxidative treatment, ammonia fiber 
explosion, supercritical carbon dioxide, sulfite pretreatment 
etc. These methods primarily increase the surface area 
for enzyme accessibility, decreases cellulose crystallinity, 
extract hemicellulose, and delignify biomass [5, 100]. Some 
recent studies on chemical pretreatment methods and their 
effects on further processing are summarized in Table 3.

Steam Explosion Pretreatment

Lignocellulosic pretreatment with steam explosion is a 
method of choice at commercial scale. Steam explosion is a 
potential thermochemical pretreatment method for LCB as 
it increases the accessibility of biomass towards the action 
of hydrolyzing enzymes by disrupting its structural com-
ponents. This method also alters the cellulose crystallinity 
by dissolving the amorphous region of lignin and xylan. 
It affects the biomass by three actions i.e. steam heating, 
shearing of biomass due to sudden pressure release, and auto 
hydrolysis of glycosidic bonds [189]. The method employs 
saturated steam at high temperature (generally more than 
160 oC) and high pressure (more than 5 bar) for few seconds 
to many minutes, causing disruption of structural compo-
nents of cell wall and solubilization of acid soluble lignin 
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and hemicellulose [93, 190]. The particle size of biomass, 
temperature, moisture content, solid loading, residence time, 
and the cumulative effect of temperature and duration (sever-
ity factor) are the main parameters affecting the efficacy of 
steam explosion pretreatment (Table 3). The starting mate-
rial and biomass particles size determines the correlation 
among processing temperature and residence period. Low 
temperature for longer residence time has been reported 
better than high temperature for lower residence time treat-
ment due to less fermentation inhibition product formation. 
The severity factor for steam explosion can be expressed as 
[191]:

where,  logRo: the severity factor as a function of treat-
ment time; T: temperature (oC); t: residence time (min); 
14.75: activation energy where the process obeys first order 
kinetics and the Arrhenius temperature dependence.

The major advantage of steam explosion is that no chemi-
cals are required and hence it is pollution free method, and 
it requires low energy and cheaper in recycling waste stream 
whereas the disadvantages account lower carbohydrate sac-
charification efficiency and generation of inhibitory products 
(like furfurals and HMF) [189].

A recent study using steam explosion in a semi continu-
ous pre-pilot reactor for the pretreatment of switchgrass 
reported up to 88.3% enzymatic saccharification, which was 
found similar to the enzymatic hydrolysis of commercial 
cellulose pulp [192]. Matsakas and his team fractionated 
the spruce biomass using lignin first strategy. They applied 
hybrid organosolv-steam explosion pretreatment technology, 
and obtained the solid residue comprised of up to 72% w/w 
cellulose component and achieved 79.4% delignification. 
Though, the saccharification efficiency could reach only 
up to 61%. Furthermore, the high purity lignin is an added 
advantage to this method, which can be further used for high 
value added materials [193].

Liquid Hot Water (Hydrothermal) Pretreatment

Hydrothermal or liquid hot water pretreatment method 
employs the liquid water at high temperatures and high 
pressure to maintain the liquidity of water for the LCB. 
Generally, 160−240 oC temperature is maintained [60, 93, 
190]. Though this method does not employ any chemical and 
catalyst to carry out the pretreatment, but acidic pH water at 
high temperature classifies the method under physico-chem-
ical pretreatments (Table 3). The pretreatment conditions 
solubilize most of the hemicellulosic portion and partially 
delignify the LCB and make the cellulose more accessible 
towards hydrolysis [194]. A pH between 4 and 7 is desir-
able to limit the production of inhibitors and preventing 

logRo = log
(

t × e[T−100∕14.75]
)

sugar degradation and loss [189]. Also as in case of steam 
explosion, the sudden pressure release is not required dur-
ing hydrothermal pretreatment method, therefore make this 
process easier to operate [189].

The severity factor is one of the most important param-
eter for the effectiveness of hydrothermal pretreatment as 
well. A lower severity factor (3.39) was reported ineffective 
in deconstruction of sugarcane straw while severity factor 
greater than 4.70 causes the loss of fermentable sugars and 
generates inhibitors like furfural and formation of pseudo-
lignin structures, although around 97% hemicellulosic 
removal was achieved [195]. Li et al. (2017) evaluated the 
effect of hydrothermal pretreatment on poplar wood and 
observed substantial xylan solubilization (50–77%) along 
with changes in lignin structure such as decrease of β-O-4′ 
ether linkages and removal of cinnamyl alcohol end group 
and acetyl group [196]. The upcoming research should 
be focused in such a way that the maximal sugars can be 
recovered and with reasonable amount of hemicellulose 
solubilization.

Wet Oxidation Pretreatment

Wet oxidation pretreatment of LCB employs water at a 
temperature above 120 oC and pressure ranging from 0.5 to 
2 MPa for residence period of up to 30 min. The method is 
efficient for the LCB having higher amounts of lignin. The 
major parameters affecting wet oxidation are pretreatment 
duration, oxygen/air pressure and temperature of reaction 
(Table 3). Water at elevated temperatures behaves like an 
acid and hence hydrolysis of biomass favors with increase in 
hydrogen ions with enhancement in temperature leading to 
lowering in pH of the reaction mixture [45]. Oxygen or air 
is used in this pretreatment as a catalyst [189]. This method 
of pretreatment generally acts upon hemicellulose leading 
to its solubilization and further hydrolysis into constitut-
ing monomeric sugars and delignification through decom-
position of lignin in  CO2,  H2O and carboxylic acids [197, 
198]. A study using wet oxidation (6% oxygen in the form of 
 H2O2) pretreatment for oil palm empty fruit bunch reported 
an increase of 43% in methane yield as compared to control 
during mesophilic conditions of biogas production [199].

Oxidative Pretreatment

Oxidative pretreatment is carried out using different oxi-
dizing agents such as air, oxygen, hydrogen peroxide, and 
ozone. The mechanism of the lignocellulose breakdown 
depends on the oxidizing agent used and/or the pretreat-
ment conditions [38, 65]. This method involves the oxida-
tion which mainly results in breakdown of lignin, hemicel-
lulose depolymerization into its constituting monomeric 
sugars and organic acids and the partial breakdown of 
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Table 3  Comparative analysis of different physico chemical pretreatment methods

Pretreatment method Biomass Pretreatment conditions Key findings References

Steam explosion pretreatment
 Steam explosion alone Switchgrass Temp.: 200 °C

Residence time: 10 min
Pressure: 15 bar

Saccharification yield: 88.3% [192]

Beechwood Temp. 230 °C
Time 14.9 min (treatment sever-

ity 5.0)

Glucose yield: 88%
Xylan recovery: 91% (from 

liquid)

[216]

Rubber wood waste Temp.: 214 °C
Time: 10 min (treatment sever-

ity: 4.35)

Methane yield: 83.9 L  CH4/kg 
VS Glucan conversion: 45.2%

[217]

 Steam explosion –NaOH 
catalyzed

Sugarcane bagasse NaOH conc.: 0.1 M
Temp. 180 °C
Pressure 8.8 Kgf  cm−2

Time: 5 min

Delignification: 65%
Total reducing sugars conc.: 

9.07 g/L

[218]

 Steam explosion –CaO cata-
lyzed

Hippophae rhamnoides Pressure: 1.5 MPa
Time: 20 min
CaO loading: 2%
Moisture content: 65%

Hemicellulose removal: 77.61% 
Enzymatic sugar yield 
increase: 66 mg/g DM to 
300 mg/g DM

[219]

 Steam explosion -  H2SO4 cata-
lyzed followed by organosolv 
treatment

Spruce wood chips H2SO4 (catalyst) conc.: 0.5%
Temp.: 225 °C
Time: 5 min
Organosolv treatment:
Ethanol conc.: 52%
Time: 30 min

Saccharification yield: 61%
Cellulose retention: 72%
Delignification: 79.4%

[193]

Hydrothermal pretreatment
 Hydrothermal alone Sugarcane straw Solid loading: 10% (w/v)

Temp.: 195 °C
Time: 10 min

Cellulose retention: 90.2% 
Hemicellulose removal: 
85.45%

[195]

Poplar wood Solid loading: 5% (w/w)
Temp.: 180 °C
Residence time: 70 min

Decrease in xylan content: from 
12.3–2.8%

Increase in cellulose content: 
from 38%

Reduction in lignin content: 
from 23.7–21.3%

[196]

Corncobs Solid loading: 10% (w/v)
Temp.: 160 °C
Residence time: 10 min

Pentose yield: 58.8%
Delignification: 60%
Glucose recovery: 73.1%

[220]

Switchgrass Solid loading 15% (w/w)
Temp. 200 °C
Time 5 min

Glucan and xylan recoveries: 
86% and 96% respectively

hydrolysis efficiency: 89%

[221]

 Hydrothermal + NaOH cata-
lyzed

Bamboo wood Solid loading: 10% (w/v)
NaOH (catalyst conc.): 0.5%
Temp. 170 °C
Time 2 h

Ethanol yield: 4.8 g/L
Xylan content reduction: from 

18.2–12.9%
BET surface area increase: from 

0.324  m2/g to 23.09  m2/g
Cellulose conversion increase: 

38.3%

[222]

 Hydrothermal followed by 
 Na2CO3 +  O2

Reed straw Solid loading: 10% (w/v)
Temp. 170 °C
Time: 60 min
Carbonate oxygen pretreatment:
Na2CO3 conc.: 33.3 g/L
Oxygen pressure: 0.6 MPa
Temp.: 150 °C
Time: 40 min

Total sugar yield: 79.1%
Delignification increase: from 

73.4–94.4%

[223]
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Table 3  (continued)

Pretreatment method Biomass Pretreatment conditions Key findings References

 Liquid hot water followed by 
DES

Poplar wood Liquid hot water extraction:
Solid/liquid ratio: 1:30
Temp.: 170 °C
Time: 40 min
Acidic deep eutectic solvent:
ChCl: Acetic acid molar ratio: 

1:2
Temp.: 130 °C
Time: 3 h

Delignification: 76.5%
Increase in cellulose content: 

from 61.1–85.4%
Selectivity index: 7.9

[138]

Ammonia fiber explosion (AFEX) pretreatment
 AFEX alone Corn stover Water loading: 0.7  gH2O/g DM

Ammonia loading: 1.0 g  NH3/g 
DM

Temp.: 130 °C
Time: 10 min

Lignin yield: 16.55%
Average molecular weight of 

lignin  (Mw): 3925 g/mol
Polydispersity index: 1.668

[204]

Hardwood biomass Temp.: 140 °C
Time: 1 h

Glucose yield in birch and 
willow 53.3% and 47.6% 
respectively

[224]

Sugarcane bagasse Ammonia loading: 0.7 g  NH3/g 
DM

Water loading: 0.6 g  H2O/g DM
Temp.: 120 °C
Residence time: 60 min

Specific methane yield: 299 L 
 CH4/kg VS

Biogas methane content: 58%

[206]

Distillers dried grains with 
solubles (DDGS)

Ammonia conc. 10% (w/v)
Solid loading: 13.18%
Temp.: 70 °C
Time: 48 min

Total reducing sugar yield: 
0.129 g/g DDGS

[225]

Supercritical carbon dioxide (Sc-CO2) based Pretreatment
 Sc-CO2 Oil palm biomass Pressure: 35 MPa

Temp.: 100 °C
Moisture content: 60%

Hydrolysis yield: 42.77%
Cellulose conversion: 61.14%

[226]

Corn stover Pressure: 22.5 MPa
Moisture content: 75%
Temp.: 70 °C
Time: 24 h

Enzymatic hydrolysis sugar 
yield increase: from 15.9–
46.3%

[211]

Corn cob Pressure: 20.0 MPa
Moisture content: 75%
Temp.: 70 °C
Time: 24 h

Enzymatic hydrolysis sugar 
yield increase: from 15.9–
38.2%

[211]

Sugarcane bagasse Pressure: 200 kgf/cm2

Temp.: 60 °C
Time: 6 h

Lignin removal: 8.07%
Increase in methane production: 

24%

[227]

 Sc-CO2 + Organosolv Cotton stalk Pressure: 100 bar
Temp.: 180 °C
Time: 140 min
combined with organosolv (etha-

nol) pretreatment

Maximum methane yield: 177 L/
kgVS

[228]

Wet oxidation
 Wet Oxidation Oil palm empty fruit bunch Oxygen loading (as hydrogen 

peroxide): 6%
Temp.: 180 °C
Time: 45 min

Increase in methane yield: 43% [199]
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cellulose increasing the cellulose accessibility towards 
enzymatic hydrolysis [38, 200]. It has been reported 
that oxidative pretreatment is not selective and generally 
simultaneous degradation of heteropolymeric lignin along 
with hemicellulose and cellulose can be observed from the 
lignocellulose. During oxidative pretreatment delignifica-
tion occurs because of oxidation of aromatic rings to the 
carboxylic acid with the help of oxidant as catalyst [201]. 
Beside oxidation, electrophilic substitution, side chain dis-
placement, and alkyl-aryl linkage breakdown also occurs 
during oxidative pretreatment [200]. Fernández–Delgado 
et al. (2019) compared mild alkaline and oxidative pre-
treatment methods for biobutanol production from brew-
er’s spent grain and observed 62.8% glucose yield and 
28.1% xylose yield after enzymatic hydrolysis. Later on 
after fermentation of fermentable sugars a maximum of 
11.0 g/L butanol concentration along with 13.7 g ABE/L 
was observed [202].

Ammonia Fiber Explosion (AFEX) Pretreatment

The ammonia fiber explosion method is quite similar to the 
steam explosion pretreatment method in terms of opera-
tion; however, the pretreatment conditions are quite differ-
ent because of volatile nature of ammonia. The digestion 
temperatures range between 50 and 110 °C are significantly 
lower in comparison to steam-explosion, therefore it requires 
lower energy and total investment cost [38]. The duration of 
pretreatment may vary from few minutes to hours depending 
upon the reaction temperature. AFEX pretreatment causes 
the swelling of biomass, disruption of structural components 
of the LCB, reducing crystallinity of the cellulose, increas-
ing surface area and lignin-carbohydrate linkages disrup-
tion [93, 203]. The modified lignin structure increases the 
water-retention capacity; thereby facilitate the digestibility 
of feedstocks. AFEX pretreatment may be less effective with 
LCB that have high lignin content because the presence of 
lignin hinders the penetration and reaction of ammonia dur-
ing the pretreatment process. However, AFEX pretreatment 

Table 3  (continued)

Pretreatment method Biomass Pretreatment conditions Key findings References

 Aqueous ammonia wet oxida-
tion + dilute acid pretreatment

Corn stover Aqueous ammonia wet oxida-
tion:

NH4OH conc.: 12.6%
Temp.: 130 °C
Time: 40 min
Oxygen pressure: 3.0 MPa
Dilute acid pretreatment:
HCl conc.: 1%
S/L ratio: 1:10
Temp.: 120 °C
Time: 40 min

Glucan recovery: 71.5%
Lignin removal: 86.1%

[229]

 Alkaline hydrogen peroxide 
assisted wet air oxida-
tion + wet air oxidation

Rice straw Alkaline hydrogen peroxide 
assisted wet air oxidation:

H2O2 conc.: 0.5%
H2O2 soaking time: 24 h
Wet air oxidation:
Pressure: 6 bar
Temp.: 190 °C
Time: 20 min

Cellulose recovery: 84.31%
Hemicellulose solubilization: 

71.86%
Lignin removal: 76.90%

[230]

Sulfite pretreatment
 Sulfite pretreatment Oil palm trunk Sulfite conc.: 6%

H2SO4 conc.: 7%
Temp.: 190 °C
Time: 30 min

Cellulose conversion: 92%
Overall glucose yield: 66%
Lignin removal: 38.8%

[231]

Dairy manure Sulfite conc.: 4%
H2SO4 conc.: 9%
Power: 500 W
Temp.: 180 °C
Time: 20 min

Methane yield at moderate-
SPORL: 353 mL/gVS(75% 
increase)

[232]

Sugarcane bagasse Sulfite conc.: 6%
H2SO4 conc.: 1.1%
Temp.: 160 °C
Time: 30 min

Hydrolysis yield: 85.33% [233]
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offers the advantage of not requiring much size reduction 
compared to other methods, as the rapid fiber expansion 
facilitates effective ammonia penetration even with larger 
particle sizes [189]. The degree of biomass disruption can 
be improved by process parameters optimization viz., treat-
ment time, blow down pressure, temperature, and ammonia 
and water loading (Table 3). The major advantage of using 
AFEX is that ammonia can be easily recovered and reused 
for further pretreatment purpose.

A recent study was conducted by Zhao and his team to see 
the synergistic effect of hydrogen peroxide and ammonia on 
lignin and formulated that the oxidation and ammonolysis 
was led by hydrogen peroxide and ammonia, respectively. 
The oxidation occurs at S unit of lignin whereas ammonoly-
sis occurs at ferulate and p-coumarate esters. They observed 
that the combined effect of hydroxide peroxide and ammonia 
is highly effective in degrading lignin and reducing the poly-
disperity index generating homogeneous lignin fragments 
[204]. Wang and co-workers (2019) performed the AFEX 
pretreatment of corn stover to extract lignin and utilize it 
for the lipid production. They observed that Rhodococcus 
opacus can utilize the AFEX treated lignin without any 
treatment and produced lipid up to 32 mg/L in 72 h utiliz-
ing 20% of total lignin. The lipid accumulated has the same 
composition as of the vegetable oil [205]. Mokomele et al. 
(2019) compared steam explosion and AFEX pretreatment 
on biogas production from sugarcane bagasse and observed 
that AFEX pretreatment gave the highest specific methane 
yield along with high methane content [206]. Unlike other 
biomass pretreatment processes, AFEX process does not 
generate inhibitors; therefore, the subsequent downstream 
processes become more efficient. There is a wide literature 
available on the advantages of AFEX process which high-
lights the lower moisture requirement, fewer formations of 
inhibitory sugar by-products, 100% recovery of feedstocks 
material, and positive effect on enzymatic hydrolysis in 
comparison to other chemical methods. Besides, there are 
some disadvantages such as high costs due to chemicals 
recycling and appropriate reactors requirement still need to 
be overcome.

Supercritical Carbon Dioxide (Sc‑CO2) Based 
Pretreatment

Supercritical fluids possess the characteristics of gases 
and liquids. Their diffusivity and viscosity are same as of 
gases and density is same as of liquids [207]. The fluids 
at a temperature and pressure above their critical point are 
termed as supercritical fluids. They possess high diffusivity 
and solvolytic efficiency and the density of the fluid can 
be adjusted by changing the temperature and pressure[207]. 
In comparison to several supercritical fluids like ammonia, 
methanol and water, the  CO2 is most widely used and well 

recognized supercritical fluid as it has lower critical tem-
perature (31 oC), pressure (73.8 bar), and solubility (7.118 
(cal/cm3)0.5) (Table 3) [4, 208]. These properties make it 
an efficient solvent for different monomeric and non-polar 
compounds and inefficient for the polymeric and polar com-
pounds. Hence, it is very much suitable to fractionation of 
LCB as compared to other solvents.  CO2 can easily pene-
trate the surface of lignocelluloses and reduces recalcitrance 
and enhances the penetrability of the cellulose [4]. Further, 
supercritical fluids can be considered as potential option 
for the pretreatment of LCB because of relatively mild pre-
treatment conditions, higher fermentable sugar yield, lower 
inhibitory compound generation, and greater exposure for 
enzymatic hydrolysis with reduced use of chemicals [209].

A very recent study employing Sc-CO2 for date pulp 
pretreatment, reported the temperature and pressure as sig-
nificant parameters and achieved a maximum sugar yield of 
74.1 g/100 g for Sc-CO2 pretreated date pulp at 10 MPa and 
46 °C for 59 min [210]. Zhao et al. (2019) conducted pre-
treatment of different agricultural residues (corn stover, corn 
cob, and sorghum stalk) having 75 wt % moisture content 
using supercritical  CO2, at low temperature (50–80 °C) and 
a pressure of 17.5–25.0 MPa. After enzymatic hydrolysis 
of pretreated biomass, a 3 to 4-fold increase in sugar yield 
was observed as compared to control [211]. In a similar 
study on blue agave bagasse 40% increase in total reducing 
sugars was achieved with enzymatic hydrolysis of Sc-CO2 
pretreated biomass [212]. Mitraka et al. (2022) examined 
the effect of Sc-CO2 pretreatment on sewage sludge biogas 
production and observed an increase of 8.7% increase in 
methane production [213].

Sulfite Pretreatment

The Sulfite Pretreatment to Overcome the Recalcitrance of 
Lignocellulosics (SPORL) is often abbreviated as SPORL. 
This method in its first step employs the treatment of bio-
mass with calcium or magnesium sulfite which in turn 
removes the hemicellulosic and lignin fractions followed by 
the reduction of size using disk miller [45, 190, 214]. Fur-
ther new sulfite pretreatment methods have been developed 
which can utilize various sulfite or bisulfite solutions with 
broad range of pH and temperatures to weaken the structural 
components of the LCB (Table 3). This pretreatment method 
is specially intended and established for the woody biomass, 
softwoods such as pines and other coniferous plants, hard-
wood like poplar, willow tree, eucalyptus etc. [215]. This 
method has high scale up potential for industrial applica-
tion. The reduced energy requirements for the size reduc-
tion and enhanced enzymatic saccharification of pretreated 
biomass within shorter period of reaction make this method 
much suitable for the fermentative ethanol production [215]. 
However, there are still some prone and cons associated with 
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sulfite pretreatment of LCB, need to be tackled before real 
time implementation of this method at a commercial scale.

Biological Pretreatment Methods

Biological pretreatments are considered to be nontoxic and 
eco-friendly in nature, require less energy, and generate no 
inhibitors; hence, minimize the cost of subsequent down-
stream processing (though overall cost of biological pretreat-
ment is higher than other pretreatment method). Several bac-
terial and fungal strains possess the enzymes (ligninases), 
which can degrade the LCB are being utilized for the bio-
logical pretreatment. Among the various lignin degrading 
microbes, white-rot fungi, especially selective delignifiers, 
have received much research interest over non-selective del-
ignifiers due to high lignin-free cellulosic biomass yield [1]. 
Likewise, ligninases possess a critical role in the modifica-
tion and degradation of lignin biopolymers. The structural 
rigidity of lignin, mandate the lignolytic microorganisms 
to produce an array of extracellular oxidative enzymes to 
achieve efficient degradation. Broadly, these extracellular 
oxidative machineries include; laccase, manganese per-
oxidases, lignin peroxidases, and versatile peroxidases that 
catalyse a direct role in lignin degradation [234]. Addition-
ally, some other ancillary enzymes, such as glyoxal oxidases, 
feruloyl esterase, alcohol oxidases, aryl-alcohol dehydroge-
nase, and quinone reductase, which enhance the peroxidase 
activities and facilitate the lignin fractionation, are being 
recognized as the sole component of lignin degradation sys-
tem of microbes [235].

The biological method of pretreatment in general used for 
the breakdown of cellulose and depolymerization of lignin 
[11, 236]. The efficiency of the biological pretreatment 
method highly depends on the temperature, size of biomass, 
moisture content, incubation time, aeration, accessible sur-
face area, pH, and composition of culture media like source 
of carbon and nitrogen, cellulose crystallinity, inorganic 
and organic compounds, roles of enzymes and hydrolysates, 
microbial strain etc. These factors considerably affect the 
rate of pretreatment and play vital role in modifying physio-
chemical structure of the LCB [237]. Some recent studies on 
biological pretreatment methods and their effects on further 
processing are summarized in Table 4.

Zanellati et al. (2021) explored and evaluated the phe-
nol and furan degrading fungi for biological pretreatment of 
LCB. The study analyzed 40 fungal strains having capabil-
ity to grow on different concentrations of furfural, vanillin, 
4-hydroxybenzaldehyde, and syringaldehyde. Byssochlamys-
nivea MUT 6321 was found as the only fungus that can grow 
on all the four molecules present simultaneously [238]. Arora 
et al. (2016) evaluated the effect of biological pretreatment 
method for paddy straw. The saccharification efficiency of 

white-rot fungus, Trametes hirsute treated biomass was evalu-
ated in comparison to steam pretreated biomass. The cellu-
lose content in steam and biological pretreated biomass was 
found 39.5 and 37.6%, respectively, whereas lignin content 
was observed 14.2 and 4.7%, respectively. The saccharifica-
tion efficiency was also found similar for steam as well as 
biological pretreatment [239]. The conventional pretreatment 
methods using single microbial culture are economically non-
viable as it usually takes longer incubation time. Therefore, 
to overcome these obstacles mixed microbial consortium or 
microbial co-cultures should be utilized to increase the lignin 
degradation efficiency and to reduce pretreatment time.

Conclusions

The lignocellulosic biorefinery is a more sustainable future 
for human’s low value resources. Lignocellulosic biomass and 
pretreatment strategy represent the crucial factors in attaining 
these concepts. Selection of cheaper pretreatment process can 
ensure economical and sustainable viability of a biorefinery 
process. Furthermore, it becomes mandatory to completely 
operate the biomass source with minimum loss of mass and 
waste generation. Physico-chemical and thermo-chemical 
conversion processes have the potential to meet the technical 
and economical objectives of a biorefinery framework.

This review article concludes that the eco-friendly pre-
treatment processes which utilize the green solvents and low 
chemical loads receiving much interest as compared to the 
conventional chemical-based pretreatment methods and such 
methods are being developed and made feasible for indus-
trial application. In recent past deep eutectic solvents have 
extensively been explored for their feasibility to fractionate 
variety of LCB. Further selection of pretreatment method 
highly depends upon type of the biomass to be treated and 
the purpose or end use for which biomass needs to be pre-
treated. Following points need to be taken care of while 
choosing a pretreatment method:

• The pretreatment method employed should considerably 
be able to alter the complex three dimensional structure 
of the lignocellulose by depolymerizing its different com-
ponents and decrystallization of cellulose.

• The method should be able to increase the porosity 
and surface area of lignocellulose leading to increased 
enzyme accessibility for hydrolysis of biomass.

• After hydrolysis of pretreated pulp, the total reducing 
sugar recovery should be close to the theoretical sugar 
yield.

• The generation of inhibitory compounds and sugar deg-
radation products should be at such minimum level that 
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detoxification step prior to hydrolysis or fermentation 
should not be required.

• Pretreated pulp or liquid processing like washing, separa-
tion, neutralization, etc. should be inexpensive and easy 
to process.

• Equipments and vessels used for the pretreatment should 
be simple and capable of processing large quantities of 

solids with easy operation in terms of commissioning and 
decommissioning.

• Pretreatment methods with mild process conditions 
should be favored.

• The methods with lesser requirements of chemicals and 
water should be favored.

Table 4  Comparative analysis of different biological pretreatment methods

Pretreatment method Biomass Pretreatment conditions Key findings References

White-rot fungus Trametes hirsute Paddy straw Incubation Temp.: 30 °C
Time: 7 days

Cellulose content: 37.6% Delignifi-
cation: 71.34%

[239]

White rot fungus Trametes versi-
color

Co-digestion of 
manure with 
triticale

Incubation Temp.: 25 °C
Time: 6 days

Improvement in methane yield by 
18% and cellulose degradation by 
80% respectively

[240]

White-rot fungus Ceriporiopsis 
subvermispora

Sugarcane bagasse Incubation Temp.: 27 °C
Time: 60 days

Lignin and xylan losses reached 
48% and 47% respectively

Glucose recovery: 47%

[241]

White-rot fungus Phlebia brevis-
pora

Corn stover Incubation Temp.:  280 C
Time: 42 days
Moisture content: 84%

Total sugar yield: 442 mg/g
Ethanol yield: 36 g from 150 g 

pretreated biomass

[242]

White rot fungus Irpex lacteus
followed by dilute acid pretreat-

ment

Olive tree biomass Incubation Temp.: 30 °C
Time: 28 days
Dilute acid pretreatment:
H2SO4 conc.: 2% (w/v)
Temp.: 130 °C
Time: 90 min

Enhancement of enzymatic hydrol-
ysis yield by 34% compared to 
acid pretreatment alone

[243]

Fungal sp. Galactomyces sp. fol-
lowed by DES

Bamboo shoot shell Incubation Temp.:  300 C
Time: 3 days
DES:
Choline chloride/oxalic acid ratio: 

1:2 (mol/mol)
Temp.: 120 °C
Time: 1.5 h

Reducing sugar and glucose yields: 
81.0% and 74.1% respectively

[244]

Lignolytic Bacterium Bacillus sp. Rice straw (RS) Incubation Temp.: 37 °C
pH: 7
Time: 7 days

Decrease in lignin content: 53.1% 
Cumulative maximum biogas 
production: 528.9 mL/g VS

Increase in methane yield: 76.1%

[245]

Mixed microbial culture pretreat-
ment

Corn straw Temp.: 30 °C
Time: 14 days

Degradation rates of hemicellu-
lose, cellulose and lignin: 44.4%, 
34.9% and 39.2% respectively

Highest daily biogas production: 
780 mL

Highest methane content: 61.9%

[246]

Microbial consortium Corn stover Detoxification bacterium Pseu-
domonas putida and lactic acid 
production specialist Bacillus 
coagulans

Temp.: 30 °C
Time: 24 h

Degradation rate of organic acids 
(acetate, levulinic acid) and con-
version rate of furan aldehyde: 
100%

Removal of monoaromatic com-
pounds: 90%

Lactic acid yield: 0.8 g/g total 
sugars

[247]

Bacterium Cupriavidus basilensis 
followed by dilute acid pretreat-
ment

Rice straw Incubation Temp.: 30 °C
Time: 3 days
Dilute acid pretreatment:
H2SO4 conc.: 0.5% (w/v)
Temp.: 121 °C
Time: 40 min

Enzymatic digestibility increased 
by 70% and 244% in bacteria 
enhanced dilute acid pretreatment 
compared to only dilute acid 
pretreatment and untreated rice 
straw respectively

[248]
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• Pretreatment Methods with green and easy to recover 
chemicals should be favored to avoid further waste pro-
cessing.

• Pretreatment methods favoring higher extent of fractiona-
tion having capability of generating lignin and cellulose 
rich fraction of high purity should be favored. The purity 
lignin can further be valorized to variety of high value 
products.
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