REVIEW

Improving Pharmaceuticals Removal at Wastewater Treatment Plants Using Biochar: A Review

Ayooluwa Tomiwa Akintola¹ · Ayankoya Yemi Ayankunle²

Received: 30 August 2022 / Accepted: 26 January 2023 / Published online: 9 February 2023 © The Author(s), under exclusive licence to Springer Nature B.V. 2023, corrected publication 2023

Abstract

The presence of pharmaceuticals within the environment poses serious threat to the health of humans and animals. Owing to the inability of existing wastewater treatment methods to completely remove pharmaceuticals when wastewater is treated at wastewater treatment plants, their effluent have been recognized as one of the main sources of pharmaceuticals into the environment. The negative effect of some of these pharmaceuticals in the environment has resulted in rising concern on how to improve wastewater treatment methods at wastewater treatment plants. Recently, adsorption process has been considered as an efficient method to complement the existing methods of wastewater treatment. This is because of the high affinity of suitable adsorbents for pharmaceuticals within wastewater. Nonetheless, the high price of prevalent adsorbent like activated carbon has been a major limitation. Biochar that possesses similar properties to activated carbon has recently been reported by different literature to be efficient in the removal of pharmaceuticals from wastewater and aqueous solution. Because of this, several literature were studied on pharmaceuticals adsorption with the use of biochar and a summary of our findings are presented in this review. In addition, a recent report in Estonia has shown considerable pharmaceuticals concentration above the limit of detection in the effluent streams of wastewater treatment plants. Based on the rate of human consumption data, The authors focused on three pharmaceuticals (1) Metformin, (2) Ibuprofen, and (3) Diclofenac which are part of the readily detected in wastewater treatment effluents in Estonia. In response to their inefficient removal, this paper offers the possibility of using adsorption, specifically with the use of biochar as an economical adsorbent for improving their removal. The findings in this review range from wastewater treatment methods, biochar production and characterization methods to the mechanisms involved in using biochar for the removal of pharmaceuticals. Lastly, the major challenges related with this possibility are highlighted, while recommendations for future research are also highlighted to hasten the implementation of adsorption process using biochar material as the adsorbent for improving pharmaceuticals removal from wastewater.

Ayooluwa Tomiwa Akintola akinosayula@yahoo.com; ata00007@mix.wvu.edu

- Ayankoya Yemi Ayankunle ayankoya.ayankunle@taltech.ee
- ¹ Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, United States
- ² Department of Environmental Engineering, Tallinn University of Technology, Ehitajate Tee 5, 19086, Tallinn, Estonia

Graphical Abstract

Highlights

- The presence of pharmaceuticals in the environment poses serious threat to the lives of human and animals
- The effluents of wastewater treatment plants have been identified as a major source of pharmaceuticals within the environment
- Concentrations of Diclofenac, Ibuprofen, and Metformin remain high in the effluents of wastewater treatment plants in Estonia
- Adsorption has the capacity to assist in improving pharmaceuticals removal during wastewater treatment at wastewater treatment plants
- Biochar possesses the desired features to replace highcost adsorbents during an adsorption process

Keywords Pharmaceuticals \cdot Wastewater \cdot Wastewater treatment plant \cdot Adsorption \cdot Biochar

Statement of Novelty

There have been various reports on the use of biochar for assisting in the adsorption of Phcs, however, reports on the utilization of biochar for improving Phcs removal during the treatment of wastewater at WWTP are limited. This synopsis aims to bridge that gap by specifically presenting the possibility of improving the removal of Phcs during wastewater treatment using biochar, with emphasis on diclofenac (DF), ibuprofen (IB), and metformin (MF) removal. Furthermore, Estonia is chosen as a case study owing to the limited research on biochar and its application within this region.

Introduction

Pharmaceuticals (Phcs) and Their Impact on the Environment

Pharmaceuticals (Phcs) are modified biologically active substance used to cure or prevent ailments in animals and humans [1, 2]. It includes analgesics, antibacterials, as well as antiepileptics [1, 3, 4]. Reportedly, the use of Phcs in the year 2020 was about 4.5 trillion dosages [5] and could increase in the future [6]. However, concerns about their presence in the environment and threat to aquatic lives have been raised by several authors [6-11]. The threats they pose to the environment include (1) The development of pathogens that are more resistant to treatment and threaten the health of lives within the environment [12–14] (2) Their bioaccumulation is poisonous to the environment [15] and (3) Their presence impacts the food web within the aquatic eco-system in an unfavorable manner [16, 17]. Reportedly, two of the major sources of Phcs within the environment is from the effluent of wastewater treatment plants (WWTP) [14, 18, 19] and untreated water [17]. Owing to this, the conventional methods of wastewater treatment have been faulted for their inability to completely eradicate Phcs, leading to their release into nearby rivers and coastal areas [20]. Other non-point sources of Phcs within the environment are connected to the inappropriate disposal of expired drugs, human feces, agriculture, and veterinary practices, leaching into surface

Fig.1 Some demerits of conventional methods of wastewater treatment

and ground waters [10, 19, 21]. Some Phcs like paracetamol, ciprofloxacin, sulfamethoxazole, and caffeine are readily biodegradable and can be significantly removed during treatment [21], while some degrade slowly [22]. Furthermore, some could be stable in the environment and varying concentrations have been uncovered within the range of ngL⁻¹ to μ gL⁻¹ in the effluents of WWTP, contaminating water bodies around the world [6, 19], [23–25].

General Wastewater Treatment Methods

In the past, different conventional methods have been considered for eliminating Phcs from wastewater, they include coagulation [26], advanced oxidative process (AOP) [27], biological method [28], ozonation and filtration [17, 27]. Coagulation is known for treating wastewater with the use of chemicals known as coagulants that bind pollutants until a huge mass that can be separated via settling is formed [29]. Common coagulants used are salts of aluminum and iron, although there are issues associated with the disposal of sludge generated from this method [29]. AOP also utilizes chemicals to remove inorganic or organic pollutants from wastewater, resulting in the formation -OH radicals [29]. AOP's potential to breakdown complex compounds present it as an efficient technique for removing Phcs from wastewater [30]. However, its enormous operation cost [27], huge energy consumption [31], and the need for a spacious set-up increases its process cost and hinders its use globally [27]. Biological technique utilizes the activity of microbes in the treatment of wastewater, it is an ecofriendly technique, nonetheless, it takes time and there are concerns on how to manage the sludge generated when it is used [29], besides, not all Phcs are removed using this technique [14]. Ozonation is beneficial in that it produces no sludge, nonetheless, it produces other by-products in WWTP effluents [29]. Reportedly, these by-products could be more toxic when compared to the initial Phcs contaminants, however, it remains a viable wastewater treatment option [31]. Filtration utilizes a membrane (Constro [32] attached to leaky support and is useful for taking out dissolved contaminants during the treatment of wastewater [29]. Nonetheless, for membrane-filtration, there could be a need for frequent membrane replacement [29], and the problem of fouling [28]. In themselves, each of the conventional techniques may not be sufficient for fully removing Phcs from wastewater [12, 14, 33], and a summary of their demerits is presented in Fig. 1. Hence, with their shortcomings, it is expedient to complement these methods to improve the percentage of Phcs being removed during treatment [34]. Of recent, the interest in the use of adsorption for improving the removal of Phcs from wastewater [17, 35, 36] is rising [37], and this is because it

Fig. 2 Some performance metrics during biochar/activated carbon production. [29, 90–94] Source of information.

Fig. 3 Life expectancy graph for Estonia between 2010 and 2019. Source. [95]

is efficient [36], environmentally benign [38], and easily operated [39]. Albeit there are concerns about the huge cost of adsorbents like commercial activated carbon, paving way for more research on less-costly ones like biochar [40]. Biochar has been suggested suitable for removing Phcs in an adsorption process [17]. When compared to commercial-activated-carbon, the cost, energy-use, and greenhouse gas (GHG) emissions during the production of biochar is lesser. This is illustrated in Fig. 2.

Estonia and IB, MF& DF Phcs

Estonia is one of the countries within the North-Eastern region of Europe. It lies within the latitude and longitudinal points of 59.5° N 28° E and 57.5° N 22° E respectively. Its vegetation zone is known as hemiboreal with a relatively flat landscape, albeit its south-eastern region is more mountainous [41]. There are four seasons in Estonia, spring starts from March-April, followed by summer from June-August, then Autumn from September-November and cold winter from December to February [41]. According to Statistics, Estonia's estimated population is 1.32 million [42], and the life expectancy of Estonians has shown a positive trend in the last decade as people are expected to live much longer; between 70-74 and 80-82 years for males and females respectively (Fig. 3). With the extended life expectancy, the consumption of IB and other medications to maintain a healthy lifestyle will increase [43]. Furthermore, according to the data available from Estonia Statistics on medicine,

Table 1 Some properties of IB, DF, and MF

the consumption of different prescribed and over-thecounter drugs has risen significantly [2, 44]. Besides, three major Anatomical Therapeutic Chemical (ATC) groups of Phcs (such as alimentary tract drugs and nervous system pharmaceuticals ["non-steroidal anti-inflammatory drugs" (NSAIDs)] were frequently consumed among Estonians between 2016 and 2018, with MF, DF, and IB falling under this groups of Phcs [45, 46]. Hence, they are now frequently detected in municipal WWTP influent and effluent streams [47], resulting in their prevalence within the environment. Besides, with Estonia being one of the countries in the Baltic Area, data analysis on existing data confirmed that NSAIDs, epilepsy, diabetes and cardiovascular disease medicine were the most used, of which MF, IB and DF belongs to one of these class of drugs [18]. MF is an antidiabetic medicine [22] and is amongst the most detected Phcs in the effluent of WWTP [48]. According to statistics from the international diabetes federation, above 400 million persons worldwide live with diabetes [49], 59 million patients are in Europe and 58,700 cases in Estonia; which equals about 6.2% of

Table 2 Estonia's WWTP and their capacities

S/N	# of WWTP	Capacity (in PEs)
1	503	300
2	128	300-2,000
3	20	2,000-10,000
4	15	10,000-100,000
5	2	> 100,000

Property	IB	DF	MF
IUPAC name	2-[4-(2-methyl propyl) phenyl] propanoic acid	2-[2-(2,6-dichloroanilino) phenyl] acetic acid	3-(diaminomethylidene)-1,1-di- methylguanidine
Molecular formula	$C_{13}H_{18}O_2$	$C_{14}H_{11}Cl_2NO_2$	$C_4H_{11}N_5$
Molecular weight	206.3	296.1	129.2
Form	Crystalline and stable	Crystalline	Crystalline
рКа	5.3	4.15	12.4
log Kow	3.97	4.51	-2.64
Melting point	Between 75 and 77.5 °C	Between 283 and 285 °C	Between 223 and 226 °C
Solubility	21 mg/L (at 25 °C)	2.37 mg/L (at 25 °C)	2 g/10 mL of water
2D-Structure	o H o		H, N, H,

Fig. 4 Treatment technologies at Estonia's WWTP

the adult population in Estonia [50, 142]. MF's prescription has increased significantly owing to its efficiency in glucose removal via acting on metabolic paths to encourage catabolism and the elimination of glucose [48]. Furthermore, in Europe (including Estonia), the consumption of MF will likely increase, because over 68 million people would reportedly have this disease by 2045 [51]. A general report on the fate of Phcs across the Baltic States shows that MF's highest peak concentration exceeded 1 mg/l in WWTP influent while a peak optimum and average concentration of 0.92 mg/l and 0.16 mg/l respectively were detected in their effluent streams [47]. DF is a phenylacetic acid derivative, while IB is generally accessible as 2-(4-isobutylphenyl) propionic acid. Other properties of IB, DF and MF are presented in Table 1. Between 2006 and 2014, there was a significant 14.1% increase in IB consumption in Estonia [43], while the devastating side effects of DF (such as stroke and heart attack in a patient with certain cardiovascular risk factors) has prompted the European Medicine Agency to recommend that DF should be utilized at the lowest active dose [43]. Furthermore, the result of a survey in Europe found the peak absolute concentration of IB (48 μ g/L), together with DF (11 μ g/L) within the secondary effluent of WWTP [11]. DF has also been included as one of the emerging Phcs into the environment by the European commission, and has resulted in an effort to completely remove DF and other Phcs like MF and IB during the treatment of wastewater [14].

Estonia and WWTP

There are different reports on the number of WWTP in Estonia, however, from the literature that was found, we can conclude that the number varies from 664 to 730 [52-54]. Based on the report of [52], the capacity of each of the WWTP varies from 300 to > 100,000 PEs (person equivalents). The breakdown is presented in Table 2. Besides, the main wastewater treatment technologies utilized at Estonia's WWTP are presented in Fig. 4, where the use of batch and plug flow reactors fall under the activated sludge technology, oxidation ponds and wetlands fall under the natural solutions while others are the biofilm reactor technology. However, these technologies utilize a combination of physical, biological, and chemical treatment methods (including those mentioned in "General wastewater treatment methods" Section) that are deemed insufficient to totally take out Phcs in WWTP. This further buttresses the need to complement these existing methods (in "General wastewater treatment methods" Section) with adsorption using lower-cost biochar, which is cheaper when compared with activated carbon for improving the removal of Phcs.

Analysis of Phcs in Wastewater

To ensure the complete removal of Phcs during the treatment of wastewater, they need to be properly analyzed to ascertain

Table 3 Some common techniques for the analysis of Phcs in wastewater

S/N	Analytical methods	Description	Phcs analyzed	References
1	HPLC	It is utilized for identifying, separating and quantifying Phcs	Fluoxetine	[30]
		within different component mixture [102]. Besides, it is referred	Paracetamol	[105]
		to as the contemporary application of LC [103], and is the choicest technique for the analysis of compounds with low	Naproxen	[106]
		volatility [104]	IB	[107–109]
			DF	[110]
2	UHPLC	It encompasses LC-separations that uses CEL that have smaller	Acetaminophen	[31]
		sizes than 2.5 to 5.0 μ m [111]. Besides, it utilizes high pressure	Valsartan	[31]
		to improve its performance in identifying Phcs in a mixture of various components, with swifter form of analysis at better reso- lutions (EAG [112]	Cephalexin	[31]
3	UPLC	It is reported to create a novel path for LC owing to its sensitivity and improved resolution [113]. Furthermore, it is an improve- ment to HPLC with elevated pressures and offers a better throughput and efficiency at a lesser time of analysis (Creative [114, 115]. Lastly it uses particles whose diameter is lesser than $2 \mu m$ ([116]	Fluoroquinolone antibiotics	[117]
4	UV-Vis	It is a widely utilized method and works based on the quantity of	Ofloxacin	[120]
		distinct wavelengths of noticeable light that is absorbed or dif-	DF	[92, 121]
		fused by a sample. It is effective in the analysis of both organic	Levofloxacin	[121]
		and morganic components of a mixture [116, 119]	IB	[108, 109, 122, 123]
			Cephalexin	[92]
			Ketoprofen	[123]
			MF	[124]

HPLC High performance liquid chromatography, UHPLC Ultra-high performance liquid chromatography, UPLC Ultra performance liquid chromatography, UV-Vis Ultraviolet visible spectrophotometry, LC Liquid chromatography, CEP columns enclose particles

Fig. 5 Database analysis graph. B Biochar, A Adsorption, E Estonia, WT Wastewater treatment, W Wastewater, Phcs Pharmaceuticals, T Treatment, D Diclofenac, I Ibuprofen, M Metformin

Fig. 6 Suitable biochar properties as an adsorbent for Phcs uptake

their actual concentration within the influent and effluent streams of WWTP. Some of the common techniques for the analysis of Phcs are presented in Table 3.

Methodology

For database analysis, the Scopus database was used to establish the need for a synopsis on the possibility of using biochar to augment the removal of Phcs in Estonia's WWTP. Several searches were conducted using different keywords. The first search was steered at establishing the rising interest in the utilization of biochar for adsorption. Using biochar+adsorption as the main search word, bounded using the title of publications, abstracts, and keywords between 2005 and 2021. 5980 research documents were found. When Estonia was added to the main search words (biochar+adsorption+Estonia) under similar search conditions, no document was found. Although there might be a few documents on other databases, however, this result reflects the state of biochar research in Estonia. The second search was carried out using wastewater treatment+biochar as the main words under similar search conditions, and 1523 documents were found. This is lower than the result of the first search, and based on this, we concluded that the research into using biochar in wastewater treatment is just budding. Like the first search, when Estonia was added to the main search words (wastewater treatment+biochar+Estonia), there was no document found. Other searches were conducted to study the extent of research into using biochar

Fig. 7 Common thermochemical techniques for biochar production

for the adsorption of IB, DF, and MF, and the results are shown in Fig. 5. From the results, there was a confirmation of the need to present a summary of the potential of biochar as an adsorbent for Phcs uptake. This was later narrowed down to three of the most prevalent Phcs (IB, DF, and MF) in Estonia.

Biochar and Production

Biochar is rich in carbon and produced via the pyrolysis of various feedstocks, ranging from virgin to waste biomass. This comprises of agricultural plantings, manures, farm wastes, and municipal wastes [40, 55]. Some of biochar's remarkable properties as shown in Fig. 6 present it as a suitable material in diverse applications, including being used as an adsorbent in treating wastewater. Furthermore, the possibility of utilizing low-cost and easily accessible biomass wastes as its precursor cements biochar as a sustainable adsorbent that can be used during wastewater treatment [56].

Biochar is produced via several thermal-chemical processes [57]. It includes torrefaction, and gasification, together with pyrolysis (Fig. 7). The choice of thermochemical process and process parameter is vital during biochar production [40]. Generally, torrefaction is used in converting biomass feedstock into a stable solid that can be used as an energy fuel [58], it could either be a dry or wet process [59]. Dry torrefaction is used to pre-treat biomass [60]. During this process, biomass is warmed-up between 200 and 300 °C, in an inert setting for about 0.5 to a few hours [61]. Although dry torrefaction produces a biochar-like substance (known as torrefied biomass) [62], however, it is best to say that torrefaction is for improving some of the properties of raw biomass before being used in energy applications [59].

Wet torrefaction, on the other hand, is also known as hydrothermal carbonization [61]. It is utilized for charring wet biomass like forestry residue and animal manure [63]. The temperature at which hydrothermal carbonization takes place is relatively low (typically between 180 and 265 °C) [59]. Furthermore, its feedstock does not require drying, thus, reducing energy consumption and production cost [61]. The process takes place within the saturation vapor pressure of water (2–10 mega-pascal) [61] and at time intervals of 5 min [59] to hours [64]. The products of hydrothermal carbonization include hydrochar (slurry-char), bio-oil (liquid), and a small amount of gas (majorly CO₂) [62], [61]. Nonetheless, the problems of reactor corrosion, deposition, clogging, and high-pressure requirements limit the utilization of wet torrefaction [61].

Tab	le 4 Reports on bio	schar production, ch	aracterization, and util	ization for Phcs ad	sorption					
SN	Biomass	Conditions of	Some biochar charac	terization techniqu	es		Adsorbed Phcs	Predominant	Maximum	References
		pyrolysis	BET	PA	EA (%)	Modifying agent		mechanisms gov- erning adsorption	adsorption capac- ity	
-	Fibre of Oil Palm	Temperature: 550 °C Residence Time: 30 min Rate of Heating: 5 °C/min	SSA: 76.050 m ² /g MSA: 62.564 m ² /g MPV:0.0359 cm ³ /g	1	C:78.00 H:2.20 O:18.10 N:0.60 S:0.60	1	Cephalexin (CPH), Aceta- minophen (APH), and Valsartan (VLT)	Optimum pH of 3.0 Hydrogen Bond between biochar and the Phcs	CPH: 7.9 mg/g APH: 7.3 mg/g VLT: 23.85 mg/g	[31]
7	Rice Bran	Temperature: 300–750 °C Residence Time: 120 min Rate of Heat- ing: <5 °C/ min, Nitrogen Flowrate: 3 L/ min	SSA: 120 m ² /g	1	C:27.01 H:1.23 N:3.15 S < 0.30 O:68.31	1	Fluoxetine	Further treatment of biochar in an autoclave prior to use as an adsorbent Electrostatic attraction	92.6% removal of Fluoxetine	[98]
\mathfrak{c}	Pharmaceutical Sludge	Temperature: 800 °C Residence Time: 90 min	SSA: 264.05 m ² /g (unmodified biochar) 534.91 m ² /g (modi- fied biochar)	1	1	ZnCl ₂	Levofloxacin	Hydrogen bond, pore filling, and surface complexation, together with $\pi - \pi$ bond	159.26 mg/g	[711])
4	Text Mill Sludge	Temperature: 400–850 °C Residence Time: 240 min Rate of Heating: 10 °C/min	SSA: 91.00 m ² /g	1	1	1	Offoxacin	$\pi - \pi$ electron- donor-acceptor form of interac- tion, pore-filling together with Hydrogen bonding Optimum pH of 6	19.74 mg/g	[120]
Ś	Chaga Mush- room's Residue	Temperature: 300 °C Residence Time: 120 min Rate of Heating: 10 °C/min	SSA: 1676.78 m ² /g MPV: 1.87cm ³ /g APS: 3.88 nm	1	1	ZnCl ₂	Tetracycline	Hydrogen bond- ing, Pore filling, Electrostatic attraction, and $\pi - \pi$ Interac- tions	Tetracycline: 947.42 mg/g	[125]
6	Waste of Coffee Bean	Temperature: 350 and 550 °C Residence Time: 120 min Rate of Heating: 7 °C/min	SSA: 429.19 mm ² /g TPV: 0.392 cm ³ /g	Moisture: 13.05% Ash: 3.42% Fixed Matter: 65.67% Mobile Matter: 17.87%	C:81.56 H:3.74 N:1.04 O:13.41 S:0.25	H ₃ PO ₄	Levofloxacin	Electrostatic attraction Hydrophilic interaction $\pi - \pi$ Bonding	110.70 mg/g	[121]

Tabl	e 4 (continued)									
SN	Biomass	Conditions of	Some biochar charac	sterization techniqu	les		Adsorbed Phcs	Predominant	Maximum	References
		pyrolysis	BET	PA	EA (%)	Modifying agent		mechanisms gov- erning adsorption	adsorption capac- ity	
7	Waste Peels of Pomelo	Temperature: 700 and 900 °C	SSA: 1033 m ² /g TPV: 1.074 cm ³ /g	. 1	. 1	. 1	Paracetamol	Pore-filling Hydrogen bond- ing $\pi - \pi$ Bonding Van der Waals Bonding	147 mg/g	[105]
∞	Douglas Fir	Produced via Gasification (Temperature: 900–1000 °C) Residence Time: 1 s	Raw biochar SSA: $468.2 \text{ m}^2/\text{g}$ TPV: 0.193 cm^3/g PS: 1.45 mm Modified Biochar SSA: 322.0 m^2/g TPV: 0.120 cm^3/g PS: 1.32 mm	1	Raw Biochar C:76.28 H:1.85 N:1.82 O:13.22 Modified Bio- char C:58.52 H:1.22 N:1.52 O:5.83	Magnetic Iron Oxide (Fe ₃ O ₄)	Caffeine Ibuprofen Acetylsalicylic acid	Electrostatic interactions Dipole-Diploe interactions Hydrogen bond- ing $\pi - \pi$ interactions	Caffeine: 75.1 mg/g Ibuprofen: 39.9 mg/g Acetylsali- cylic Acid: 149.9 mg/g	[126]
6	Anthriscus Syl- vestris	Temperature: 300 °C Residence Time: 15 min Rate of Heating: 10 °C/min Nitrogen Flow- rate: 1 L/min	1	1	Raw Biochar C:49.69 H:5.14 N:5.28 O:39.82 S:0.07 Modified Bio- char C:69.34 H:1.17 N:0.88 O:28.53 S:0.08	NaOH	Cephalexin	Electrostatic interactions $\pi - \pi$ interactions Hydrophilic Interactions	724.54 mg/g	[92]
10	Kernels of Wild Plum	Temperature: 180–500 °C Residence Time: 35–60 min	I	I	1	КОН	Naproxen	Hydrogen bond- ing Electron-donor acceptor	73.14 mg/g	[106]
Ξ	Tea Waste (Engi- neered)	Temperature: 700 °C	1	I	1	Steam	Caffeine	Nucleophilic interactions Electrostatic interactions	15.4 mg/g	[127]

🙆 Springer

PyrolysisBETPAEA (%)Modify12White Pine and Norway SpruceTemperature: 900 °C13Digestate (40% corn silage and 60% wood)Temperature: $470 °C$ SSA: 495m ² /g MeSA: 156m ² /g Msh: 11.03%13Digestate (40% corn silage and 60% wood)Residence Time: MPY:0.173cm ³ /g/gAsh: 11.03% Msh: 11.03%C: 84.03 H: 0.71 C: 84.03-13Digestate (40% corn silage and $470 °C$ Residence Time: MPY:0.173cm ³ /g/gN: 0.23 S: -N: 0.23 S: -	char characterization techniques		Adsorbed Phcs	Predominant	Maximum	References
12White Pine and Norway SpruceTemperature: 900 °C13Digestate (40% corn silage and 60% wood)Temperature: $470 °C$ SSA: 495m ² /g MeSA: 156m ² /g MeSA: 156m ² /gAsh: 11.03% H: 0.71 O: 4.00 O: 4.00 N: 0.23-13Digestate (40% corn silage and 60% wood)Temperature: $470 °C$ MeSA: 156m ² /g MeSA: 156m ² /g MeSA: 156m ² /g13Digestate (40% corn silage and $470 °C$ Temperature: MeSA: 156m ² /g N: 0.173cm ³ /g-13Digestate (40% corn silage and $470 °C$ Temperature: MeSA: 156m ² /g N: 0.23-13Digestate (40% corn silage and $470 °C$ Temperature: MeSA: 156m ² /g N: 0.23-14Digestate (40% corn silage and S:15Digestate (40% corn silage and S:13Digestate (40% corn silage and S:14Digestate (40% corn silage and S:15Digestate (40% corn silage and S:15Digestate (40% corn silage and silage and <br< th=""><th>PA EA (</th><th>%) Modifying agent</th><th></th><th>mechanisms gov- erning adsorption</th><th>adsorption capac- ity</th><th></th></br<>	PA EA (%) Modifying agent		mechanisms gov- erning adsorption	adsorption capac- ity	
13 Digestate (40% Temperature: SSA: 495 m^2/g Ash: 11.03% C: 84.03 – corn silage and 470 °C MeSA: 156 m^2/g Ash: 11.03% C: 0.1071 60% wood) Residence Time: MPV:0.173 cm^3_{iid}/g 0: 4.00 25 min S5 – S5 min S: –	1	1	Caffeine	1	11.85 mg/g forWhite Pine9.27 mg/g forNorway Spruce	[68]
	im ² /g Ash: 11.03% C: 8 ² 56m ² /g Ash: 11.03% C: 41: 0. 73cm ³ _{liq} /g O: 4. N: 0. S: -	.03	Diclofenac Cettirizine Fexofenadine Irbesartan Metoprolol Telmisartan Venlafaxine O-Desmethyl- venlafaxine Tramadol Carbamazepine	Electron exchange	For 250 mg/L of biochar, at 10 and 120 min, the sorption efficiency for all the Phcs is greater than 90%	[33]

Waste and Biomass Valorization (2023) 14:2433-2458

Gasification is another thermochemical process [65]. Unlike torrefaction, gasification requires partial oxygen [65], and an elevated temperature of 500–1400 °C [66] within a short residence time, typically between 10 and 20 s [67]. The main target of biomass gasification is to produce gas mixtures of methane (CH₄), alongside carbon monoxide (CO), and hydrogen (H₂), and a small amount of carbon dioxide (CO₂) [66]. Although it produces biochar as a byproduct at a scanty rate (typically at a yield of about 5–10%) [68]. Similarly, biochar made from biomass gasification contains various inorganic elements, together with polycyclic-aromatic-hydrocarbons (PAHs) [67, 69]. The PAHs produced are harmful, hence limiting the utilization of gasification's biochar for environmental remediation purposes [70].

Pyrolyzing biomass is mostly known as the breakdown of biomass raw material within a zero oxygen setting using heat [68]. It is the main technique for producing biochar, such that biomass disintegrates into vapor [condensable (biooil, tar) and non-condensable (syngas)], and solid (biochar) [71]. The temperature interval during pyrolysis usually lies between 300 and 1000 °C [71]. It is cost-effective and possesses the ability to produce a variety of products that can be used in different applications (syngas and bio-oil can be converted into energy fuels) [72, 73]. Based on the conditions of operation, pyrolysis can be mainly as fast and slow type [71]. Fast pyrolysis takes place at a temperature interval of 400-600 °C, high heating rate (typically greater than 300 °C/ min), and little vapor-residence time (typically between 0.5 and 10 s). The main target of fast pyrolysis is bio-oil, although biochar is formed as a by-product (about 15-30 wt.% yield) [67, 71]. Conversely, the slow form of pyrolysis is the choicest for producing biochar. This is because it produces the highest amount of solid product (typically between 35 and 50 wt.%) [67, 71]. It occurs between 300 and 800 °C [71], with a heating rate of 5-10 °C/min, and a few minutes to hours of residence time [67, 74].

Biochar Characterization

In understanding the features and possible application of biochar, it is subjected to various characterizations. Some of the characterization techniques include elemental, proximate, thermogravimetric analysis (TGA), scanning electron microscopy (SEM), Brunauer–Emmett–Teller (BET), X-ray Diffraction (XRD), X-ray photoelectron spectrometer (XPS), Fourier transform infrared spectroscopy (FTIR), pH, and energy dispersive X-ray (EDX) analysis [75]. Elemental analysis is utilized in determining the carbon, hydrogen, nitrogen, oxygen (by difference) [76], and sometimes sulfur content of biochar samples [77]. Proximate analysis is influential in determining the volatile matter, moisture, and fixed carbon, together with ash [76]. TGA assists in understanding the thermal decomposition

Tabl	e 5 Biochar for MF uptake						
S/N	Starting material	Conditions of pyrolysis	Summary	Observation and mechanism of adsorption	Influent concentration (mg/L)	Effluent concen- tration in mg/L (optimal values only are reported)	References
-	Leaves of Artichoke	1	The possibility of utilizing biochar as an adsorbent for MF uptake was attested to, such that biochar made from the leaves of artichoke was modified using NaOH and performed well in the uptake of MF- hydrochloride (a drug for controlling diabetics). In a low oxygen atmosphere, artichoke leaves were pyrolyzed to produce nano-biochar that was modified with sodium hydroxide	Reportedly, different parameters affected MF- hydrochloride's removal. Different concentra- tions of MF- hydrochloride were adsorbed by the nano-biochar. However, the highest removal percentage for 10, 15, and 20 mg/L of MF- hydrochloride are 85.7 , 84.8 , and 82.7% respec- tively. Lastly, the kinetics was best defined using a <i>pseudo-second-order</i> model	10.0 15.0 20.0	1.43 2.28 3.46	[128]
0	Fruit shell of chicha-do- cerrado	1	Biochar made via the pyrolysis of the fruit shell of chicha-do-cerrado was activated (using physical and chemical techniques) and proved effective in the adsorption of MF from wastewater. MF's uptake by the activated-pyrolyzed biochar proved that biochar is effective in Phcs uptake during wastewater treatment	The surface area of the produced biochar was reportedly low. Hence, it was activated to improve this property. Chemically activated (using KOH) biochar's surface area increased to $1273.6 \text{ m}^2/\text{g}$, with the capacity for adsorption being 45.50 mg/L , while the physically activated biochar using CO ₂ had a surface area and adsorption capacity of $397.9 \text{ m}^2/\text{g}$ and 33.75 mg/L respectively	10-500	I	[124]
σ	Alternanthera philox- eroides	1	Biochar made from specific biomass known scientifically as <i>Alternanthera</i> <i>philoxeroides</i> was modified using hydrogen peroxide and utilized in a MF- hydrochloride adsorption experiment. The experimental results proved that bio- char properties could be improved and used as an apposite adsorbent for MF's uptake, even in wastewater applications	pH and ion interaction performed a huge role in MF's uptake, with a spontaneous and endothermic adsorption process. The kinetic model was best fitted using a <i>pseudo-second-order</i> model while the Freundlich model was the appropriate isotherm model	5E-2- 3.2 mmol/L	I	[129]
4	Four different biomasses (sawdust from pine, rice husk, macro-algae, and micro-algae)	Temperature: 500 °C Rate of heat- ing: $10 °C/$ min Residence time: 1 h	The produced biochar was utilized for the removal of MF	The properties of biochar were improved using hydrogen peroxide before adsorbing MF. Activated biochar made from a large portion of macro-algae had the highest adsorption potential, removing almost 76% of the pollutant at a pH of 7. Chemisorption was reported as the major mechanism of adsorption supported by the rich functional group on the modified biochar's sur- face together with electrostatic attractive force. The isotherm for adsorption was well-defined using the Freundlich model	At varying conc and different 1 percentage of 0.33 to 76.66	tentrations of MF bH, the removal MF varied from %	[130]

Table	6 Biochar for DF uptake						
S/N	Starting material	Conditions of pyrolysis	Summary	Observation and mechanism of adsorption	Influent concentration (mg/L)	Effluent concentration in mg/L (optimal values only are reported)	References
-	Anthriscus sylvestris	Raw biochar Temperature: 300 °C Rate of heating: 10 °C/min Residence time: 15 min Activated biochar Activation agent: NaOH solution Temperature: 600 °C Rate of heating: 3 °C/min Residence time: 2 h	Activated biochar made from Anthriscus sylvestris was utilized for the removal of DF	Using Langmuir model, DF was taken up by the activated biochar to an extent of 392.94 mg/g. Besides, π - π bonding, hydrophobic interaction, Lewis acid–base interactions, and electrostatic adsorption were key to the removal of DF onto the surface of the activated biochar	- 1	1	[92]
0	Syagrus coronata	Temperature: 400 °C Rate of heating: 10 °C/min Residence time: 2 h	Modified biochar produced by impregnating <i>Syagrus coro-</i> <i>nata</i> biochar with "MgAI layered double hydroxide" was utilized in an adsoption's uptake from water. The experiment's success affirms the possibility of using biochar as a DF adsorbent during wastewater treatment	The experiment proved successful with the removal of this compound in capacities of 168.04 and 138.83 mg/g at temperatures of 60 and 30 oC, respectively. Chem- isorption was highlighted as the predominant mechanism for the uptake, while the process was exothermic. This confirms the potential of biochar composite to eradicate pharmaceuticals within water and wastewater	200	36	[131]
σ	Pig manure and pine wood	Biochar from pig manure Temperature: 400 °C Residence time: 2 h Biochar from pine wood Temperature: 525 °C Rate of heating: 25 °C/min Residence time: 20 min	Micro-sized biochar made separately from pig manure and pine wood were utilized as adsorbents in a fixed bed adsorption column to adsorb DF. Besides, Laccase was immobilized on biochar's surface. The experiment pre- sents biochar as a suitable adsorbent for the uptake of DF	The result proved positive with an adsorption capabil- ity of 4.10 mg/g at a pH of 6.5. Also, the uptake of DF depended on the adsorbent mass together with the column's height	500 µg/L	For 2 g of biochar from pig manure: 55 µg/L after 30 min For 2 g of biochar from pine wood: 200 µg/L after 30 min	[132]

Table 6	(continued)						
S/N S	tarting material	Conditions of pyrolysis	Summary	Observation and mechanism of adsorption	Influent concentration (mg/L)	Effluent concentration in mg/L (optimal values only are reported)	References
4	iewage sludge	Temperature: 500–700 °C	Biochar generated from sew- age sludge was well utilized as an adsorbent to remove DF from water	Biochar showed signs of being an effective adsorbent for DF with an adsorption capacity of 92.7 mg/g. The mechanism of adsorption for diclofenae was governed by π-stacking exchange with the biochar's surface. This was best described using pseudo-second-order kinetics and best fitted using the Dubinin-Radushkevich isotherm model	1	1	[27]
5 F	ique bagasse	Temperature: 650–850 °C Rate of heating: 1 °C/min Residence time: 2–3 h	Biochar formed using fique bagasse as feedstock was tested as an adsorbent under the variation of pH for the removal of DF	The result was promising and showed the possibil- ity of using biochar for the removal of DF	20	1	[133]
9	vquatic plants	Temperature: 350-600 °C Residence time: 2 h	Biochar made from differ- ent aquatic plants was used for eliminating DF-sodium from water	The experimental result pre- sented biochar as an active adsorbent for removing DF-sodium from water. The adsorption onto the surface of biochar was mainly fostered by π -electron attrac- tion, filling of pores, van der Waals force, together with π - π interaction. The kinetic model was well-fitted using a pseudo-second-order model being the finest iso- therm model. Furthermore, the adsorption capacity for DF-sodium varied between 18.35 and 23.25 mg/g at 294 K	12	1	[011]

Tabl	e 6 (continued)						
S/N	Starting material	Conditions of pyrolysis	Summary	Observation and mechanism of adsorption	Influent concentration (mg/L)	Effluent concentration in mg/L (optimal values only are reported)	References
L I	Sludge	Temperature: 500 °C Rate of heating: 10 °C/min Residence time: 2 h	The possibility of degrading DF-sodium in wastewater was confirmed using sludge biochar that was modified using bimetallic nanoparti- cles of iron/copper, together with ultraviolet light	This effectively acted as DF's degrading agent during treatment. Reportedly, almost 99.7% of DF was removed using a pseudo-first-order kinetic model	. 1	1	[134]
∞	A mixture of sludge and leaf	Temperature: 200–500 °C Rate of heating: 6 °C/min Residence time: 1–5 h The ratio of sludge to leaf: 1:3	Biochar was co-produced from waste sludge and leaves, modified using HCI, and utilized for the elimina- tion of DF	From the experiment, DF was swiftly removed at 25 °C, with a maximum adsorp- tion capability of 877 mg/g . The kinetic model was well-fitted using a pseudo- second-order model while the Temkin isotherm was the best isotherm model	10-500	1	[135]
6	The waste of Coffee bean	Raw biochar Temperature: 350 or 550 °C Rate of heating: 7 °C/min Residence time: 2 h Activated biochar Temperature: 550 °C Rate of heating: 7 °C/min Residence time: 1.5 h	Biochar activated using H ₃ PO ₄ was produced from the waste of Coffee beans and used for eliminating DF from water	DF was well adsorbed with a capacity of 61.17 mg/g. The mechanism of adsorption onto the surface of biochar was mainly fostered by the existence of π - π bond, electrostatic attraction, and hydrophobic interaction	10-200 mg/L	1	[121]

Tablé	e 7 Biochar for IB Uptake						
S/N	Starting material	Conditions of pyrolysis	Summary	Observation and mechanism of adsorption	Influent concentration (mg/L)	Effluent concentra- tion in mg/L (optimal values only are reported)	References
-	Shell of Aegle marmelos	Raw biochar Temperature: 650 °C Rate of heating: 4.3 °C/min Residence time: 1 h Activated biochar Temperature: 800 °C Residence time: 1.5 h	Raw and activated (using steam) biochar made from the shell of <i>Aegle marmelos</i> were utilized in the uptake of IB from an aqueous solution	Both the raw and activated biochar attained a 90 and 95% uptake at temperatures of 15 and 20 °C respectively. The kinetic model was well-fitted using a pseudo-second- order model while Langmuir and Freundlich adsorption isotherms were the best isotherm models	1-45	1	[136, 137]
0	Bovine bone	Temperature: 600 °C Residence time: 2 h	A composite (Zn/AI) biochar) was utilized for the uptake of IB	At equilibrium, IB's uptake was adequately fitted using Henry's isotherm model. The adsorption capacity was 1032.81 mg/g. This study proved that biochar can be utilized as an adsorbent for IB uptake	25-125	1	[123]
ς	Almond shell	Temperature: 550 °C Residence time: 1 h	Biochar made from activated almond shell was utilized to eradicate IB from an aqueous solution	From the experiment, we can con- clude that biochar may be utilized as a low-priced adsorbent to eliminate IB from wastewater. The kinetic model was well-fitted using a pseudo-second-order model, with Langmuir isotherm being the choicest isotherm model	15	1.08	[138]
4	Date seed	Raw biochar Temperature: 700 °C Residence time: 1 h Physical Activation Temperature: 800 °C Residence time: 1 h	Two different seeded biochar date- seed-activated-biochar using steam (DSPB) and date-seed-activated biochar using chemical (DSCC) were utilized as adsorbents for the uptake of IB	Optimum IB removal of 87 & 96% was attained by steam and chemi- cally activated biochar after 18 and 21 h respectively. The kinetic model was well fitted using a pseudo-second-order model while Langmuir adsorption isotherm was the best isotherm model. The experiment showed that activated biochar from date seed is a good adsorbent for IB uptake from water and wastewater	20	Using DSPB: 0.75 Using DSCC: 2.60	[122]
Ś	Shell of Cocos nucifera	Temperature: 450 °C Residence time: 1 h	Physical and chemical activated bio- chars were produced using <i>Cocos</i> <i>nucifera</i> shell. It was physically activated using steam and chemi- cally activated using H ₃ PO ₄	In the study, IB sorption was well defined by Langmuir isotherm and pseudo-first order kinetic models. The rate of adsorption of IB was 9.69 and 12.16 mg/g for physically and chemically activated biochars respectively.	1–50	1	[107]

 $\underline{\textcircled{O}}$ Springer

Tabl	e7 (continued)						
S/N	Starting material	Conditions of pyrolysis	Summary	Observation and mechanism of adsorption	Influent concentration (mg/L)	Effluent concentra- tion in mg/L (optimal values only are reported)	References
9	Sugarcane bagasse	Physically activated biochar Temperature: 500 °C Residence time: 1 h Chemically activated biochar Temperature: 400 °C Residence time: 1 h	Sugarcane bagasse was used for the preparation of biochar, activated, and used for the adsorption of IB	The uptake performance of the steam and chemically (using H_3PO_4) acti- vated biochars are 82% and 91% after 18 and 12 h contact times respectively. Besides, the maxi- mum adsorption capacity of these biochars are 11.90 and 13.51 mg/g respectively	1–50	1	[136, 137]
7	Chili seeds	Temperature: 400–600 °C Rate of heating: 10 °C/min Residence time: 2 h	At temperatures between 400 and 600 °C, chili seeds were utilized as precursors for producing biochar and utilized for the uptake of IB	The produced biochar was used for IB's removal. The uptake was 50 times higher with biochar made at 600 °C when compared with the raw seeds of chili. The mechanisms that governed the uptake of IB are hydrophobic, electrostatic, and π -acceptor interactions, together with an intraparticle form of dif- fusion	50-100	1	[139]
×	Pine wood	Temperature: 425 °C Residence time: 20–30 s	Under a rapid pyrolysis condition, biochar was made as a by-product from pine wood and used for IB's adsorption	The Langmuir adsorption capacity revealed that 10.74 mg/g of IB was adsorbed. Pseudo-second-order kinetics explained the removal process, while the presence of carboxylic, hydroxyl, and phenols favored IB's uptake	25-100	I	[140]
6	Parthenium hysterophorus	Raw biochar Temperature: 300 °C Residence time: 1 h Chemical activation Temperature: 500 °C Residence time: 1 h	Chemically modified biochar (using NaOH) from <i>Parthenium hystero-phorus</i> was utilized for IB sorption from contaminated water	The peak removal efficiency of IB onto the modified biochar was real- ized to be above 99% at an adsor- bent material dosage of 20 g/L and confirms the potential of biochar as a possible adsorbent of IB during wastewater treatment. The kinetic model was well-fitted using a pseudo-second-order model, while the adsorption data at equilibrium was best fitted using a Langmuir adsorption isotherm	20-100	I	[108, 109]

108, 109

only are reported)

(optimal values

tion in mg/L

References

Effluent concentra-

[78], stability [79], and kinetic pattern during the pyrolysis of biomass to form biochar [80]. SEM is an analysis that is useful in detecting biochar's superficial morphology and structure [79]. BET is a valuable technique for determining the pore size together with the pore volume, and the surface area of biochar [79], XPS is functional in evaluating the elemental constituent (albeit at the surface alone) [79], while XRD is useful in determining the crystalline and amorphous phase present in biochar [81]. pH analysis detects the extent of acidity or alkalinity of a biochar material, and FTIR is beneficial in determining the functional groups that are on biochar's surface [75]. EDX is another method for checking biochar's elemental constituent [75], ThermoFisher [82]. Other characterization techniques include "inductively coupled plasma mass spectrometry (ICP-MS)" [83], electrical conductivity [84], and Raman spectroscopy analysis [85]. It is essential to note that the choice of characterization depends on the projected application and utilization of biochar. For using biochar as an adsorbent in WWTP, some of the reported analyses are mentioned in Table 4.

Phcs Adsorption Using Biochar

Globally, carbon-containing materials are used in the adsorption process, with activated carbon (AC) being the most prevalent [40]. However, the cost of its production is high and has resulted in the search for a low-cost alternative [30, 86]. Recently, biochar that possess comparable adsorbent properties to AC has been considered an economically viable option [30, 86]. The slow pyrolysis of biomass and biomass wastes under restricted oxygen condition produces biochar that has recently been described as an appropriate and low-cost adsorbent for improving Phcs removal from WWTP using adsorption [55, 87]. Furthermore, Oliveira et al., elucidated that biochar is a cheap substitute for activated carbon for removing diverse environmental contaminants like Phcs [88]. Some existing reports on the use of biochar for Phcs uptake are mentioned in Table 4 Further reports on the use of biochar for the uptake of MF, DF, and IB are presented in Tables 5, 6, and 7 respectively.

Adsorption is a surface phenomenon such that the adsorbate lies on the adsorbent either through a chemical or physical mechanism [89]. The possibilities of utilizing biochar for Phcs adsorption have been attested to at laboratory scale, with reports of several mechanisms that govern their adsorption onto biochar's surface. Some of these mechanisms are highlighted in Tables 4, 5, 6, and 7. From these, a summary of the prevalent mechanisms controlling the adsorption of Phcs including MF, DF, and IB onto biochar's surface is presented in Fig. 8.

Table 7 (continued)

and safe adsorbent for removing IB

Residence time: 1 h

from wastewater

Fig. 8 Prevalent mechanisms governing Phcs (including MF, DF, and IB) adsorption onto biochar

Table 8 Some	biochar regeneratio	n techniques
--------------	---------------------	--------------

S\N	Biochar regeneration mechanism	Comment	References
1	The electro-Fenton process with the use of an oxidizing agent (Peroxymonosulfate)	An innovative technology	[86]
2	Magnetic separation before thermal-induced regeneration	It proved effective with a total reduction of about 8% in efficiency during the removal	[120]
3	Electro-Fenton approach for biochar regeneration	The presence of iron within the biochar improved its regeneration	[141]

Recommendations

From the summaries provided, we can conclude that it is possible to utilize biochar for improving the removal of Phcs, including MF, DF, and IB during the treatment of wastewater at WWTP. Hence, there would need to be more publicity on this possibility. Furthermore, there is a need for proper education on Phcs disposal within the environment, alongside the danger it poses if it is improperly disposed of. One of the limitations of this study is the concern on the recovery and re-utilization of spent biochar during wastewater treatment, however, there are a few reports on regenerating spent biochar during adsorption as reported in Table 8. Another concern is on augmenting biochar's physiochemical features to ensure that they perform extremely well as an adsorbent. Most of the studies reviewed had to improve biochar's features for better adsorption performance via activation using physical or chemical means. Hence, this could result in a rise in the overall cost of producing and utilizing biochar for Phcs adsorption. Nonetheless, a cost-benefit analysis should suffice in establishing the trade-off between the cost of biochar production and activation during Phcs' adsorption. For future study, a feasibility study should suffice to ascertain the cost-effectiveness of using biochar for improving the removal of Phcs at WWTP. To do this, a process model that reflects the operations of a WWTP would be very useful. Lastly, most biochar-adsorption experiments have been studied at laboratory scales and there should be a further step in trying it out at pilot and industrial scales. Lastly, asides the possibility of using biochar in an adsorption process, its production from biomass wastes pave a path for a bio-circular economy universally.

Conclusions

The danger of Phcs within the environment has been expressed in this synopsis, with emphasis on MF, DF, and IB in Estonia. The effluents from WWTP have been identified as one of the point carriers of Phcs into the environment, hence, the need to improve existing treatment methods for removing Phcs during wastewater treatment at WWTP. In contrast to the idea of replacing the existing methods of wastewater treatment, it is better to complement them with adsorption. This is because adsorption alone would not be sufficient for improving Phcs removal at WWTP. Owing to this, the possibility of using adsorption with biochar being the adsorbent for improving pharmaceutical removal has been stated in this work.

Acknowledgements The authors would love to acknowledge Oyepeju Abioye for assisting in the proofreading of this manuscript.

Author Contribution ATA, YAA: Conceptualization; Data curation; Formal analysis; Investigation; Methodology; Project administration; Resources; Software; Supervision; Validation; Visualization; Original draft; Writing—review & editing.

Funding This research did not obtain any donation from any organization in the community, business, or not-for-profit sectors.

Data Availability The source of all the data utilized in the manuscript was properly cited.

Declarations

Conflict of interest The authors declare that there is no conflict of interest.

References

- Ebele, A.J., Abou-Elwafa Abdallah, M., Harrad, S.: Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment. Emerg. Contam. 3(1), 1–16 (2017). https://doi.org/ 10.1016/j.emcon.2016.12.004
- Haiba, E., Nei, L., Ivask, M., Peda, J., Järvis, J., Lillenberg, M., Kipper, K., Herodes, K.: Sewage sludge composting and fate of pharmaceutical residues-recent studies in Estonia. Agron. Res. 14(5), 1583–1600 (2016)
- Medscape. (n.d.). Diabinese (chlorpropamide) dosing, indications, interactions, adverse effects, and more. https://reference. medscape.com/drug/diabinese-chlorpropamide-342704 Accessed 28 June 2022
- Nasri, H., Rafieian-Kopaei, M.: Metformin: current knowledge. J. Res. Med. Sci. 19(7), 658 (2014)
- Dai, C., Li, S., Duan, Y., Leong, K.H., Tu, Y., Zhou, L.: Human health risk assessment of selected pharmaceuticals in the five major river basins China. Sci. Total Environ. 801, 149730 (2021). https://doi.org/10.1016/J.SCITOTENV.2021.149730
- Alfonso-Muniozguren, P., Serna-Galvis, E.A., Bussemaker, M., Torres-Palma, R.A., Lee, J.: A review on pharmaceuticals removal from waters by single and combined biological, membrane filtration and ultrasound systems. Ultrason. Sonochem. 76, 105656 (2021). https://doi.org/10.1016/J.ULTSONCH.2021. 105656
- Archer, E., Petrie, B., Kasprzyk-Hordern, B., Wolfaardt, G.M.: The fate of pharmaceuticals and personal care products (PPCPs), endocrine disrupting contaminants (EDCs), metabolites and illicit drugs in a WWTW and environmental waters. Chemosphere (2017). https://doi.org/10.1016/j.chemosphere.2017.01.101
- González-Alonso, S., Merino, L.M., Esteban, S., López de Alda, M., Barceló, D., Durán, J.J., López-Martínez, J., Aceña, J., Pérez, S., Mastroianni, N., Silva, A., Catalá, M., Valcárcel, Y.: Occurrence of pharmaceutical, recreational and psychotropic drug residues in surface water on the northern Antarctic Peninsula region. Environ. Pollut. 229, 241–254 (2017). https://doi.org/10.1016/j. envpol.2017.05.060
- Madikizela, L.M., Ncube, S., Tutu, H., Richards, H., Newman, B., Ndungu, K., Chimuka, L.: Pharmaceuticals and their metabolites in the marine environment: sources, analytical methods and occurrence. Trends Environ. Anal. Chem. 28, e00104 (2020). https://doi.org/10.1016/J.TEAC.2020.E00104
- Undeman, E., Rasmusson, K., Kokorite, I., Leppänen, M.T., Larsen, M.M., Pazdro, K., Siedlewicz, G.: Micropollutants in urban wastewater: large-scale emission estimates and analysis of measured concentrations in the Baltic Sea catchment. Mar. Pollut. Bull. (2022). https://doi.org/10.1016/j.marpolbul.2022. 113559
- Verlicchi, P., Al Aukidy, M., Zambello, E.: Occurrence of pharmaceutical compounds in urban wastewater: removal, mass load and environmental risk after a secondary treatment-A review. Sci. Total Environ. 429, 123–155 (2012). https://doi.org/10. 1016/j.scitotenv.2012.04.028
- Ihsanullah, I., Khan, M.T., Zubair, M., Bilal, M., Sajid, M.: Removal of pharmaceuticals from water using sewage sludgederived biochar: a review. Chemosphere 289, 133196 (2022). https://doi.org/10.1016/J.CHEMOSPHERE.2021.133196
- Nawrat, A.: Pharma and the environment: why pollution remains a worrying trend. https://www.pharmaceutical-techn ology.com/features/pharma-and-the-environment-pollutiontrend/ (2018). Accessed 10 Dec 2021
- Vergeynst, L., Haeck, A., De Wispelaere, P., Van Langenhove, H., Demeestere, K.: Multi-residue analysis of pharmaceuticals in wastewater by liquid chromatography-magnetic sector mass

spectrometry: method quality assessment and application in a Belgian case study. Chemosphere **119**, S2–S8 (2015). https://doi.org/10.1016/J.CHEMOSPHERE.2014.03.069

- Maculewicz, J., Kowalska, D., Świacka, K., Toński, M., Stepnowski, P., Białk-Bielińska, A., Dołżonek, J.: Transformation products of pharmaceuticals in the environment: their fate, (eco) toxicity and bioaccumulation potential. Sci. Total Environ. 802, 149916 (2022). https://doi.org/10.1016/J.SCITOTENV.2021. 149916
- Chia, M.A., Lorenzi, A.S., Ameh, I., Dauda, S., Cordeiro-Araújo, M.K., Agee, J.T., Okpanachi, I.Y., Adesalu, A.T.: Susceptibility of phytoplankton to the increasing presence of active pharmaceutical ingredients (APIs) in the aquatic environment: a review. Aquatic Toxicol. 234, 105809 (2021). https://doi.org/10.1016/J. AQUATOX.2021.105809
- Yang, X., Nguyen, X.C., Tran, Q.B., Huyen Nguyen, T.T., Ge, S., Nguyen, D.D., Nguyen, V.T., Le, P.C., Rene, E.R., Singh, P., Raizada, P., Ahamad, T., Alshehri, S.M., Xia, C., Kim, S.Y., Le, Q.V.: Machine learning-assisted evaluation of potential biochars for pharmaceutical removal from water. Environ. Res. 214, 113953 (2022). https://doi.org/10.1016/J.ENVRES.2022.113953
- Ek Henning, H., Putna-Nīmane, I., Kalinowski, R., Perkola, N., Bogusz, A., Kubliņa, A., Haiba, E., Bārda, I., Karkovska, I., Schütz, J., Mehtonen, J., Siimes, K., Nyhlén, K., Dzintare, L., Äystö, L., Siņics, L., Laht, M., Lehtonen, M., Stapf, M., Leisk, Ü.: Pharmaceuticals in the Baltic Sea Region – emissions, consumption and environmental risks. https://www.researchgate.net/ publication/348235264_Pharmaceuticals_in_the_Baltic_Sea_ Region_-_emissions_consumption_and_environmental_risks (2020)
- Fedorova, G., Golovko, O., Randak, T., Grabic, R.: Storage effect on the analysis of pharmaceuticals and personal care products in wastewater. Chemosphere 111, 55–60 (2014). https://doi.org/10. 1016/J.CHEMOSPHERE.2014.02.067
- Vieno, N., Tuhkanen, T., Kronberg, L.: Elimination of pharmaceuticals in sewage treatment plants in Finland. Water Res. 41(5), 1001–1012 (2007). https://doi.org/10.1016/j.watres.2006.12.017
- Al Qarni, H., Collier, P., O'Keeffe, J., Akunna, J.: Investigating the removal of some pharmaceutical compounds in hospital wastewater treatment plants operating in Saudi Arabia. Environ. Sci. Pollut. Res. 23(13), 13003–13014 (2016). https://doi.org/10. 1007/s11356-016-6389-7
- Shraim, A., Diab, A., Alsuhaimi, A., Niazy, E., Metwally, M., Amad, M., Sioud, S., Dawoud, A.: Analysis of some pharmaceuticals in municipal wastewater of Almadinah Almunawarah. Arab. J. Chem. (2017). https://doi.org/10.1016/j.arabjc.2012.11. 014
- Liu, P., Wu, X., Shi, H., Wang, H., Huang, H., Shi, Y., Gao, S.: Contribution of aged polystyrene microplastics to the bioaccumulation of pharmaceuticals in marine organisms using experimental and model analysis. Chemosphere 287, 132412 (2022). https://doi.org/10.1016/J.CHEMOSPHERE.2021.132412
- Milmo, S.: Pharmaceuticals in the environment. Pharm. Technol. 42(8), 1–2 (2018)
- Valavanidis, A., Vlachogianni, T., Loridas, S., Fiotakis, C.: An emerging environmental problem: disposed medicinal active products pharmaceuticals, antibiotics, and disinfectants in the aquatic environment and toxicological considerations. Pharmakeftiki 26(3), 78–98 (2014)
- Nicholas, N.: Pros And Cons Of Wastewater Treatment Methods Coagulation And Disinfection. Water Online. https://www.water online.com/doc/pros-and-cons-of-wastewater-treatment-metho ds-coagulation-and-disinfection-0001 (2020). Accessed 12 Dec 2021

- Czech, B., Kończak, M., Rakowska, M., Oleszczuk, P.: Engineered biochars from organic wastes for the adsorption of diclofenac, naproxen and triclosan from water systems. J. Clean. Prod. 288, 125686 (2021). https://doi.org/10.1016/j.jclepro.2020. 125686
- Sukmana, H., Bellahsen, N., Pantoja, F., Hodur, C.: Adsorption and coagulation in wastewater treatment—Review. Prog. Agric. Eng. Sci. 17(1), 49–68 (2021). https://doi.org/10.1556/446.2021. 00029
- Srivatsav, P., Bhargav, B.S., Shanmugasundaram, V., Arun, J., Gopinath, K.P., Bhatnagar, A.: Biochar as an eco-friendly and economical adsorbent for the removal of colorants (Dyes) from aqueous environment: a review. Water (Switzerland) 12(12), 1–27 (2020). https://doi.org/10.3390/w12123561
- Escudero-Curiel, S., Penelas, U., Sanromán, M.Á., Pazos, M.: An approach towards Zero-Waste wastewater technology: fluoxetine adsorption on biochar and removal by the sulfate radical. Chemosphere 268, 129318 (2021). https://doi.org/10.1016/j.chemo sphere.2020.129318
- Grisales-Cifuentes, C.M., Serna Galvis, E.A., Porras, J., Flórez, E., Torres-Palma, R.A., Acelas, N.: Kinetics, isotherms, effect of structure, and computational analysis during the removal of three representative pharmaceuticals from water by adsorption using a biochar obtained from oil palm fiber. Bioresour. Technol. 326, 124753 (2021). https://doi.org/10.1016/j.biortech.2021.124753
- Constro Facilitator. Membrane filtration for wastewater treatment. https://www.constrofacilitator.com/membrane-filtrationfor-wastewater-treatment/ (2021). Accessed 25 July 2022
- Tiwari, B., Sellamuthu, B., Ouarda, Y., Drogui, P., Tyagi, R.D., Buelna, G.: Review on fate and mechanism of removal of pharmaceutical pollutants from wastewater using biological approach. Biores. Technol. 224, 1–12 (2017). https://doi.org/10.1016/j.biort ech.2016.11.042
- Deegan, A.M., Shaik, B., Nolan, K., Urell, K., Oelgemöller, M., Tobin, J., Morrissey, A.: Treatment options for wastewater effluents from pharmaceutical companies. Int. J. Environ. Sci. Technol. 8(3), 649–666 (2011). https://doi.org/10.1007/BF033 26250
- Bilal, M., Ihsanullah, I., Younas, M., Ul, M., Shah, H.: Recent advances in applications of low-cost adsorbents for the removal of heavy metals from water: a critical review. Sep. Purif. Technol. 278, 1383–5866 (2022). https://doi.org/10.1016/j.seppur.2021. 119510
- Mansouri, F., Chouchene, K., Roche, N., Ksibi, M.: Removal of pharmaceuticals from water by adsorption and advanced oxidation processes: state of the art and trends. Appl. Sci. 11(14), 6659 (2021). https://doi.org/10.3390/APP11146659
- Kyzas, G.Z., Fu, J., Matis, K.A.: The change from past to future for adsorbent materials in treatment of dyeing wastewaters. Materials 6(11), 5131–5158 (2013). https://doi.org/10.3390/ma611 5131
- Pigatto, R.S., Franco, D.S.P., Netto, M.S., Carissimi, É., Oliveira, L.F.S., Jahn, S.L., Dotto, G.L.: An eco-friendly and low-cost strategy for groundwater defluorination: adsorption of fluoride onto calcinated sludge. J. Environ. Chem. Eng. 8(6), 104546 (2020). https://doi.org/10.1016/J.JECE.2020.104546
- Busetty, S.: Environmental Treatment Technologies: Adsorption. In: Hussain, C.M. (ed.) Handbook of Environmental Materials Management. Springer, Cham (2019). https://doi.org/10.1007/ 978-3-319-73645-7_37
- Akintola, A.T., Akinlabi, E.T., Masebinu, S.O.: Biochar as an Adsorbent: A Short Overview. In: Daramola, M., Ayeni, A. (eds.) Valorization of Biomass to Value-Added Commodities Green Energy and Technology, pp. 399–422. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-38032-8_19

- Metslaid, S., Hordo, M., Korjus, H., Kiviste, A., Kangur, A.: Spatio-temporal variability in Scots pine radial growth responses to annual climate fluctuations in hemiboreal forests of Estonia. Agric. For. Meteorol. 252, 283–295 (2018). https://doi.org/10. 1016/j.agrformet.2018.01.018
- 42. Uusküla, A., Kalda, R., Solvak, M., Jürisson, M., Käärik, M., Fischer, K., Keis, A., Raudvere, U., Vilo, J., Peterson, H., Käärik, E., Metspalu, M., Jürgenson, T., Milani, L., Kolberg, L., Tiit, E.M., Vassil, K.: The 1st year of the COVID-19 epidemic in Estonia: a population-based nationwide sequential/consecutive cross-sectional study. Public Health **205**, 150–156 (2022). https:// doi.org/10.1016/J.PUHE.2022.02.004
- Lember, E., Pachel, K., Loigu, E.: Modelling diclofenac and ibuprofen residues in major estonian seaside cities erki lember. Karin Pachel, Enn Loigu. 2, 1–7 (2016)
- Republic of Estonia Agency of Medicines. (n.d.-a). Overview of Estonian medicinal products market (Ravimiamet). https://ravim iamet.ee/en/statistics/statistics-medicines. Accessed 4 July 2021
- Republic of Estonia Agency of Medicines. (n.d.-b). The Estonian medicinal products market in fourth quarter 2017: Ravimiamet. https://ravimiamet.ee/en/statistics/statistics-medicines. Accessed 15 July 2021
- Vilnius. Baltic Statistics on Medicines 2016–2018. https://www. zva.gov.lv/sites/default/files/2020-01/Baltic Statistics_2016-2018.pdf(2019). Accessed 15 July 2021
- Helcom. Pharmaceuticals in the aquatic environment of the Baltic Sea region A status report International Initiative on Water Quality-IIWQ (Issue 149). (2017).
- Niemuth, N.J., Jordan, R., Crago, J., Blanksma, C., Johnson, R., Klaper, R.D.: Metformin exposure at environmentally relevant concentrations causes potential endocrine disruption in adult male fish. Environ. Toxicol. Chem. 34(2), 291–296 (2015). https://doi.org/10.1002/etc.2793
- International Diabetes Federation. (n.d.). Diabetes facts & figures. https://idf.org/aboutdiabetes/what-is-diabetes/facts-figures. html. Accessed 4 July 2021
- International Diabetes Foundation Europe Members. (n.d.). https://idf.org/our-network/regions-members/europe/members/ 131-estonia.html. Accessed 4 July 2021
- International Diabetes Federation. IDF DIABETES ATLAS 9th Edition (Europe). www.diabetesatlas.org (2019). Accessed 27 July 2022
- Kõrgmaa, V., Laht, M., Rebane, R., Lember, E., Pachel, K., Kriipsalu, M., Tenno, T., Iital, A.: Removal of hazardous substances in municipal wastewater treatment plants. Water Sci. Technol. 81(9), 2011–2022 (2020). https://doi.org/10.2166/wst.2020.264
- 53. Kõrgmaa, V., Tenno, T., Kivirüt, A., Kriipsalu, M., Gross, M., Tamm, P., Karabelnik, K., Terase, H., Värk, V., Lepik, N., Pachel, K., Iital, A.: A novel method for rapid assessment of the performance and complexity of small wastewater treatment plants. Proc. Est. Acad. Sci. 68(1), 32–42 (2019). https://doi.org/ 10.3176/proc.2019.1.03
- Tooming, A.: Estonian experience in the water management. https://unece.org/fileadmin/DAM/env/documents/2012/wat/ workshops/Nordic_Baltic_Seminar_Oslo/4a.Estonia_final_ water_management_sewage.pdf (2011). Accessed 27 Dec 2022
- 55. Bimová, P., Roupcová, P., Klouda, K., Matejová, L., Stanová, A.V., Grabicová, K., Grabic, R., Majová, V., Híveš, J., Špalková, V., Gemeiner, P., Celec, P., Konecná, B., Bírošová, L., Krahulcová, M., Mackulak, T.: Biochar – An efficient sorption material for the removal of pharmaceutically active compounds, DNA and RNA fragments from wastewater. J. Environ. Chem. Eng. 9(4), 105746 (2021). https://doi.org/10.1016/J.JECE.2021.105746
- Zubair, M., Ihsanullah, I., Abdul Aziz, H., Azmier Ahmad, M., Al-Harthi, M.A.: Sustainable wastewater treatment by biochar/ layered double hydroxide composites: progress, challenges, and

2455

outlook. Bioresour. Technol. **319**, 124128 (2021). https://doi.org/ 10.1016/j.biortech.2020.124128

- Shackley, S., Hammond, J., Gaunt, J., Ibarrola, R.: The feasibility and costs of biochar deployment in the UK. Carbon Manag. 2(3), 335–356 (2011). https://doi.org/10.4155/cmt.11.22
- Hanoğlu, A., Çay, A., Yanık, J.: Production of biochars from textile fibres through torrefaction and their characterisation. Energy 166, 664–673 (2019). https://doi.org/10.1016/j.energy.2018.10.
 123
- Acharya, B., Dutta, A., Minaret, J.: Review on comparative study of dry and wet torrefaction. Sustain. Energy Technol. Assess. 12, 26–37 (2015). https://doi.org/10.1016/j.seta.2015.08.003
- Bergman, P.C.A., Boersma, A.R., Zwart, R.W.R., Kiel, J.H.A.: "Torrefaction for biomass co-firing in existing coal-fired power stations." [Online]. Available: https://publicaties.ecn.nl/PdfFetch. aspx?nr=ECN-C--05-013 (2005). Accessed 29 Dec 2018
- Zhang, D., Wang, F., Zhang, A., Yi, W., Li, Z., Shen, X.: Effect of pretreatment on chemical characteristic and thermal degradation behavior of corn stalk digestate : comparison of dry and wet torrefaction. Bioresour. Technol. 275, 239–246 (2019). https:// doi.org/10.1016/j.biortech.2018.12.044
- Budai, A., Wang, L., Gronli, M., Strand, L.T., Antal, M.J., Abiven, S., Dieguez-Alonso, A., Anca-Couce, A., Rasse, D.P.: Surface properties and chemical composition of corncob and miscanthus biochars: Effects of production temperature and method. J. Agric. Food Chem. 62(17), 3791–3799 (2014). https://doi.org/10.1021/jf501139f
- Xu, X., Tu, R., Sun, Y., Li, Z., Jiang, E.: Influence of biomass pretreatment on upgrading of bio-oil: comparison of dry and hydrothermal torrefaction. Biores. Technol. 262, 261–270 (2018). https://doi.org/10.1016/j.biortech.2018.04.037
- 64. Soh, M., Khaerudini, D.S., Chew, J.J., Sunarso, J.: Wet torrefaction of empty fruit bunches (EFB) and oil palm trunks (OPT): effects of process parameters on their physicochemical and structural properties. S. Afr. J. Chem. Eng. 35, 126–136 (2021). https://doi.org/10.1016/j.sajce.2020.09.004
- Brewer, C.E., Schmidt-Rohr, K., Satrio, J.A., Brown, R.C.: Characterization of biochar from fast pyrolysis and gasification systems. Environ. Prog. Sustain. Energy 28(3), 386–396 (2009). https://doi.org/10.1002/ep.10378
- Benedetti, V., Patuzzi, F., Baratieri, M.: Characterization of char from biomass gasification and its similarities with activated carbon in adsorption applications. Appl. Energy 227(2017), 92–99 (2018). https://doi.org/10.1016/j.apenergy.2017.08.076
- Lee, J., Sarmah, A.K., Kwon, E.E.: Production and Formation of Biochar. In: Ok, Y.S., Daniel, C.W. (eds.) Tsang Biochar from Biomass and Waste, pp. 3–18. Elsevier, Amsterdam (2019). https://doi.org/10.1016/B978-0-12-811729-3.00001-7
- Yaman, S.: Pyrolysis of biomass to produce fuels and chemical feedstocks. Energy Convers. Manage. 45(5), 651–671 (2004). https://doi.org/10.1016/S0196-8904(03)00177-8
- Ippolito, J.A., Laird, D.A., Busscher, W.J.: Environmental benefits of biochar. J. Environ. Qual. 41(4), 967 (2012). https://doi.org/10.2134/jeq2012.0151
- Odinga, E.S., Gudda, F.O., Waigi, M.G., Wang, J., Gao, Y.: Occurrence, formation and environmental fate of polycyclic aromatic hydrocarbons in biochars. Fundam. Res. 1(3), 296–305 (2021). https://doi.org/10.1016/J.FMRE.2021.03.003
- Mohan, D., Pittman, C.U., Steele, P.H.: Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuels 20(3), 848–889 (2006). https://doi.org/10.1021/ef0502397
- Laird, D.A., Brown, R.C., Amonette, J.E., Lehmann, J.: Review of the pyrolysis platform for coproducing bio-oil and biochar. Biofuels Bioprod. Biorefin. 3(5), 547–562 (2009). https://doi. org/10.1002/bbb.169

- Leng, L., Huang, H., Li, H., Li, J., Zhou, W.: Biochar stability assessment methods: a review. Sci. Total Environ. 647, 210–222 (2019). https://doi.org/10.1016/j.scitotenv.2018.07.402
- Onay, O., Kockar, O.M.: Slow, fast and flash pyrolysis of rapeseed. Renew. Energy 28(15), 2417–2433 (2003). https://doi.org/ 10.1016/S0960-1481(03)00137-X
- Adesemuyi, F.M., Adebayo, M.A., Akinola, A.O., Olasehinde, E.F., Adewole, K.A., Lajide, L.: Preparation and characterisation of biochars from elephant grass and their utilisation for aqueous nitrate removal: effect of pyrolysis temperature. J. Environ. Chem. Eng (2020). https://doi.org/10.1016/j.jece.2020.104507
- Rathnayake, D., Maziarka, P., Ghysels, S., Mašek, O., Sohi, S., Ronsse, F.: How to trace back an unknown production temperature of biochar from chemical characterization methods in a feedstock independent way. J. Anal. Appl. Pyrolysis 151, 104926 (2020). https://doi.org/10.1016/j.jaap.2020.104926
- Gazulla, M.F., Rodrigo, M., Orduña, M., Gómez, C.M.: Determination of carbon, hydrogen, nitrogen and sulfur in geological materials using elemental analysers. Geostand. Geoanal. Res. 36(2), 201–217 (2012). https://doi.org/10.1111/J.1751-908X. 2011.00140.X
- Parsa, M., Nourani, M., Baghdadi, M., Hosseinzadeh, M., Pejman, M.: Biochars derived from marine macroalgae as a mesoporous by-product of hydrothermal liquefaction process: characterization and application in wastewater treatment. J. Water Process. Eng. 32, 100942 (2019). https://doi.org/10.1016/j. jwpe.2019.100942
- 79. Wang, P., Liu, X., Yu, B., Wu, X., Xu, J., Dong, F., Zheng, Y.: Characterization of peanut-shell biochar and the mechanisms underlying its sorption for atrazine and nicosulfuron in aqueous solution. Sci. Total Environ. **702**(2), 134767 (2020). https://doi. org/10.1016/j.scitotenv.2019.134767
- Sotoudehnia, F., Baba Rabiu, A., Alayat, A., McDonald, A.G.: Characterization of bio-oil and biochar from pyrolysis of waste corrugated cardboard. J. Anal. Appl. Pyrolysis 145, 104722 (2020). https://doi.org/10.1016/j.jaap.2019.104722
- Tong, W., Cai, Z., Liu, Q., Ren, S., Kong, M.: Evaluation of biochar combustion reactivity under pyrolysis temperature: microstructure characterization, kinetics and thermodynamics. J. Energy Inst. 93(5), 1914–1923 (2020). https://doi.org/10.1016/j. joei.2020.04.006
- ThermoFisher Sientific. EDX Analysis with SEM: How Does it Work? - Accelerating Microscopy. https://www.thermofisher. com/blog/microscopy/edx-analysis-with-sem-how-does-it-work/ (2020). Accessed 25 Nov 2022
- Chen, G., Taherymoosavi, S., Cheong, S., Yin, Y., Akter, R., Marjo, C.E., Rich, A.M., Mitchell, D.R.G., Fan, X., Chew, J., Pan, G., Li, L., Bian, R., Horvat, J., Mohammed, M., Munroe, P., Joseph, S.: Advanced characterization of biomineralization at plaque layer and inside rice roots amended with iron-and silicaenhanced biochar. Sci. Rep. **11**, 159 (2021). https://doi.org/10. 1038/s41598-020-80377-z
- Li, X., Shen, Q., Zhang, D., Mei, X., Ran, W., Xu, Y., Yu, G.: Functional groups determine biochar properties (pH and EC) as studied by two-dimensional 13C NMR correlation spectroscopy. PLoS ONE (2013). https://doi.org/10.1371/JOURNAL.PONE. 0065949
- De Sousa, D.V., Guimarães, L.M., Félix, J.F., Ker, J.C., Schaefer, C.E.R.G., Rodet, M.J.: Dynamic of the structural alteration of biochar in ancient Anthrosol over a long timescale by Raman spectroscopy. PLoS ONE 15(3), e0229447 (2020). https://doi. org/10.1371/JOURNAL.PONE.0229447
- Escudero-Curiel, S., Acevedo-García, V., Sanromán, M.Á., Pazos, M.: Eco-approach for pharmaceutical removal: thermochemical waste valorisation, biochar adsorption and

electro-assisted regeneration. Electrochim. Acta **389**, 138694 (2021). https://doi.org/10.1016/J.ELECTACTA.2021.138694

- Solanki, A., Boyer, T.H.: Pharmaceutical removal in synthetic human urine using biochar. Environ. Sci.: Water Res. Technol. 3(3), 553–565 (2017). https://doi.org/10.1039/C6EW00224B
- Oliveira, F.R., Patel, A.K., Jaisi, D.P., Adhikari, S., Lu, H., Khanal, S.K.: Environmental application of biochar: current status and perspectives. Biores. Technol. 246, 110–122 (2017). https:// doi.org/10.1016/j.biortech.2017.08.122
- Oginni, O., Singh, K.: Effect of carbonization temperature on fuel and caffeine adsorption characteristics of white pine and Norway spruce needle derived biochars. Ind. Crops Prod. 162, 113261 (2021). https://doi.org/10.1016/j.indcrop.2021.113261
- Borah, A.: Review of the emerging use of activated carbon or biochar media as stormwater source controls. https://sustain.ubc. ca/sites/default/files/2020-16_Review of activated charcoal and biochar_Borah.pdf (2020). Accessed 20 Nov 2021
- Crini, G., Lichtfouse, E., Wilson, L.D., Morin-Crini, N.: Conventional and non-conventional adsorbents for wastewater treatment. Environ. Chem. Lett. **17**(1), 195–213 (2019). https://doi.org/10. 1007/S10311-018-0786-8/TABLES/2
- Shirani, Z., Song, H., Bhatnagar, A.: Efficient removal of diclofenac and cephalexin from aqueous solution using *Anthriscus sylvestris*-derived activated biochar. Sci. Total Environ. **745**, 140789 (2020). https://doi.org/10.1016/j.scitotenv. 2020.140789
- Thompson, K.A., Shimabuku, K.K., Kearns, J.P., Knappe, D.R.U., Summers, R.S., Cook, S.M.: Environmental comparison of biochar and activated carbon for tertiary wastewater treatment. Environ. Sci. Technol. 50(20), 11253–11262 (2016). https://doi. org/10.1021/ACS.EST.6B03239
- Xiao, L., Feng, L., Yuan, G., Wei, J.: Low-cost field production of biochars and their properties. Environ. Geochem. Health 42(6), 1569–1578 (2019). https://doi.org/10.1007/S10653-019-00458-5
- Statistics Estonia. Growth in life expectancy has slowed down, but Estonian people live a longer healthy life. https://www.stat. ee/en/node/183291 (2021). Accessed 21 July 2022
- American Chemical Society. (n.d.). Ibuprofen. https://www.acs. org/content/acs/en/molecule-of-the-week/archive/i/ibuprofen. html. Accessed 13 Dec 2021
- Bian, X., Jiang, L., Gan, Z., Guan, X., Zhang, L., Cai, L., Hu, X.: A glimepiride-metformin multidrug crystal: synthesis, crystal structure analysis, and physicochemical properties. Molecules (2019). https://doi.org/10.3390/MOLECULES24203786
- Liu, Y.J., Hu, C.Y., Lo, S.L.: Comparison of the degradation of multiple amine-containing pharmaceuticals during electroindirect oxidation and electrochlorination processes in continuous system. Water Res. 203, 117517 (2021). https://doi.org/10. 1016/J.WATRES.2021.117517
- National Library of Medicine (PubChem). (n.d.-a). Diclofenac. https://pubchem.ncbi.nlm.nih.gov/compound/diclofenac#secti on=1D-NMR-Spectra. Accessed 13 Dec 2021
- National Library of Medicine (PubChem). (n.d.-b). Ibuprofen. https://pubchem.ncbi.nlm.nih.gov/compound/Ibuprofen. Accessed 13 Dec 2021
- National Library of Medicine (PubChem). (n.d.-c). Metformin. https://pubchem.ncbi.nlm.nih.gov/compound/metformin#secti on=3D-Conformer. Accessed 13 Dec 2021
- Koester, V.: What is HPLC? ChemistryViews. https://www. chemistryviews.org/details/education/9464911/What_is_HPLC/ (2016). Accessed 3 Jan 2023
- Seneca: Alkaloid Chemistry. In: Aniszewski, T. (ed.) Alkaloids— Secrets of Life, pp. 61–139. Elsevier, Amsterdam (2007). https:// doi.org/10.1016/B978-044452736-3/50004-0
- Mccormick, J.P., Carrel, J.E.: Cantharidin Biosynthesis and Function in Meloid Beetles. In: Prestwich, G.D., Blomquist, G.J.

(eds.) Pheromone Biochemistry, pp. 307–350. Academic Press, Cambridge (1987). https://doi.org/10.1016/B978-0-12-564485-3. 50015-4

- 105. Tran, H.N., Tomul, F., Ha, N.T., Nguyen, D.T., Lima, E.C., Le, G.T., Chang, C.T., Masindi, V., Woo, S.H.: Innovative spherical biochar for pharmaceutical removal from water: insight into adsorption mechanism. J. Hazard. Mater. **394**, 122255 (2020)
- 106. Paunovic, O., Pap, S., Maletic, S., Taggart, M.A., Boskovic, N., Turk Sekulic, M.: Ionisable emerging pharmaceutical adsorption onto microwave functionalised biochar derived from novel lignocellulosic waste biomass. J. Colloid Interface Sci. 547, 350–360 (2019). https://doi.org/10.1016/j.jcis.2019.04.011
- Chakraborty, P., Show, S., Ur Rahman, W., Halder, G.: Linearity and non-linearity analysis of isotherms and kinetics for ibuprofen remotion using superheated steam and acid modified biochar. Process Saf. Environ. Prot. 126, 193–204 (2019). https://doi.org/ 10.1016/j.psep.2019.04.011
- Mondal, S., Aikat, K., Halder, G.: Biosorptive uptake of ibuprofen by chemically modified Parthenium hysterophorus derived biochar: equilibrium, kinetics, thermodynamics and modeling. Ecol. Eng. 92, 158–172 (2016). https://doi.org/10.1016/j.ecole ng.2016.03.022
- 109. Mondal, S., Bobde, K., Aikat, K., Halder, G.: Biosorptive uptake of ibuprofen by steam activated biochar derived from mung bean husk: equilibrium, kinetics, thermodynamics, modeling and ecotoxicological studies. J. Environ. Manage. **182**, 581–594 (2016). https://doi.org/10.1016/j.jenvman.2016.08.018
- 110. Xu, D., Li, Z., Wang, P., Bai, W., Wang, H.: Aquatic plantderived biochars produced in different pyrolytic conditions: spectroscopic studies and adsorption behavior of diclofenac sodium in water media. Sustain. Chem. Pharm. **17**, 100275 (2020). https://doi.org/10.1016/j.scp.2020.100275
- 111. Rathod, R.H., Chaudhari, S.R., Patil, A.S., Shirkhedkar, A.A.: Ultra-high performance liquid chromatography-MS/MS (UHPLC-MS/MS) in practice: analysis of drugs and pharmaceutical formulations. Futur. J. Pharm. Sci. 5(1), 1–26 (2019). https://doi.org/10.1186/S43094-019-0007-8
- EAG Laboratories. Ultra-High-Performance Liquid Chromatography (UHPLC). https://www.eag.com/techniques/chromatogr aphy/ultra-high-performance-liquid-chromatography-uhplc/ (2023). Accessed 3 Jan 2023
- Taleuzzaman, M., Ali, S., Gilani, S., Imam, S., Hafeez, A.: Ultra performance liquid chromatography (UPLC)—A review. J. Anal. Pharm. Chem. 2(6), 1056 (2015)
- 114. Creative Proteomics. Ultra Performance Liquid Chromatography (UPLC) Based Analysis Services - Creative Proteomics. https:// www.creative-proteomics.com/technology/ultra-performanceliquid-chromatography-uplc-based-analysis-service.htm (2023). Accessed 3 Jan 2023
- Dyad Labs. (n.d.). HPLC vs. UPLC. In D. https://dyadlabs.com/ wp-content/uploads/2018/10/hplc_uplc_onesheet.pdf. Accessed 3 Jan 2023
- Wu, Y., Engen, J.R., Hobbins, W.B.: Ultra performance liquid chromatography (UPLC) further improves hydrogen/deuterium exchange mass spectrometry. J. Am. Soc. Mass Spectrom. 17(2), 163–167 (2006). https://doi.org/10.1016/J.JASMS.2005.10.009
- 117. Wu, Q., Zhang, Y., Cui, M., Liu, H., Liu, H., Zheng, Z., Zheng, W., Zhang, C., Wen, D.: Pyrolyzing pharmaceutical sludge to biochar as an efficient adsorbent for deep removal of fluoroquinolone antibiotics from pharmaceutical wastewater: performance and mechanism. J. Hazard. Mater. (2021). https://doi.org/10. 1016/J.JHAZMAT.2021.127798
- Pratiwi, R.A., Nandiyanto, A.B.D.: How to read and interpret UV-VIS spectrophotometric results in determining the structure of chemical compounds. Indonesian J. Educ. Res. Technol. 2(1), 1–20 (2022). https://doi.org/10.17509/ijert.v2i1.35171

- 119. Tom, J.: UV-Vis Spectroscopy: Principle, Strengths and Limitations and Applications | Technology Networks. https://www. technologynetworks.com/analysis/articles/uv-vis-spectroscopyprinciple-strengths-and-limitations-and-applications-349865 (2021). Accessed 3 Jan 2023
- Singh, V., Srivastava, V.C.: Self-engineered iron oxide nanoparticle incorporated on mesoporous biochar derived from textile mill sludge for the removal of an emerging pharmaceutical pollutant. Environ. Pollut. 259, 113822 (2020). https://doi.org/10.1016/j. envpol.2019.113822
- 121. Maged, A., Dissanayake, P.D., Yang, X., Pathirannahalage, C., Bhatnagar, A., Ok, Y.S.: New mechanistic insight into rapid adsorption of pharmaceuticals from water utilizing activated biochar. Environ. Res. 202, 111693 (2021). https://doi.org/10. 1016/J.ENVRES.2021.111693
- 122. Chakraborty, P., Singh, S.D., Gorai, I., Singh, D., Rahman, W.U., Halder, G.: Explication of physically and chemically treated date stone biochar for sorptive remotion of ibuprofen from aqueous solution. J. Water Process. Eng. **33**, 101022 (2020). https://doi. org/10.1016/j.jwpe.2019.101022
- Moreno-Pérez, J., Pauletto, P.S., Cunha, A.M., Bonilla-Petriciolet, Á., Salau, N.P.G., Dotto, G.L.: Three-dimensional mass transport modeling of pharmaceuticals adsorption inside ZnAl/biochar composite. Colloids Surf. A Physicochem. Eng. Asp. 614, 126170 (2021). https://doi.org/10.1016/j.colsurfa.2021. 126170
- 124. Quesada, H.B., De Araújo, T.P., Cusioli, L.F., De Barros, M.A.S.D., Gomes, R.G., Bergamasco, R.: Evaluation of novel activated carbons from chichá-do-cerrado (Sterculia striata St. Hil. et Naud) fruit shells on metformin adsorption and treatment of a synthetic mixture. J. Environ. Chem. Eng. 9(1), 104914 (2021). https://doi.org/10.1016/j.jece.2020.104914
- 125. Shi, J., Guo, C., Lei, C., Liu, Y., Hou, X., Zheng, X., Hu, Q.: High-performance biochar derived from the residue of Chaga mushroom (*Inonotus obliquus*) for pollutants removal. Bioresour. Technol. (2021). https://doi.org/10.1016/J.BIORTECH.2021. 126268
- Liyanage, A.S., Canaday, S., Pittman, C.U., Jr., Mlsna, T.: Rapid remediation of pharmaceuticals from wastewater using magnetic Fe3O4/Douglas for biochar adsorbents. Chemosphere 258, 127336 (2020)
- 127. Keerthanan, S., Bhatnagar, A., Mahatantila, K., Jayasinghe, C., Ok, Y.S., Vithanage, M.: Engineered tea-waste biochar for the removal of caffeine, a model compound in pharmaceuticals and personal care products (PPCPs), from aqueous media. Environ. Technol. Innov. 19, 100847 (2020). https://doi.org/10.1016/j.eti. 2020.100847
- Mahmoud, M.E., El-Ghanam, A.M., Saad, S.R., Mohamed, R.H.A.: Promoted removal of metformin hydrochloride antidiabetic drug from water by fabricated and modified nanobiochar from artichoke leaves. Sustain. Chem. Pharm. 18, 100336 (2020). https://doi.org/10.1016/j.scp.2020.100336
- 129. Huang, X., Liu, Y., Liu, S., Li, Z., Tan, X., Ding, Y., Zeng, G., Xu, Y., Zeng, W., Zheng, B.: Removal of metformin hydrochloride by: *Alternanthera philoxeroides* biomass derived porous carbon materials treated with hydrogen peroxide. RSC Adv. 6(83), 79275–79284 (2016). https://doi.org/10.1039/c6ra08365j
- De Bhowmick, G., Briones, R.M., Thiele-Bruhn, S., Sen, R., Sarmah, A.K.: Adsorptive removal of metformin on specially designed algae-lignocellulosic biochar mix and techno-economic feasibility assessment. Environ. Pollut. 292, 118256 (2022). https://doi.org/10.1016/J.ENVPOL.2021.118256
- 131. dos Santos, G.E.D.S., Ide, A.H., Duarte, J.L.S., McKay, G., Silva, A.O.S., Meili, L.: Adsorption of anti-inflammatory drug diclofenac by MgAl/layered double hydroxide supported

on Syagrus coronata biochar. Powder Technol. **364**, 229–240 (2020). https://doi.org/10.1016/j.powtec.2020.01.083

- Lonappan, L., Rouissi, T., Liu, Y., Brar, S.K., Surampalli, R.Y.: Removal of diclofenac using microbiochar fixed-bed column bioreactor. J. Environ. Chem. Eng. 7(1), 102894 (2019). https://doi. org/10.1016/j.jece.2019.102894
- Correa-Navarro, Y.M., Giraldo, L., Moreno-Piraján, J.C.: Dataset for effect of pH on caffeine and diclofenac adsorption from aqueous solution onto fique bagasse biochars. Data Brief 25, 104111 (2019). https://doi.org/10.1016/j.dib.2019.104111
- He, L., Lv, L., Pillai, S.C., Wang, H., Xue, J., Ma, Y., Liu, Y., Chen, Y., Wu, L., Zhang, Z., Yang, L.: Efficient degradation of diclofenac sodium by periodate activation using Fe/Cu bimetallic modified sewage sludge biochar/UV system. Sci. Total Environ. 783, 146974 (2021). https://doi.org/10.1016/j.scitotenv.2021. 146974
- 135. Zhang, H., Tu, Y.J., Duan, Y.P., Liu, J., Zhi, W., Tang, Y., Xiao, L.S., Meng, L.: Production of biochar from waste sludge/leaf for fast and efficient removal of diclofenac. J. Mol. Liq. 299, 112193 (2020). https://doi.org/10.1016/j.molliq.2019.112193
- 136. Chakraborty, P., Banerjee, S., Kumar, S., Sadhukhan, S., Halder, G.: Elucidation of ibuprofen uptake capability of raw and steam activated biochar of Aegle marmelos shell: isotherm, kinetics, thermodynamics and cost estimation. Process Saf. Environ. Prot. 118, 10–23 (2018). https://doi.org/10.1016/j.psep.2018.06.015
- 137. Chakraborty, P., Show, S., Banerjee, S., Halder, G.: Mechanistic insight into sorptive elimination of ibuprofen employing bi-directional activated biochar from sugarcane bagasse: Performance evaluation and cost estimation. J. Environ. Chem. Eng. 6(4), 5287–5300 (2018). https://doi.org/10.1016/j.jece.2018.08.017
- 138. Show, S., Mukherjee, S., Devi, M.S., Karmakar, B., Halder, G.: Linear and non-linear analysis of Ibuprofen riddance efficacy by *Terminalia catappa* active biochar: equilibrium, kinetics, safe

disposal, reusability and cost estimation. Process Saf. Environ. Prot. **147**, 942–964 (2021). https://doi.org/10.1016/j.psep.2021. 01.024

- Ocampo-Perez, R., Padilla-Ortega, E., Medellin-Castillo, N.A., Coronado-Oyarvide, P., Aguilar-Madera, C.G., Segovia-Sandoval, S.J., Flores-Ramírez, R., Parra-Marfil, A.: Synthesis of biochar from chili seeds and its application to remove ibuprofen from water. Equilibrium and 3D modeling. Sci. Total Environ. 655, 1397–1408 (2019). https://doi.org/10.1016/j.scitotenv.2018. 11.283
- Essandoh, M., Kunwar, B., Pittman, C.U., Mohan, D., Mlsna, T.: Sorptive removal of salicylic acid and ibuprofen from aqueous solutions using pine wood fast pyrolysis biochar. Chem. Eng. J. 265, 219–227 (2015). https://doi.org/10.1016/j.cej.2014.12.006
- 141. Puga, A., Moreira, M.M., Figueiredo, S.A., Delerue-Matos, C., Pazos, M., Rosales, E., Sanromán, M.Á.: Electro-Fenton degradation of a ternary pharmaceutical mixture and its application in the regeneration of spent biochar. J. Electroanal. Chem. 886, 115135 (2021). https://doi.org/10.1016/J.JELECHEM.2021. 115135
- 142. World Health Organization (WHO). (n.d.). Data and statistics. https://www.euro.who.int/en/health-topics/noncommunicablediseases/diabetes/data-and-statistics. Accessed 4 July 2021

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.