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Abstract
 This study investigated the effects of peat (PT) and maize straw biochar (MSB) on gas emissions and microbial metabolism 
characteristics during chicken manure (CM) and maize straw (MS) composting. Three treatments with different additives 
(0%, 5% PT, 5% MSB added on dry weight basis) were designed to conduct 30-day aerobic composting experiments in nine 
insulated polyvinyl chloride (PVC) reactors. The results showed that PT and MSB addition increased the temperature and 
nitrate-nitrogen (NO3

−–N) content but decreased the ammonium nitrogen (NH4
+–N) content of compost. Compared with 

control, the total emissions of methane (CH4), nitrous oxide (N2O) and ammonia (NH3) in PT and MSB were reduced by 
20.13–30.57%, 28.88–47.46% and 37.35–52.71%, respectively. In addition, PT and MSB amendments improved the microbial 
utilization capacity on carbohydrates, esters and carboxylic acids. Redundancy analysis revealed that temperature, NH4

+–N, 
pH and microbial metabolism were positively correlated with CH4, N2O and NH3 emissions. Meanwhile, temperature, 
NH4

+–N and pH also had positive correlations with microbial metabolism. Together these results indicated that PT and MSB 
amendment improved the metabolism capacity of microbes and reduced CH4, N2O and NH3 emissions, eventually mitigating 
nitrogen loss and promoting the quality of compost product.
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Statement of Novelty

This experiment aimed to evaluate the efficiency of peat 
(PT) and maize straw biochar (MSB) to decrease gas emis-
sions of CH4, N2O and NH3 during chicken manure (CM) 
and maize straw (MS) composting. The carbon sources 
degradation capacity of microbes at different compost-
ing stages was detected. Redundancy analysis revealed 
the relative contributions of environmental factors and 
microbial metabolism on gas emissions. Our finding sug-
gested that PT and MSB effectively inhibited the release of 
CH4, N2O and NH3 and promoted the quality of compost, 
thus reducing the risk of gas emissions during CM and 
MS composting and improving the agricultural value of 
compost products.

Introduction

Chicken manure (CM) has increased rapidly due to the sus-
tained development of the large-scale livestock industry 
in the past decades. It is estimated that approximately 457 
million tons of CM are globally produced each year [1]. 
CM is a vital fertilizer resource for farming and gardening 
[2] because it is rich in organic matter and essential plant 
nutrients such as nitrogen, phosphorous, calcium and potas-
sium [3, 4]. However, CM contains many pathogens, parasite 
ova, and toxic substances [1], and the direct application of 
CM into the soil would cause a series of environmental and 
social problems [5, 6].

Composting has proven to be an eco-friendly and eco-
nomically feasible technology for recycling organic waste 
[7]. It is a natural biological process that converts organic 
matter into stable and sanitary end products [8]. Notably, 
large amounts of ammonia (NH3) and greenhouse gas 
(GHG) are released with the decomposition of organic mat-
ter during the composting process, resulting in atmospheric 
pollution and reduction in the agricultural value of compost 
products. Numerous studies have demonstrated that addi-
tives amendment could effectively alleviate gas emissions 
during composting. A previous report showed that 10% clay 
addition reduced methane (CH4) and nitrous oxide (N2O) 
emissions during pig manure composting [9]. Fukumoto 
et al. [10] revealed that the addition of nitrite-oxidizing bac-
teria after the thermophilic phase of composting inhibited 
NO2

− accumulation and thus decreased the emission rate 
of N2O. Awasthi et al. [11] also found that the emissions of 
CH4, N2O and NH3 were effectively reduced during co-com-
posting of dewatered fresh sewage sludge, lime and biochar.

Peat (PT) is one of the carbon-based materials produced 
by the decomposition of the plants under a water-saturated 
and anoxic condition [12]. It was reported that PT pos-
sessed excellent characteristics such as high specific area, 
high pH range and abundant humic acid [13]. PT could be 
a potential bulking agent for composting because it can 
increase cation exchange capacity and regulate the mois-
ture content and density of compost [14]. Chang et al. [15] 
found that the addition of woody peat could promote the 
maturity process and significantly decrease the nitrogen 
loss during vegetable waste composting. As a stable car-
bon-rich material, biochar can regulate bulk density, water 
retention and oxygen supply during composting [16, 17]. 
The high porosity and sorption capacity of biochar can 
provide suitable habitats for microorganisms and stimu-
late the activity of microbes in compost, which may effec-
tively control nitrogen loss and gas emissions [18, 19]. 
Awasthi et al. [20] studied the effects of bamboo biochar 
on poultry manure composting, and their results suggested 
that bamboo biochar amendment reduced the emissions 
of GHG and NH3. Agyarko-Mintah et al. [21] found that 
green waste and poultry litter biochar addition reduced the 
total nitrogen (TN) and NH3 losses and improved the fer-
tility of final compost products. Wheat straw biochar was 
demonstrated to play a positive role in organic matter deg-
radation and nitrogen conservation during sewage sludge 
composting [22, 23]. Compared to wheat straw biochar, 
maize straw biochar (MSB) performed better in terms of 
thermophilic temperature and TN concentration during pig 
manure composting [24]. Although many researches about 
the influence of biochar as an additive on compost had 
been reported, no study focused on the contrast effects of 
PT and MSB on gas emissions and microbial metabolism 
during CM and MS composting.

In this study, we evaluated the impacts of PT and MSB 
on CH4, N2O and NH3 emissions during co-composting 
of CM with MS. Biolog EcoPlate is a low-cost, conveni-
ent and rapid technique for detecting the carbon sources 
utilization ability of microbial populations [25]. Therefore, 
we used Biolog EcoPlate to investigate the carbon sources 
metabolism of microbes during composting. The relation-
ships between environmental factors, microbial metabo-
lism and gas emissions were also evaluated to under-
stand the variations of gas emissions during composting. 
The results obtained from this study would provide new 
insights into the development of composting technology 
and better understand important factors responsible for the 
changes in CH4, N2O and NH3 emissions during the CM 
and MS composting process.
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Materials and Methods

Experimental Design

The composting materials in the present study comprised 
fresh CM, MS, PT and MSB. The fresh CM and MS were 
collected from a local farm (Jiujiang, Jiangxi Province, 
China). The MS was cut into 5 mm pieces before use. PT and 
MSB were purchased from a factory in Jiangsu Province, 
China. The biochar was prepared from MS by pyrolysis at a 
temperature of 400 °C in oxygen-poor condition for 8 h. The 
basic properties of the raw materials are shown in Table 1. 
Composting was conducted in 9 insulated polyvinyl chlo-
ride (PVC) reactors (diameter 45 cm, height 73 cm, active 
volume 100 L) [20, 26]. The CM and MS were thoroughly 
mixed with the ratio of 3:2 (dry weight basis), and each 
treatment contained approximately 75 L of the mixture. PT 
or MSB was added in different treatments. The treatment 
contained 5% (w/w) PT was labeled as PT, while that con-
tained 5% (w/w) MSB was labeled as MSB. The control 
treatment (CK) was conducted by introducing the mixture 
without additives. Each treatment was repeated three times. 
The duration of the composting was 30 days. Deionized 
water was added to composting piles to maintain 60% mois-
ture content throughout the experiment. Intermittent aeration 
(twice a day for 20 min) was employed with an air pump at 
a rate of 0.45 L kg−1 (dry weight) h−1. The pile temperature 
and ambient temperature were monitored daily using digital 
thermometers located in the middle of each pile and outside 
the reactors.

Sampling and Chemical Analysis

Compost samples were collected from each treatment on 
day 1, 5, 10, 15, 20, 25 and 30. Each sample (about 250 g) 
was distributed into two parts: one part was immediately 
stored at 4 °C, and the other was air-dried and preserved 
in a desiccator. Electricity conductivity (EC) and pH were 
analyzed using aqueous extracts of compost samples. The 
aqueous extracts were obtained by mechanically shaking 
the mixture of samples and deionized water at a ratio of 
1:5 (w/v, dry weight basis) for 1 h [27, 28]. TN content was 
determined by an elemental analyzer (Elementar, Germany) 
[29]. The concentrations of ammonium nitrogen (NH4

+–N) 

and nitrate-nitrogen (NO3
−–N) were measured via sodium 

hydroxide solution titration and ultraviolet spectrophotom-
eter colorimetry, respectively [30]. The germination index 
(GI) of samples was analyzed as described previously [31].

Gas Emissions Measurement

Gas sampling was carried out every 5 days during the com-
posting period. Gas samples were collected with syringes 
and stored in 1-L gas sampling bags [32]. The concentra-
tions of N2O and CH4 in gas samples were analyzed by gas 
chromatography (Agilent 6890 N, USA) [33]. The NH3 con-
centration was determined by absorbing the exhausted gas 
with the boric acid solution before titration with 1 mol L−1 
HCl [34].

Biolog EcoPlate Analysis

Biolog EcoPlate analysis was conducted to investigate the 
capacity of microorganisms to oxidize different carbon 
sources during composting [35]. The analyses were per-
formed from fresh compost samples collected on day 1, 
10 and 30. A fresh compost sample (1 g) was shaken in 
100 mL of sterile NaCl solution (0.85%, w/v) for 20 min 
at 20 °C. The obtained suspension was diluted to 1:1000 
and then inoculated onto a Biolog EcoPlate with a pipettor. 
Each well of the EcoPlate was added with 150 μL of the 
diluted suspension. The plates were subsequently incubated 
at 25 °C in the dark for 6 days. The absorbances of the plates 
were measured at 590 nm and 750 nm every 24 h using an 
automatic microorganism identification instrument (Biolog, 
USA). The absorbance data were used to calculate average 
well color development (AWCD), which could reflect the 
metabolic capacity of microorganisms in compost. The well 
absorbance values were corrected by subtracting the absorb-
ance of the control well before the data analysis. The AWCD 
was calculated as follows: AWCD = Σ ODi/n, where ODi 
represents the mean optical density value from each well, 
n is the number of carbon substrates (31 for EcoPlate) [36].

Statistical Analysis

Statistical analysis was conducted using SPSS 16.0 (SPSS 
for Windows, version 16.0, USA) with the significance level 
p < 0.05. Redundancy analysis was performed using the R 

Table 1   Basic characteristics of 
the raw composting materials

Parameters Chicken manure Maize straw Peat Maize straw biochar

Moisture content (%) 79.39 ± 0.27 9.78 ± 0.26 19.63 ± 0.26 1.74 ± 0.03
pH 7.61 ± 0.05 7.14 ± 0.03 5.25 ± 0.04 9.12 ± 0.05
TC (g kg−1) 379.28 ± 7.52 437.25 ± 18.64 453.48 ± 14.09 381.36 ± 22.54
TN (g kg−1) 29.52 ± 0.77 6.32 ± 0.24 5.64 ± 0.19 7.28 ± 0.29
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Cluster package (version 3.5.0 for Windows) to identify the 
correlation between gas emissions, environmental factors 
and microbial metabolism.

Results and Discussion

Variation in Physicochemical Properties 
of the Compost

Temperature is considered a principal parameter that deter-
mines the evolution of microbial communities and the 
degradation of organic materials during the composting 
process [37]. In the present study, the temperature of all 
piles elevated rapidly during the initial stage of composting 
(Fig. 1a). It took 5 days for CK to exceed 50 °C, and the fol-
lowing thermophilic phase lasted 6 days. Both PT and MSB 
exceeded 50 °C on day 4 and maintained the thermophilic 
phase for 8 days and 9 days, respectively. The peak tempera-
tures of PT (60.5 °C) and MSB (63.2 °C) were higher than 
that of CK (57.5 °C). As the composting progressed, the 
temperatures in all groups gradually decreased to close to 
the ambient level. These results indicated that the addition 
of PT and MSB increased the temperature and prolonged the 
thermophilic period of composting. As described in previ-
ous studies, the high surface area of PT and MSB could 
provide more suitable conditions for microbial reproduction 
and metabolism [13, 38, 39], thus accelerating the degrada-
tion of organic matter and increasing the pile temperature. It 
was reported that temperature above 50 °C could accelerate 
the rate of composting and kill pathogenic microorganisms 
[40, 41]. Consequently, the addition of PT and MSB could 
promote composting maturity and improve the quality of 
matured compost.

As shown in Fig. 1b, the pH in three treatments rose rap-
idly in the first 5 days of composting. The mineralization of 
organic matters such as proteins and amino acids led to the 
accumulation of NH3 [42], which contributed to the increase 
of pH during this stage. The peak pH in MSB(8.5), PT(8.3) 
and CK(8.2) was recorded on day 5, and then the pH gradu-
ally decreased in the later stage of composting. The highest 
pH value in MSB was likely due to the absorption capability 
of biochar to nitrogen-containing substances during com-
posting [43]. The formation of lower molecular weight fatty 
acids and CO2 may be responsible for the subsequent decline 
in pH [44]. At the end of composting, the pH in three treat-
ments was relatively stable, and the pH values were 7.5, 7.6 
and 7.8 for CK, PT and MSB, respectively.

EC can reflect the compost salinity and determine the 
effects of matured compost on seed germination [45]. The 
initial EC values in three treatments ranged from 4.3 to 4.6 
mS cm−1 (Fig. 1c). The EC value of each treatment decreased 
sharply in the early stage of composting. From day 5 onward, 

the EC values in three treatments gradually increased and then 
fluctuated until the end of composting. The final EC values in 
CK, PT and MSB were 3.3, 2.8 and 2.9 mS cm−1, respectively. 
In general, composting products could be safely applied into 
farmland only when the EC values of products were lower than 
4.0 mS·cm−1 [46]. Hence, the end-products in all treatments 
met the safety standards of application.

Evolution of NH4
+–N, NO3

−–N and TN During 
Composting

As shown in Fig. 2a, the NH4
+–N content of three treat-

ments increased rapidly during the first 5 days. The increase 

Fig. 1   Changes in temperature (a), pH (b) and EC (c) from different 
composting treatments. Error bars represent ± standard deviation
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in NH4
+–N was likely due to the rapid decomposition of 

organic nitrogenous compounds in the early stage of com-
posting [47]. Fang et al. [48] pointed out that the low pH 
in compost promoted the conversion of NH3 into NH4

+–N, 
which could explain the higher NH4

+–N content in CK com-
pared to PT and MSB during this period. The peak NH4

+–N 
contents were 3.55, 3.11 and 2.81 g kg−1 in CK, PT, and 
MSB treatments, respectively. Afterward, the NH4

+–N con-
tent in three treatments sharply declined from day 5 to day 
10 and then gradually stabilized. Raj and Antil [49] reported 
that the decrease of the NH4

+ might enhance nitrification 

and immobilization by microorganisms. After 30 days of 
composting, the NH4

+–N contents for CK, PT and MSB 
were 0.38, 0.18 and 0.08 g kg−1, respectively. As described 
previously, the NH4

+–N content lower than 0.20 g  kg−1 
was regarded as a maturity and stability index for compost 
[8]. Our data indicated that the addition of PT and MSB 
could improve the maturity and stability of final compost-
ing products.

NO3
−–N is an essential nitrogen source for plant metabo-

lism and growth [50]. In the present study, a similar trend 
of NO3

−–N content was observed in all treatments (Fig. 2b). 
The NO3

−–N content in three treatments slightly decreased 
during the initial stage and then gradually increased. Previ-
ous studies have demonstrated that the nitrifying bacteria 
could transform NH3 into NO3

−–N during composting, and 
high temperature strongly inhibited the growth and activity 
of nitrifying bacteria [51, 52]. Therefore, the increase of 
NO3

−–N content mainly occurred during the mature stage of 
composting. At the end of composting, the NO3

−–N contents 
were 0.52, 0.64 and 0.57 g kg−1 for CK, PT and MSB treat-
ments, respectively. It was noted that PT exhibited higher 
content of NO3

−–N than CK and MSB. As the first step of 
nitrification, oxidization of NH3 needed a suitable amount 
of alkali [53], and the decrease of pH would be favorable 
for the nitrification process. We inferred that the acidity of 
wood peat might provide a more suitable pH condition for 
nitrification and therefore increase the NO3

−–N content dur-
ing composting.

TN is one of the primary parameters to evaluate the qual-
ity of compost products [8]. The TN content of all treatments 
slightly decreased in the first 5 days and then gradually 
increased over time. The variation of TN content was pos-
sibly related to the continuous degradation of nitrogenous 
compounds during composting [54]. The TN content in 
end-products of CK, PT and MSB were 28.23, 32.77 and 
29.83 g kg−1, respectively. This finding suggested that the 
addition of PT and MSB could increase the nutrient contents 
of compost products. Awasthi et al. [27, 28] reported that 
the additives amendment facilitated the growth and activity 
of aerobic bacteria associated with organic nitrogen min-
eralization and therefore increased the nutrient contents of 
compost, which was consistent with our results.

Changes in Greenhouse Gases and Ammonia 
Emissions

CH4 is produced by methanogens under anaerobic conditions 
[34]. The CH4 emissions of all treatments primarily occurred 
in the thermophilic stage and then gradually decreased 
(Fig. 3a). With the increase of temperature, large amounts of 
organic matter were rapidly decomposed by microorganisms 
and caused inadequate oxygen supply during the thermo-
philic stage of composting [55, 56]. As a result, the partially 

Fig. 2   Variation in the content of NH4
+–N (a), NO3

−–N (b) and TN 
(c) during composting of all treatments. Error bars represent ± stand-
ard deviation
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anaerobic area in compost was developed in this stage to 
produce CH4. Besides, Gilroyed et al. [57] pointed out that 
methanotrophic community was not established in the initial 
phase of composting and thus, the oxidation of CH4 was not 
completely efficient. The cumulative CH4 emission in three 
treatments showed an increase in the early stage and then 
tended to be stable (Fig. 3b). After 30 days of composting, 
the addition of PT and MSB reduced the total CH4 emission 
by 20.13% and 30.57% compared with CK, respectively. 
It was possible because the high specific area of PT and 
MSB could partially improve the aeration condition, thereby 

accelerating the growth and activity of methanotrophs and 
enhancing CH4 oxidation [13, 58]. In addition, the high pore 
volume of biochar had been demonstrated to increase CH4 
sorption [59], which may account for the highest removal 
rate in compost with PT addition.

Many researchers have studied the N2O emission profile 
for its profound impacts on nitrogen conservation and global 
warming [47, 60]. In the present study, all treatments exhib-
ited a relatively high N2O emission rate in the early stage 
of composting and reached the highest N2O emission in the 
first week (Fig. 3c). The peak values of N2O emission in CK, 

Fig. 3   Emissions and accumulations of methane (a and b), nitrous oxide (c and d) and ammonia (e and f) in different composting piles. Error 
bars represent ± standard deviation
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PT and MSB were 2.97, 2.57 and 2.18 g kg−1 day−1, respec-
tively. As reported by previous studies, the N2O emission 
during composting is a complex process influenced by many 
factors, and N2O can be produced under both nitrification 
and denitrification processes [61–63]. Notably, the activity 
of nitrifiers was generally considered to be inhibited when 
the temperature was above 40 °C [64]. Meanwhile, Philippe 
et al. [65] reported that rapid depletion of oxygen and low 
nitrate concentration promoted the formation of N2O in the 
denitrification process. These findings suggested that the 
large amount of N2O in the first week might be produced 
mainly through the denitrification of nitrate. The high CH4 
emission in the first week (Fig. 3a) further demonstrated 
the inadequate oxygen supply during this period, support-
ing the possibility of N2O as a by-product of denitrification. 
As shown in Fig. 3d, the cumulative emissions of N2O in 
PT and MSB remained constant after day 17, while that in 
CK reached a stale value until day 26. Compared with CK, 
the cumulative emissions of N2O on day 30 were reduced 
by 28.88% and 47.46% in PT and MSB, respectively. These 
results indicated that PT and MSB, especially MSB, effi-
ciently decreased the N2O emission during CM and MS 
composting. The significant difference between MSB and 
CK was supported by Cornelissen et al. [66], who found 
direct sorption of N2O into biochar. Joseph et al. [67] also 
reported that biochar had redox activity and might act as the 
reducing agent in soil. Given the possibility of N2O emis-
sion via denitrification, we supposed that the redox activity 
of MSB might facilitate the transformation of NO3

−–N to 
N2, thus decreasing the N2O emission during composting.

The NH3 emission during composting causes nitrogen 
loss of compost products [6]. The variations of NH3 emis-
sion in our experiment are shown in Fig. 3e. Initially, the 
NH3 emissions in the three treatments increased sharply and 
reached their maximum values in the thermophilic stage. 
The peak values were 0.75, 0.52 and 0.59 g kg−1 day−1 for 
CK, PT and MSB, respectively. The emission of NH3 in 
animal manure was affected by pH and NH4

+–N H3 transfor-
mation equilibrium [54]. In the initial stage, nutrient degra-
dation was accompanied by increased pH and temperature in 
compost (Fig. 1). Meanwhile, the mineralization and ammo-
niation of organic nitrogen rapidly increased the production 
of NH4

+–N, which could volatilize in the form of NH3 due 
to high temperature and pH [68]. After 7 days of compost-
ing, the NH3 emission gradually decreased and eventually 
approached zero. This was attributable to the decrease of 
pH, which increased the content of acid radical ions and 
shifted the NH4

+–N H3 equilibrium [69]. The total cumula-
tive NH3 emissions were 1.57 and 2.08 g kg−1 for PT and 
MSB, respectively, which were lower than CK (3.32 g kg−1). 
The results showed that the addition of PT and MSB could 
efficiently reduce the volatilization of NH3 during compost-
ing, which might be associated with the large surface area 

and small particle size of PT and MSB. Previous research 
demonstrated that bulking agent with a large specific sur-
face area could absorb NH4

+–N and NH3 [32]. Besides, PT 
and MSB with small particle sizes could result in high bulk 
density of mixed compost materials, thereby reducing the 
NH3 emission [62].

Carbon Sources Utilization Capacity of Microbial 
Community

Biolog EcoPlate analysis was conducted to evaluate the car-
bon sources utilization capacity of microbial community at 
different stages of composting. The 31 carbon sources in the 
Biolog EcoPlate were classified into six categories accord-
ing to the biochemical properties. The AWCD of six carbon 
sources in three treatments is shown in Fig. 4. The AWCDs 
of carbohydrates, amino acids, esters and carboxylic acids 
increased in PT and MSB compared to CK on day 1, indicat-
ing that the addition of PT and MSB improved the carbon 
sources utilization ability of microbes. The peak values of 
six carbon sources for three treatments were observed on 
day 10, which meant that the microbial community had the 
highest metabolic activity in the thermophilic phase among 
the three composting stages. On day 30, the AWCDs of most 
carbon sources were still higher in PT and MSB than those 
in CK. PT and MSB provided more nutrients and suitable 
habitats for microorganisms and consequently increased the 
metabolic activity of microbial community. As reported in 
a previous study, microbial activity of compost exerted a 
certain role in controlling soil-borne pathogens [70]. There-
fore, compost with the addition of PT or MSB might be more 
efficient at maintaining soil health.

Relationships Among Environmental Factors, 
Microbial Metabolism and Gas Emissions

Redundancy analysis was performed to determine the rela-
tionships among environmental factors, microbial metabo-
lism and gas emissions. The results showed that the selected 
variables accounted for 93.89% of the total variations in gas 
emissions (Fig. 5). Among the selected factors, environmen-
tal factors and microbial metabolism explained 51.10% and 
47.46% of the variations, respectively. Environmental factors 
such as pH, NH4

+–N and temperature had positive corre-
lations with CH4 emission. NH4

+–N was negatively corre-
lated with NH3 emission, because NH4

+–N and NH3 would 
be transformed to each other under suitable condition [6]. 
Similarly, Yang et al. [71] indicated a negative correlation 
between NH4

+–N and NH3 during pig manure composting. 
Apart from NH3, NH4

+–N also showed a negative correla-
tion with N2O emission. The reason for this may be that 
the higher NH4

+–N concentration restricted the activity of 
nitrifying bacteria and therefore caused insufficient NO3

−–N 
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to produce N2O. Moreover, EC exhibited negative correla-
tions with the emissions of N2O and NH3. Previous studies 
demonstrated that the increase of soluble salts concentration 
in compost could lead to the increase of EC [23, 72]. The 

emissions of N2O and NH3 reduced the concentration of sol-
uble nitrogen salts and consequently resulted in the decrease 
of EC in this experiment. Interestingly, our data showed that 
pH was negatively correlated with the N2O emission. Many 
reports have confirmed that pH could directly affect N2O 
production by regulating nitrification and denitrification 
processes [73, 74]. The N2O-reductase has been recognized 
as the key enzyme for reducing N2O production in denitrifi-
cation [75]. It is noteworthy that the decrease of pH would 
inhibit the activity of N2O-reductase [73], thus leading to 
higher N2O emissions. Microbial metabolism exhibited an 
essential role in the emissions of CH4, N2O and NH3. The 
relationships between microbial metabolism and gas emis-
sions were previously demonstrated. For example, Zhang 
et al. [76] reported that the reduction in CH4 emission was 
closely associated with the metabolism of methanogens and 
methanotrophs. Getahun et al. [77] also pointed out that 
microbial metabolism could convert some proteins to NH3. 
In addition, microbial metabolism was positively correlated 
with pH, NH4

+–N and temperature. Overall, the addition of 
PT and MSB changed environmental factors of compost and 
further influenced the metabolism of microbial, eventually 
resulting in the variations of CH4, N2O and NH3 emissions.

Evaluation of Compost Maturity

The GI is considered one of the most sensitive indicators 
for evaluating changes in product toxicity and the degree of 
compost maturity [8]. The GI values among all treatments 
increased gradually throughout the composting period 
(Fig. 6). At the end of composting, the GI values in CK, PT 
and MSB were 104.5%, 118.0% and 126.9%, respectively. 

Fig. 4   Average well color development (AWCD) of carbon sources in 
the Biolog EcoPlate on day 1 (a), day 10 (b) and day 30 (c), respec-
tively. Error bars represent ± standard deviation

Fig. 5   Redundancy analysis based on the relationships between envi-
ronmental factors, microbial metabolism and gas emissions. (Color 
figure online)
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These results demonstrated that the addition of PT and MSB 
improved the quality of compost products. According to the 
standard of U.S. Composting Council, the GI value of com-
post product should exceed 90%. Therefore, the addition of 
MSB promoted the quality of compost product better than 
PT. Guo et al. [78] found that NH4

+–N content had nega-
tive correlations with GI during composting. The higher GI 
values in PT and MSB might be due to the reduction of 
NH4

+–N content during the composting period.

Conclusions

This study indicated that PT and MSB amendment increased 
the pile temperature and prolonged the thermophilic stage 
of compost. PT and MSB could facilitate the degradation 
of organic matter and nitrogen conservation during com-
post. The addition of PT and MSB increased the GI value 
and promoted the quality of compost. PT and MSB effec-
tively inhibited the release of CH4, N2O and NH3 during 
co-composting of CM and MS. Biolog EcoPlate analysis 
revealed that PT and MSB enhanced the microbial metabo-
lism involved in carbohydrates, esters and carboxylic acids 
throughout the composting period. The emissions of CH4, 
N2O and NH3 were significantly associated with microbial 
metabolism, which was influenced by temperature, NH4

+–N 
and pH of compost.
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