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Abstract
Coffee production generates large volumes of residue, reaching 32 million tons per year in Brazil alone. This study aimed to 
evaluate the parchment of coffee fruit, a residue from the coffee industry, in terms of its chemical composition and potential 
for kraft pulp production. The parchment was characterized with respect to its carbohydrate, lignin, extractive, and mineral 
contents. The substance was submitted to the kraft pulping process, targeting a kappa number of 25. The main findings of this 
study are the following: glycans (38.5%), xylans (21.6%), and lignin (27.1%) were the main components of the raw material, 
the extractive content was 4.5%, quite similar to those found for hardwood species used for pulp production, and the pulping 
yield was 42.6%. The lignins from the residual were extracted and characterized by their chemical composition, obtained 
by elemental and pyrolysis–gas-chromatography–mass–spectrometry (Py-GC/MS) analyses. Py-GC/MS analysis from the 
decomposition of lignin provided the identification of 26 compounds, categorized into six different groups-acids, aldehydes, 
amines, furans, ketones, and aromatics. Based on chemical biomass characteristics, the pulping performance was similar to 
those observed for softwood raw materials, with similar pulp bleachability. These results indicate that the evaluated waste 
biomass has a good potential for use in pulp production.
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Statement of Novelty

This research was carried out to evaluate the potential utility 
of a waste from the coffee industry. Parchment has shown 
potential as an alternative raw material in pulp production. 
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In this study, the chemical and morphological composition 
of the biomass of parchment was characterized. This char-
acterization is important for understanding the biomass and 
how its use can be optimized in the production process. In 
addition, unbleached and bleached pulps were produced 
through the kraft process. This study finds that parchment 
can be utilized for the production of pulp products with high 
added value, such as cellulosic pulp.

Introduction

Wood is the primary raw material used for pulp produc-
tion worldwide [1]. However, pulp can also be realized from 
other lignocellulosic biomasses, such as bamboo, sugar cane 
bagasse, and sisal, as well as agricultural residues [2]. Pulp 
production has significantly increased, owing to societal 
demand. In fact, Brazil has jumped from fourth to second 
in worldwide pulp production in recent years [2]. All of the 
large Brazilian mills in the sector have fully consolidated 
their strategy, indicating that there remains room for growth 
in industrial production in the country [3].

Currently, Brazil produces 21 million tons per year, trail-
ing only the USA, which produces 42 million of tons per 
year [2]. Pulp production worldwide was 173 million tons 
in 2017 [3]. In addition, during the COVID pandemic when 
activity in many other industries subsided, pulp and paper 
consumption increased, owing to their role in societal sus-
tainability, as compared to that of plastic materials [4].

Considering that the price of wood is expected to con-
tinue to increase [2], attempting to improve the competitive-
ness of pulp and paper by finding alternative raw materials 
is a necessary strategy. In addition, this effort conforms with 
the public demand for sustainable production. Agricultural 
residues have been used as raw material in pulp production, 
particularly in developing countries with large agricultural 
production, owing to its quantity, availability, and the higher 
cost of wood-based feedstock [5–7]. As such, this strategy 
needs significant attention from researchers in industry and 
academia. Pulp is a sustainable alternative to petrochemicals 

and is considered to be a low cost and a rich source of chem-
icals, fuels, biopolymers, and sugars [6].

Coffee is one of the most important agricultural commod-
ities in the world. Brazil is the largest producer and exporter 
of green coffee beans, followed by Vietnam, Colombia, 
Indonesia, and Ethiopia. Brazil produces approximately 
3.5 million tons of green coffee beans each year [8, 9]. In 
2019–2020, world coffee production was estimated at 10.1 
million tons, and Brazil is estimated to be responsible for 
approximately 35% of the world production of coffee, rep-
resenting almost 3.6 million tons per year [8].

Coffee refers to the seeds of a small fruit named the coffee 
cherry, which is composed of an epicarp (red or yellowish 
peel that surrounds the fruit), mesocarp (thin sugary pulp, 
also called mucilage), endocarp (cartilaginous membrane 
surrounding each seed, known as parchment), spermoderm 
(membrane greatly adhered to the endosperm, better known 
as silver film or silver skin), and embryo [10]. Figure 1 illus-
trates the morphology of the coffee cherry.

Industrial processing of the coffee cherry can be per-
formed dry or wet, generating different residues such as peel, 
pulp, parchment, silver film, and wastewater [9, 11]. In the 
processing of coffee beans, approximately 50% of dried fruit 
by weight is waste [10]. In producing countries, coffee resi-
dues are a large source of contamination, resulting in serious 
environmental problems [11, 12].

Greater sustainability can be sought through lignocellu-
losic biorefinery, which involves environmentally friendly 
processes, bio-based materials, coproduction of chemicals, 
and self-sufficient generation of energy [13–15]. Residues 
produced by coffee processing can also be also used as a raw 
material in the production of high-added value materials [5, 
16], in that it mainly comprises cellulose, hemicellulose and 
lignin. These residues can be converted into highly attrac-
tive substrates, such as fuels, biogas, and chemical products. 
For instance, the rapid pyrolysis of biomass yields bio-oil, 
which is a source of value-added products and is used in the 
production of hydrocarbons and hydrogen through catalytic 
processes [17, 18].

Parchment is the fibrous endocarp that covers the two 
hemispheres of the coffee bean and separates them from 

Fig. 1  Morphology of coffee 
cherry indicating its layers
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each other. This material basically consists of cellulose 
(40–49%), hemicellulose (25–35%), lignin (22–35%), and 
ash (0.5–1%) [19]. The main component of the cell wall of 
plant fibers, cellulose is an attractive natural polymer, owing 
to its abundance and biodegradability. The use of cellulose 
in polymers has increased as a result of its wide applicabil-
ity. Studies have demonstrated the use of coffee pulp in the 
production of cellulose nanofibers and cellulose nanocrystals 
[20, 21], illustrating the advancement of nanotechnology and 
generation of new products with high added value.

The use of the coffee biomass as a raw material to another 
chain provides benefit to the coffee producer, as the gen-
eration of waste and environmental impact is minimized, 
and the coffee biomass is now considered a valuable mate-
rial. Furthermore, pulp mills may use this material in pulp 
production, nanofiber production, production of paper for 
biodegradable packaging, encapsulation of controlled drugs, 
and other uses [22–26].

Chemical pulp production is strongly based on alkaline 
processes, with the kraft process being the technique most 
used today [27]. In kraft pulping, biomass is treated with 
sodium hydroxide (NaOH) and sodium sulfide  (Na2S) at 
high temperatures (140–170 °C) and a pH above 12. This 
chemical process aims to dissolve the lignin, preserving the 
strength of the fibers. The kraft pulp production process can 
be used with several lignocellulosic species, applying proven 
production technology with efficient recovery of black liquor 
[28].

As previously described, wood cost has grown signifi-
cantly in the past few decades, emphasizing the need for 
alternative biomasses in pulp production. However, the use 
of residues in pulp production, requires the characterization 
of the raw material and validation of the production process. 
This characterization is necessary to understand the biomass 
and optimize its application in the pulp production process. 
In addition, using a residue to generate a product provides 
sustainability with high added value. In this context, the 
objective of this study was to evaluate the coffee processing 
residue as a raw material for use in pulp production through 
its complete chemical and morphological characterization 
and evaluate the performance of the bleached kraft pulp pro-
duction process.

Materials and Methods

Coffee residues (parchment) from Santa Teresa, ES, Bra-
zil were used. The residues were ground in a Wiley® Mill 
knife mill and classified according to the TAPPI T257cm-85 
standard. Sawdust passing through the 40 Mesh screen 
and retained in the 60 Mesh screen was selected. The 
sieved biomass was air-dried in an air-conditioned room 
(23.0 °C ± 1.0 °C and 50.0% ± 2.0% humidity) to maintain 

moisture uniformity and stored in polyethylene bags. The 
methods used in this study are presented below, all proce-
dures were performed in duplicates, and the average values 
are presented.

Chemical Composition of Biomass

To characterize the chemical composition of parchment, the 
moisture content, total extractive content, silica content, ash 
content, metal content, and chloride charge of the sawdust 
were determined according to TAPPI T 264 om-88, TAPPI T 
264 cm-97, TAPPI T245 cm-98, TAPPI T211 om-02, TAPPI 
T266 om-02, and TAPPI T256 cm-07 standards, respec-
tively. Elemental analysis was performed using CHNS-O 
model LECO equipment. To analyze the higher and lower 
heating value of the biomass, the TAPPI T684 om-15 stand-
ard was used.

The contents of uronic acids, acetyl groups, and sugars 
(glucan, mannan, galactan, xylan, and arabinan) were deter-
mined according to [29, 30], and SCAN-CM 71:09, respec-
tively. Total lignin was measured by the sum of acid-soluble 
lignin (TAPPI UM250) and acid-insoluble lignin (TAPPI 
T222om-02). The lignin syringyl/guaiacyl ratio (lignin S/G 
ratio) was determined by oxidation with nitrobenzene [31].

Basic and Apparent Density

Basic density is defined as the relationship between the dry 
weight of a sample and its saturated volume of water. The 
basic density of the parchment was determined following 
the methodology of hydrostatic balance, described in the 
ABNT-NBR 11,941 standard. The apparent density was 
determined by the SCAN-CM 46:92 standard, based on 
the relationship between the dry weight and the apparent 
volume.

Pulping Process

Parchment kraft cooking was performed with 400 g of dry 
biomass in an MK digester. Table 1 shows the operating 
conditions of the pulping process.

Cooking was performed to obtain a delignification curve, 
varying the effective alkali with an H-factor of 492 for the 
kappa number 60 curve and an H-factor of 1140 for kappa 
number 25 curve. The residual effective alkali values were 
set to range between 6 and 8 g/L. The maximum cooking 
temperatures for kappa numbers 60 and 25 were 158 °C and 
168 °C, respectively. For both curve, the time to reach the 
cooking temperature was 60 min, and the time at the tem-
perature was 80 min.

The operational conditions of the pulping process were 
set to use preliminary tests to analyze the behavior of the 
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biomass during kraft pulping and apply actual market set-
tings to characterize pulp production.

The pulps were washed with water at room temperature to 
remove the residual liquor after cooking. The individualiza-
tion of the fibers was performed in a laboratory hydrapulper 

with a capacity of 25 L. Pulp screening was performed in a 
Voith laboratory debugger with plate openings of 0.2 mm, 
and the rejects were collected. The pulps were dewatered 
in a centrifuge and stored in plastic polyethylene bags. The 
parchment pulp and black liquor resulting from the kraft 
process were characterized according to the parameters 
described in Table 2.

Bleaching Process

Parchment kraft pulp was submitted to ECF bleaching, using 
the sequence  OQDHT(EP)DP to obtain 90% ISO brightness. 
Three bleaching curves were performed, with the kappa fac-
tor of the  DHT stage varied. Then, the best adjustment of the 
reagent dosage to minimize the consumption of total active 
chlorine was determined. The conditions for each stage of 
the bleaching sequence are shown in Table 3.

The conditions of the bleaching process were set to use 
preliminary tests to analyze the behavior of the biomass and 
apply actual market settings   to characterize the production 
of bleached pulp.

Oxygen delignification  (O2) was performed in a Quan-
tum–Mark reactor under the conditions shown in Table 3. 
At the end of the reaction sequence, a sample of the resid-
ual filtrate was collected for pH analysis. The pulps were 
washed with distilled water at a proportion of 9  m3/ton of 
pulp.  O2 pulps were characterized for brightness (TAPPI 
T452 om-08), kappa number (TAPPI T236 om-06), and vis-
cosity (TAPPI T230 om-08). From the values of kappa num-
ber and HexA, the corrected kappa number values (based 
only in lignin) were determined according to the procedure 
described by Li and Gellerstedst (1997) [32].

From these parameters, the delignification efficiency, 
selectivity, and brightness gain of the  O2-stage were 

Table 1  Operational conditions for kraft process

a Effective alkali charge was varied in order to meet the delignification 
curve at a controlled residual effective alkali of 6–8 g/L NaOH

Parameters Conditions

Liquor/Biomass ratio 5/1
Effective alkali, % NaOH Variablea

Sulfidity, % 32
Residual effective alkali, g/L 6–8
H-factor 1140

Table 2  Parameters determined in kraft pulp and kraft black liquor

Parameters Standard

Kraft pulp Hexenuronic acids TAPPI T282 pm-07
Brightness TAPPI T452 om-08
Sugars SCAN—CM 71:09
Total yield Gravimetry
Screen yield Gravimetry
Rejects content Gravimetry
Kappa number TAPPI T236 om-06
Viscosity TAPPI T230 om-08

Kraft black liquor Residual effective alkali SCAN N2:88
Elemental analysis ISO 2470
Heating value TAPPI T684 om-15
Total solids Gravimetry

Table 3  Bleaching conditions

* H2SO4 or NaOH to pH adjustment
** Varied load for optimization of 90% ISO brightness

Conditions O Q D EP D P

Consistency, % 10 10 10 10 10 10
Temperature, oC 90 80 90 90 80 80
Time, min 60 30 120 60 120 60
Pressure, kPa 350 – – – – –
O2, kg/odt 18 – – – – –
NaOH, kg/odt 15 – * 14.5 * 6.5
MgSO4.7H2O, kg/odt 3 – – 3 – –
DTPA, kg/odt – 2 – – – –
Kappa factor – – 0.28; 0.20; 0.12 – – –
H2SO4, kg/odt – 5.2 * – * –
H2O2, kg/odt – – – 7.8 – 3.0
ClO2, kg/odt – – – – ** –
Final pH 10–11 4–7 3.0 10–11 4.5–5.5 10–11
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calculated according to Eqs. (1), (2), and (3).  Kb,  Vb, and 
 Bb represent the kappa number, viscosity, and brightness 
of the brown pulp, respectively, whereas K, V, and B repre-
sent the kappa number, viscosity and brightness of  O2-pulp, 
respectively.

For the chelating (Q), chlorine dioxide  (DHT and D), and 
alkaline extractions in the hydrogen peroxide (EP and P) 
stages, the pulps were mixed with the reagents from each 
stage and with  H2SO4 or NaOH in polyethylene bags to 
adjust the pH. The treatments were performed in a water 
bath at a controlled temperature and maintained there for the 
pre-established durations, as shown in Table 3. At the end of 
each step, samples of the filtrate were collected to determine 
the pH and residual amount. The pulps were washed with 
distilled water at a proportion of 9  m3/ton of pulp, except in 
the Q-stage, in which the proportion of 50  m3/ton of pulp 
was used.

To achieve 90% ISO brightness, in the D-stage, a chlorine 
dioxide  (ClO2) dosage curve was performed. Three differ-
ent loads of  ClO2 were used, adjusting the final pH in the 
range of 4.5 to 5.5 with  H2SO4 and NaOH. Then, the ideal 
reagent dosage was obtained for each treatment. The param-
eters evaluated in the stages were: brightness, kappa number, 
viscosity, and brightness reversion (TAPPI UM200—4 h, 
105 °C, 0% RH).

The parameters evaluated in the stages were: brightness 
(TAPPI T452 om-08), kappa number (TAPPI T236 om-06), 
viscosity (TAPPI T230 om-08), and brightness reversion 
(TAPPI UM200—4 h, 105 °C, 0% RH). The total active 
chlorine (TAC) and bleachability were calculated accord-
ing to Eqs. (4) and (5), respectively. K represents the kappa 
number of  O2-pulp and  Kf represents the kappa number of 
the bleached pulp.

Py‑GC/MS

Sawdust from parchment coffee (approximately 0.1 mg) 
was subjected to rapid pyrolysis in a pyrolysis–gas-chro-
matography–mass-spectrometry (Py-GC/MS) device using 
a micro-furnace pyrolyzer (Frontier Laboratories Ltd., Fuku-
shima, Japan) connected to a GC-system mass spectrometer 
(Shimadzu, model QP2020). Pyrolysis was carried out at 
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a temperature of 550 °C, with the interface at 290 °C. The 
GC operating parameters were as follows: injector tempera-
ture of 280 °C; Ultra-ALLOY® capillary column (UA5; 
30 m × 0.25 mm ID, 0.25 µm film thickness); oven initial 
temperature of 45 °C for 4 min, heated at 4 °C/min to 240 °C 
and held for 10 min; and helium carrier gas of 1 mL/min in 
splitless mode at 20:1 ratio. The mass spectrometer operated 
in electron impact ionization mode at 70 eV with a mass 
range of 50–350 daltons. The compounds were identified 
through comparison with their mass spectra, taken from the 
GC–MS spectral library (Willey and NIST) and from the 
literature [33–36]. The experiment was performed in dupli-
cate, and the 60 peaks with the largest areas were analyzed. 
The S/G ratio was calculated by dividing the percentage of 
the syringyl lignin area (S) by the percentage of the guaiacyl 
area (G).

Fiber morphology

Analysis of the morphology of the parchment fibers was 
performed. For the individualization of the fibers, the sam-
ples were placed in a test tube, with a solution of hydrogen 
peroxide and glacial acetic acid, according to the method 
recommended by [37]. Subsequently, temporary blades were 
mounted to obtain the length (L), width (W), lumen diameter 
(D), and wall thickness (T) of the fibers. An optical micro-
scope with a camera attached, image acquisition system, and 
Axio–Vision software was used.

Results and Discussion

Parchment Chemical Composition

An advantage of the kraft process is its versatility in terms of 
the raw material used. Knowledge of the chemical composi-
tion of the wood or biomass is important, as it influences the 
efficiency of the process, yield, reagent consumption, and 
pulp quality [38]. The chemical composition of the coffee 
parchment is shown in Table 4. Zanão [27] reported chemi-
cal composition data for eucalyptus and pine wood (Table 4), 
which was used for comparison with parchment, as they are 
all widespread raw materials used in pulp production.

Uronic acids were found to represent 4.3% of the dry 
weight of the parchment. This mainly consists of 4-O-meth-
ylglycuronic acid and galacturonic acid, with the former pre-
dominating in xylans while the latter serving as constituents 
of pectin [39]. The content of uronic acids found in parch-
ment was higher than those found in eucalyptus and pine. 
This fact can be explained by the difference between the 
xylan content of coffee parchment (20.6%) and the xylan 
contents of eucalyptus wood (10.2%) and pine (5.9%) [27].
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The acid groups are related to the consumption of alkali 
in pulping, through hydrolysis and dissolution, and to the 
formation of hexenuronic acids [40, 41]. Hexenuronic acids 
protect the xylans against terminal depolymerization reac-
tions, preserving the pulping yield [25, 42] but negatively 
affect the pulp bleaching [25].

The content of acetyl groups in the parchment was 4.4%, 
higher than the content found in wood-based materials. The 
xylan content exhibited the same trend as the uronic acid 
groups. Acetyl groups are structural components of the 
hemicelluloses and are connected to the xylan chain [45]. 
These groups negatively affect pulp production, as they are 
easily removed during cooking, causing loss of yield and 
alkali consumption [46].

Extractives and lignin are considered undesirable to the 
pulping process, with their contents directly affecting the 
process yield and consumption of reagents. The parchment 
exhibited extractive content (4.5%) similar to that of euca-
lyptus wood (3.9%) [27]. Reis [25] reported 7% of extrac-
tives in coffee parchment, value higher than that found in 
this study.

Total lignin is determined by the sum of two fractions: 
acid-soluble and acid-insoluble fractions. The parchment 
comprised 25.9% of the total lignin, with 23.8% as insol-
uble lignin and 2.1% as soluble lignin. In addition to the 
amount of lignin, it is important to evaluate its quality, that 
is, the relationship between the number of units derived from 
sinapyl alcohols (syringyl lignin) and coniferyl alcohols 
(guaiacyl lignin), referred to as the lignin S/G ratio.

A lignin S/G ratio of 0.78 was found for the parchment. 
Meanwhile, Gomes [47] reported higher S/G ratio values 
(2.50 to 3.12) for eucalyptus wood. However, pine wood has 
lignin predominantly of the guaiacyl type. Sequeiros and 

Labidi [48] showed that the speed of wood delignification 
is influenced by the lignin structure, as directly proportional 
to the lignin S/G ratio. Syringyl lignin is more reactive and, 
therefore, easier to be removed during the kraft pulping 
process, as guaiacyl lignin contains higher amounts of C–C 
bonds at the C5 position [49].

Gomes et  al. [50], studying commercial eucalyptus 
clones, found good correlation between the S/G ratio and 
screen yield. Wood desirable for the production of kraft pulp 
must have low lignin content, associated with a high lignin 
S/G ratio.

Among the various chemical components of biomass, the 
most significant fraction of its weight is represented by car-
bohydrates, mainly cellulose and hemicellulose. Cellulose 
is composed exclusively of glucans, and its content in the 
parchment was 36.8%, a lower than that found by Zanão [27] 
for eucalyptus and pine, which can be a disadvantage, as the 
cellulose content is directly associated with pulping yield.

Parchment contained xylan as the dominant fraction 
of hemicellulose, similar to hardwoods. The other sugars 
(arabinan, mannan, and galactan) presented contents below 
1%. In general, eucalyptus has higher levels of glucans and 
xylans when compared with pine wood. In pine, a predomi-
nance of glucans and mannans is observed [27, 51]. The sum 
of all sugars in the parchment was 58.5%. Lopes et al. [11] 
reported that cellulose and hemicellulose make up approxi-
mately 50% of the dry weight of the coffee grain. Vande-
ponseele et al. [52] reported that coffee rusk and coffee pulp 
present 70% of sugars.

The ash content, measured by the complete combustion of 
the raw material, is the parameter that represents the amount 
of non-combustible material in the biomass.

An ash content of 0.865% was found in the parchment, 
slightly higher than that commonly found in the literature 
for species of eucalyptus. Gomes [53] studied several clones 
of eucalyptus for pulp production and found an average ash 
content in the range of 0.1% to 0.24%. However, the parch-
ment exhibited a low value when compared with other ligno-
cellulosic materials, such as agricultural crops (5% to 10%) 
and agricultural residues (above 30%), e.g., rice husks [54].

The ash content influences pulp production and mill 
operation, as they can cause corrosion and deposits in the 
equipment, decrease mill throughput, reduce biomass heat-
ing value, and cause problems varying from the clogging 
caused by the deposition of residual combustion material to 
more severe damage that can occur in fluidized bed systems 
[54]. The main elements involved in scale and slag formation 
are the alkali metals present in the ash, such as potassium 
and sodium [55].

Calcium, magnesium, and silica are undesirable in most 
industrial processes owing to their ability to cause deposits 
in the equipment during liquid evaporation and solid com-
bustion [56]. However, potassium is particularly dangerous 

Table 4  Chemical composition of coffee parchment, compared to 
eucalypt and pine woods

*[27, 43, 44]
**[27]

Parameters, % Coffee parchment Eucalypt* Pine**

Uronic acids 4.3 3.5–5.0 2.7
Acetyl groups 4.4 1.6–3.0 1.4
Total extractives 4.5 1.9–4.9 2.0
Acid-insoluble lignin 23.8 25.0–29.2 28.6
Acid-soluble lignin 2.1 2.9–4.2 0.6
Total lignin 25.9 27.1–31.3 29.2
Ash 0.865 0.1–0.32 –
Arabinan 0.2 0.2–0.3 1.3
Galactan 0.5 0.8–1.6 2.1
Glucan 36.8 42.3–49.4 42.7
Xylan 20.6 9.7–14.1 5.9
Mannan 0.4 0.7–1.4 9.7
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because of its ability to decrease the melting temperature of 
the ash during combustion. This can cause sticky ash prob-
lems in recovery boiler systems [57].

Transition metals are particularly important in operat-
ing systems in which oxygen-derived chemicals are used in 
biomass bleaching. These metals are aggressive in relation 
to the oxygen–oxygen bonds, thus degrading any form of 
peroxide. Subsequently, highly reactive free radical inter-
mediates are formed, which negatively affect the integrity 
of the carbohydrate chains [53].

The energy potential produced by a fuel can be expressed 
by its heating value, which describes the ratio of the energy 
contained in the material to the amount of mass [56]. Table 5 
shows the results of the higher heating value (HHV) and 
lower heating value (LHV) of the parchment.

HHV is used to refer to the amount of heat available in 
the fuel, whereas LHV indicates the usable energy. For this 
reason, HHV values are generally higher than LHV for the 
same material [58]. For the parchment, the values found for 
HHV and LHW were 20.2 and 18.8 MJ/kg, respectively. 
Martinez et al. [9] reported an HHV value of 18.92 for cof-
fee parchment, consistent with what was found in this study.

The heating values for lignocellulosic biomass can vary 
with respect to their origin, species, harvest conditions, stor-
age, chemical composition, and other environmental fac-
tors. Telmo and Lousada [59] reported HHV values varying 
between 17.6 and 20.8 MJ/kg for hardwoods and between 
19.6 and 20.3 MJ/kg for conifers. The parchment presented 
similar results for wood-based materials.

The parchment consisted of 50.6% carbon, 41.6% oxy-
gen, 6.3% hydrogen, and 0.3% nitrogen (Table 5). These 

values are close to those found by Oasmaa et al. [60] for 
eucalyptus wood (50.1% C, 44.0% O, 6.0% H, and 0.1% N). 
Elemental analysis of wood varies little by species; thus, it 
can be assumed that the wood comprises approximately 50% 
carbon, 6% hydrogen, 44% oxygen, and 0.1%–0.5% nitrogen 
[61].

Hasan et al. [62] reported that there are significant and 
positive correlations between the levels of carbon and 
hydrogen and HHV. High levels of oxygen and ash reduce 
the heating value [63]. Similar elemental analysis results 
between parchment and eucalyptus imply similar HHV val-
ues between these materials.

Basic and Apparent Density

Basic density is directly related to the performance of the 
pulping process, as well as the quality of the final product 
[64]. The results of the basic and apparent density of coffee 
parchment are shown in Table 6. Zanão et al. [27] reported 
density values for eucalyptus and pine wood, which are also 
shown in Table 6.

The basic density of the parchment was 522.7 kg/m3, 
higher than that of wood-based materials commonly used 
for pulp production. A high density is favorable for pulp pro-
duction because it results in increased pulp mill production 
and decreased biomass specific consumption, which is one 
of the most important parameters of biomass quality in pulp 
production [65]. However, it may be unfavorable in relation 
to the penetration of white liquor when the conditions are 
not properly optimized [65, 66].

Py‑GC/MS

Py-GC/MS analysis of biomass was performed, and the mass 
spectra obtained were compared with the NIST library, with 
the specific peak area values for each compound listed in 
Table 7. The parchment pyrogram is shown in Fig. 2, and 
the compounds equivalent to the peak number are also listed 
in Table 7.

Thermochemical transformations of lignocellulosic bio-
masses via pyrolysis result in charcoal, non-condensable 
gases and bio-oil, which contains a complex mixture of 

Table 5  Characterization of coffee parchment regarding higher and 
lower heating values, and ultimate analysis

Parameters Coffee parchment

HHV, MJ/Kg 20.2
LHV, MJ/Kg 18.8
Silica, % 0.015
 C, % 50.6
 H, % 6.3
 N, % 0.3
 S, % 0.3
 O, % 41.6

Ultimate analysis
 Cu mg/Kg 3.8
 Mn mg/Kg 10.7
 Fe mg/Kg 125.2
 Mg mg/Kg 432.8
 Ca mg/Kg 595.9
 Na mg/Kg 700.3
 K mg/Kg 3175.9

Table 6  Basic and apparent density of parchment, compared to euca-
lypt and pine woods

* [27]

Biomass Basic density (kg/m3) Apparent 
density (kg/
m3)

Parchment 522.7 122.0
Eucalyptus* 488.7 187.2
Pine* 346.7 130.3
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phenolic compounds, organic acids, ketones, aldehydes, 
and furans [67].

Glycosidic bonds present in cellulose tend to break 
down at high temperature. Therefore, the cellulose structure 
degrades markedly during the early stages of fast pyrolysis, 
with a reduction in the degree of polymerization [68].

The cleavage of β-1,4-glycosidic bonds largely contrib-
utes to the formation of furans and levoglucosan (LG) [69]. 
Studies have shown that the main glucose-based carbohy-
drate pyrolysis products are LG, 5-hydroxymethylfurfural 
(HMF), furfural, methylglyoxal, 2-hydroxyacetaldehyde 
(HAA), and acetic acid [70].

Räisänen [71] revealed that the pyrolysis product distri-
butions of xylose, arabinose, mannose, and galactose are 
similar in quality but different in quantity. Furans, ketones, 
and anhydro-sugars are the main products, with furfural as 
the most abundant.

The pyrolysis products of hardwood and agricultural 
residues hemicelluloses present high contents of acids, fur-
fural, and five-carbon compounds. Softwood hemicelluloses 
contain mainly six-carbon compounds, such as glycans, 
galactans, and anhydro-sugars [71, 72]. It was possible to 
observe this behavior in the coffee residue, with a high per-
centage of acetic acid (7.01%) and furfural (4.20%).

Table 7  Py-GC/MS results and S/G ratios

Peak number Compounds Origen Mass fragments Area percentage, %

1 Acids Acetic Acid C 60 7.01
26 Hexadecanoic acid C 129/73/60 0.82
2 Aldehydes 2-Butenal C 70/55 0.65
4 2-Methyl-2-bute-

nal
C 84/69/55 0.54

3 Amines N-Nitrosodimeth-
ylamine

– 74/55 0.48

6 Furans Furfural C 97/96/67/51 4.20
7 2(5H)Furanone C 84/70/55 0.69
8 Ketones 1,2-Cyclopentan-

edione
C 98/69/55 2.19

10 3-Methyl-1,2-cy-
clopentadione

C 113/112/83/69/55 0.81

9 Others 2,2-Diethyl-3-me-
thyl-oxazolidine

– 114/58 9.02

5 3-Propoxy-1-pro-
pene

– 71/58 0.65

13 Aromatics 3-Methoxy-
cathecol

Ca 140/125/97 0.87

14 3-Methylcathecol Ca 124/106/78 0.66
11 Guaiacol G 109/124/81/53 2.18
12 4-Methylguaiacol G 138/123/95 4.31
16 4-Vinylguaiacol G 150/135/107/77 4.21
15 4-Ethylguaiacol G 137/152 0.96
18 4-Propenylguai-

acol
G 164/77/149 6.96

19 Vanilin G 151/152/109/81 1.92
21 4-Acetylguaiacol G 166/151/123 1.07
22 Guaiacylacetone G 137/180/122 0.68
17 Syringol S 154/139/111/96 2.07
23 4-Vinylsyringol S 180/165/137 3.71
20 4-Methylsyringol S 168/153/125 3.77
25 Syringaldehyde S 182/181/111 1.50
24 4-Propenylsyrin-

gol
S 194/91/151 6.04

Total S-type 17.09
Total G-type 22.29
Lignin S/G ratio 0.77
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Parchment pyrolysis showed an area percentage for com-
pound 2,2-Diethyl-3-methyl-oxazolidine of 9.02%. At high 
temperatures, there may be a decrease in pyrolysis products 
with high added value and the formation of O/N-heterocy-
clic compounds, owing to deoxygenation, demethoxylation, 
and deamination reactions, as well as the cracking of lower-
molecular-weight compounds [73].

Py–GC/MS analysis provided the identification of 26 
compounds (Fig. 2), categorized into six different groups—
acids, aldehydes, amines, furans, ketones, and aromatics—
from the decomposition of lignin. Based on data found in 
literature, the lignin markers were characterized as cat-
echol (Ca), guaiacyl (G), and syringyl (S) [34–36]. Lignin 
hydroxyphenyl (H) markers were not found (Fig. 3).

The decomposition of lignin methoxyl groups can lead 
to the transformation of S-type phenols into G-type phenols 
and even into Ca-type and H-type phenols. This transforma-
tion is potentiated at high reaction temperature [68].

With respect to lignin type, the parchment consisted of 
43.4% S-type lignin and 56.6% G-type lignin, with a lignin 
S/G ratio value of 0.77. This S/G ratio was similar to that 
found for oxidation with nitrobenzene methodology (lignin 
S/G ratio: 0.78) in this study.

Parchment Fiber Morphology and Histology

The study of the anatomy of a biomass is fundamental to the 
evaluation of the potential of a biomass in pulp production. 
The morphological characteristic fibers can vary between 
species, between trees of the same species, and even within 
the same tree [74]. These variations affect the fiber dimen-
sions, which are important indicators of the potential of a 
biomass in the manufacturing of pulp and paper [75].

The results of the fiber dimensions of parchment are pre-
sented in Table 8.

Pulping Process

The kraft pulping process aims to break the bonds of lignin 
and solubilize it in the cooking liquor, avoiding the deg-
radation of carbohydrates as much as possible. The main 
chemical reagents in cooking liquor are sodium hydroxide 
(NaOH) and sodium sulfide  (Na2S) [28, 76–78]. Table 9 
shows the results obtained for kraft pulping for the delig-
nification curves.

The operational variables of the Kraft process were 
fixed for each curve (kappa 25 and 60), except the effective 
alkali. A delignification curve was obtained with an alka-
line concentration between 21.5% and 23.5% for kappa 25 
and between 19.5% and 21.5% for kappa 60. The objective 
was to reach an alkaline concentration that would yield 
kappa numbers near 25 and 60, with adequate yield and 
moderate consumption of reagents.

It was observed that an increase in effective alkali 
resulted in a decrease in the kappa number and process 
yield. The residual effective alkali increased, indicating 
an excess amount of chemical reagent during the process. 
The pH of the black liquor for all cooking was maintained 
at 12.9.

The kraft process was suitable for the production of pulp 
from parchment, requiring an effective alkali of 22.5% to 
obtain a kappa of 24.5 and total yield of 42.6%. An effective 
alkali of 20.5% was needed to obtain a kappa of 61.4 and 
yield of 47.9%.

The increase in the kappa number resulted in a gain in 
the pulp yield. Compared to the pulp results for an effective 
alkali of 23.5%, there was an increase of 1.5% in the yield for 
the pulp with effective alkali of 22.5%. An increased yield 
of 2.1% for pulp EA 21.5% compared to pulp EA 23.5% was 
also observed. During cooking, some of the carbohydrates 
are also dissolved by chemical reactions, mainly hemicel-
luloses. The increase in delignification intensity causes a 

Fig. 2  Pyrogram of coffee parchment
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decrease in yield and carbohydrate content at lower kappa 
numbers [79].

Typical residual effective alkali values by the pulp and 
paper industries for both curves were maintained. The total 
yield obtained was near the values   found in the literature 
for pine wood [80], commonly used in the pulp production.

The residual effective alkali (REA) can be an indicator 
of the efficiency of the process. A low REA ensures greater 
conservation of carbohydrates (cellulose and hemicellu-
lose), resulting in benefits to the process yield [81–83] and 
the quality of the final product [84]. However, ensuring a 

Fig. 3  Main compounds present 
in Py-GC/MS
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Table 8  Weighted average values of fiber dimensions

Parameters Preachment

Length, mm 0.53
Width, µm 23.59
Lumen diameter, µm 12.84
Wall thickness, µm 5.37
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satisfactory residual at the end of cooking is necessary in 
order that lignin does not precipitate on the fibers.

The final pH of the black liquor should be sufficiently 
high to guarantee good delignification of the wood and avoid 
lignin precipitation. According to Gomes et al. [85], under 
normal cooking conditions, precipitation occurs from pH 
11.0.

The REA ranged from 6.0 to 8.3 g/L, and the pH remained 
at 12.9 for all cooking runs, a value that does not permit the 
precipitation of lignin. The higher kappa number and lower 
REA results in a lower chemical load for the recovery boiler.

The pulps obtained after the kraft process with kappa 
24.5 had a 20.9% ISO brightness, viscosity of 965  dm3/kg, 
and hexenuronic acids (hexA) of 63.5 mmol/kg. The pulp 
with kappa 61.4 exhibited a 15.4% ISO brightness, viscosity 
of 1013  dm3/kg, and hexA of 66.4 mmol/kg.

Almeida [86] reported kraft pulping of eucalyptus wood 
for kappa number 25. In comparison with parchment, euca-
lyptus wood required less drastic conditions for the effec-
tive alkali (16.0%) and achieved better results in screened 
yield (54.5%). It was already expected that the pulping of 
eucalyptus wood would be easier than that of coffee resi-
due, owing to the differences in its chemical compositions. 
Despite having a lignin content close to that found in hard-
wood, the parchment exhibited lower cellulose content and 
a lower lignin S/G ratio.

However, the parchment obtained a yield similar to that 
obtained for softwood. In general, the yield pulp obtained 
for softwoods is 40% to 45, whereas it is 45% to 54% for 
hardwoods [87–89].

Bleaching Process

The bleaching process starts with the oxygen delignification 
process  (O2-stage). The results of the  O2-stage are shown in 
Table 10. It is also important to evaluate the lignin remo-
tion in the oxygen delignification stage by removing the 
interference of the other compounds as HexA, that are also 
measured in the kappa number. As previously described in 
the methodology, based on the values of kappa number and 
HexA, the corrected kappa number values were determined 

according to the procedure described by Li and Gellerstedst 
[32].

Oxygen acts preferentially on lignin structures contain-
ing free phenols, converting these phenols into dicarboxylic 
acids, which increase the lignin solubility [90]. This lignin 
fraction represents only 50% of the total lignin present in the 
unbleached kraft pulp [91].

The oxygen delignification efficiency of the parchment 
pulp was 31.0%, with a reduction in the residual lignin in the 
pulp. However, oxygen is a nucleophilic oxidant; thus, under 
alkaline conditions it promotes the removal of lignin but 
does not react with the hexA groups. Therefore, high hexA 
content in the brown pulp negatively affects the performance 
of the  O2-stage [92]. The hexA content of the unbleached 
parchment pulp was 63.5 mmol/kg.

During alkaline pulping, uronic acid groups react with 
alkali to form hexA, which can be defined as a product of 
alkaline cooking. The kappa number of the cellulosic pulp 
is derived from hexA and lignin [93]. There is a linear rela-
tionship between the kappa number and the hexA content for 

Table 9  Results of kraft pulping 
of parchment

Effective 
alkali, %

Kappa number Screened 
yield, %

Rejects, % Total yield, % Residual effec-
tive alkali, g/L

Kappa 25 21.5 26.9 42.6 0.6 43.2 6.0
22.5 24.5 42.1 0.5 42.6 7.4
23.5 22.1 40.5 0.6 41.1 8.3

Kappa 60 19.5 68.4 48.1 0.8 48.9 5.9
20.5 61.4 46.8 0.8 47.6 6.1
21.5 54.7 45.9 0.6 46.5 8.3

Table 10  Results of oxygen delignification stage

Where: 1indicates the oxygen delignification efficiency based on the 
total kappa number; and 2indicates the oxygen delignification effi-
ciency based on the total reactive kappa number fraction

Parameter Results

Total Kappa number—unbleached pulp 24.5
Total Kappa number—O2-pulp 16.9
Kappa number free HexA—unbleached pulp 19.0
Kappa number free HexA—O2-pulp 10.7
Oxygen delignification  efficiency1, % 31.0
Oxygen delignification  efficiency2, % 43.7
Viscosity—unbleached pulp,  dm3/kg 965
Viscosity—O2-pulp,  dm3/kg 898
Selectivity 4.47
Brightness—unbleached pulp, % ISO 20.9
Brightness—O2-pulp, % ISO 28.6
Brightness gain, %ISO 7.7
Hexenuronic acid—unbleached pulp, mmol/kg 63.5
Hexenuronic acid—O2-pulp, mmol/kg 62.8



360 Waste and Biomass Valorization (2024) 15:349–364

1 3

both long fiber and short fiber pulps, in which a unit of kappa 
number is equivalent to 11.6 µmol/g of hexA/kg, depending 
on the methodology of quantification adopted. Aiming to 
evaluate the oxygen delignification efficiency based on the 
lignin removal the fraction of the HexA that is included in 
the kappa number is not considered, generating the called 
corrected kappa number. When analyzed the oxygen del-
ignification efficiency of the parchment pulp considering 
the correct kappa number the observed value was 43.7%. 
Considering this number, it is similar to the values found 
in literature for the oxygen delignification efficiency [94].

The  O2-stage has low selectivity compared to other oxida-
tive processes, with high degradation of cellulose, resulting 
in viscosity loss [95]. The use of additives such as magne-
sium sulfate can be applied at this stage to minimize the oxi-
dative cleavage of carbohydrates. Magnesium sulfate reacts 
with sodium hydroxide to produce magnesium hydroxide, 
which deactivates the transition metal ions in the pulp [96]. 
Otherwise, the metal ions would catalyze the decomposition 
of the peroxides, producing free radicals, which would attack 
the carbohydrate chains and reduce the pulp viscosity.

The drop-in viscosity for the parchment pulp was only 
6.9%, resulting in a pulp viscosity of 898  dm3/kg and oxygen 
stage selectivity of 4.47. The high selectivity obtained in 
this step can be due to the magnesium sulfate additive. Fur-
thermore, the hexA protect the xylans against the terminal 
depolymerization reactions [27, 93, 97].

The results of the pulp bleaching performance are 
shown in Fig. 4. The pulps bleaching was carried out by 
 QDHT(EP)DP sequence, differentiating between them only 
in the kappa factor of the  DHT-stage aiming brightness 
of 90% ISO as described in the methodology. For a fair 
analysis of all pulps, it was used the bleachability of each 
pulp studied. In this work bleachability has been defined 
as the ratio between kappa number entering the bleach 
process and total active chlorine (TAC) required for attain-
ing the target brightness of 90% ISO. Regarding the HexA 

impact, it is well stablished that the first dioxide chlorine 
stage performed at a pH of 2.8 to 3.5, high temperature 
(80 to 95 °C) and long retention time (90–180 min) are 
efficient for HexA removal [98–103]. Concerning the 
HexA content, its value in the bleached pulp is the most 
relevant parameter for the final product quality in a pulp 
mill, affecting brightness reversion [99]. As expected, it 
was observed in this study that as lower kappa number 
and HexA contents as the lower brightness reversion of 
the bleached pulps.

Regarding the total active chlorine (TAC) was lower 
for the kappa factor 0.20 pulp sample (71 kg/odt), which 
also presented a higher value of pulp bleachability (0.23).

The coffee tree belongs to the group of angiosperm 
(hardwood) plants, as does eucalyptus wood, and its lignin 
consists of S and G units, whereas in gymnosperms, such 
as pine, G units are predominant [104]. The relative pro-
portions of S and G units, and the nature of the bonds 
between them are highly variable, influencing the lignin 
reactivity during the pulping and bleaching process [105].

S-type lignin has two methoxyl groups at the C3 and 
C5 positions, which makes S-type lignin more reactive 
than the G-type [105]. G-type lignin has aromatic car-
bon at the C5 position available to make carbon–carbon 
bonds, which contributes to a high degree of condensation 
and, consequently, to a greater resistance to delignification 
[106, 107].

An effect of the kappa factor on the brightness stabil-
ity and hexA content was also observed. When syringyl 
lignin units were applied in a study with Eucalyptus globu-
lus clones, [95] confirmed their effect in the pulping and 
bleaching process when comparing the lignin S/G ratio 
with the chemical charges used. It was observed that the 
clone with the highest lignin S/G ratio had the best pulping 
and bleaching performance. Therefore, pulps with high 
content of S-type lignin are believed to be easier to delig-
nify during ECF bleaching [108, 109].

Fig. 4  Pulp bleaching perfor-
mance, where: A indicates 
the bleachability, total active 
chlorine and final pulp viscos-
ity; and B indicates final kappa 
number, brightness reversion 
and hexenuronic acid content
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Conclusion

Our analysis of the density and chemical properties of the 
parchment residue from coffee production reveals that this 
material has potential for use as a raw material in pulp pro-
duction. Parchment was found to contain extractives (4.5%), 
ash (0.9%), and lignin (25.9%) at levels similar to those of 
the raw materials most used in pulp production, as euca-
lypt. Despite its low cellulose content (36.4%), it has high 
hemicellulose content (30.8%), compared to that of pine and 
eucalyptus wood, contributing to the 42.1% yield in kraft 
pulping. ECF bleaching of the parchment with the OQD(EP)
DP sequence was demonstrated to be adequate for the pro-
duction of 90% ISO bleached pulp. Despite its TAC content 
of 71.0 kg/odt, parchment was found to exhibit a bleachabil-
ity of 0.23, a value similar to that found for eucalyptus wood 
and higher than that for pine wood. These results indicate 
that the evaluated waste biomass has good potential for use 
in pulp production.
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