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Abstract
Waste plastic (WP) thermal pyrolysis is a promising method which could utilize WP to produce fuels. This study investi-
gated this method to provide a direction for prospective industrial and commercial productions. The process temperature, 
the WP conversion and the pyrolysis rate are the decisive factors for industrial applications. Therefore, thermogravimetric 
(TG) experiments were conducted at different heating rates to obtain the experimental WP mass fraction, the WP conversion 
and the pyrolysis rate, which varied with the temperature and heating rate. Furthermore, a neural fuzzy model and a genetic 
algorithm (GA) were adopted to determine the optimal operating conditions over different temperature ranges. The neural 
fuzzy model-predicted WP conversion and pyrolysis rate were highly consistent with the experimental results, indicating 
the high accuracy of the neural fuzzy model method for this application. Moreover, the WP conversion and the pyrolysis 
rate optimized by the GA were 97.68% at 5.00 °C/min and 497.89 °C, and 60.66 wt%/min at 20.00 °C/min and 492.09 °C, 
respectively.
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Statement of Novelty

This study adopted a neural fuzzy model coupled with a 
genetic algorithm (GA) to conduct the waste plastic (WP) 
thermal pyrolysis analysis. The neural fuzzy model estab-
lished mathematical expressions among the WP conver-
sion and the pyrolysis rate, and the operating conditions 
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(temperature and heating rate). Subsequently, GA was used 
to optimize the operating conditions for maximum WP con-
versions and pyrolysis rates in different temperature ranges.

Introduction

Waste plastic (WP) has caused large-scale environmental 
pollution and a health hazard to many organisms. Histori-
cally, a large amount of WP was disposed of via landfill or 
incineration [1]. Several methods have been proposed for 
treating WP in a more responsible way, namely, mechanical 
recycling, chemical recycling and energy recovery methods 
[2]. Among these methods, chemical recycling is a favora-
ble method which can utilize the WP to produce fuels [3]. 
Moreover, WP thermal pyrolysis, which is performed in the 
absence of oxygen [4], is a most promising chemical recy-
cling method. It can strongly reduce WP pollution while 
producing useful by-products such as biochar, bio-oil and 
syngas [5–8]. According to the literature [4], the tempera-
ture and heating rate are the determining factors in the WP 
pyrolysis process. Besides these, considering the economical 
aspect, the temperature, the conversion and the pyrolysis rate 
are also critical parameters for practical applications of WP 
pyrolysis [9–11].

Much research in thermogravimetric analysis (TG) has 
been conducted to try to obtain a better understanding about 
the WP pyrolysis process. Paraschiv et al. [12] adopted TG 
experimental results to determine the optimal operating 
parameters for hospital-based WP pyrolysis on different 
scales for a fixed bed reactor. Chen et al. [13] utilized TG 
analysis to investigate the WP co-pyrolysis process. Addi-
tionally, Navarro et al. [14] used TG analysis coupled with 
a distributed activation energy model to conduct a WP co-
pyrolysis kinetic study. Chen et al. [15] investigating a waste 
phenolic fibre-reinforced plastic thermal pyrolysis process 
based on TG experiments with different heating rates. Singh 
et al. [16] adopted TG analysis to investigate the influence 
of the heating rate on the WP pyrolysis process. Moreover, 
Ippolito et al. [17] conducted TG experiments to determine 
the WP pyrolysis kinetic values. In conclusion, TG analy-
sis is a promising method to investigate the WP pyrolysis 
process as it can provide important parameters—the WP 
relative weight over time and the temperature at different 
heating rates [18, 19]. However, TG experiments so-far 
could only provide the discrete mass fraction curves at dis-
parate heating rates. This creates difficulties in determining 
the optimal conditions of the WP pyrolysis process. For the 
purpose of investigating the optimal conversion, Teng et al. 
[19] creatively adopted an artificial neural network (ANN) 
coupled with TG analysis and applied it to the Chlorella 
vulgaris pyrolysis process. In consequence, the C. vulgaris 
conversion turned out to be a continuous function of the 

temperature and the heating rate. Subsequently, a mathemat-
ical algorithm was utilized to obtain the optimal operating 
parameters over different temperature ranges. Therefore, the 
application of artificial intelligence coupled with TG analy-
sis could, ideally, determine the optimal operating condi-
tions of the WP pyrolysis process.

The neural fuzzy model, from artificial intelligence the-
ory, is a promising method which could establish an arith-
metic expression to describe the relationship between mul-
tiple independent variables and dependent variables [20]. 
Sadeghizadeh et al. [21] and Ronda et al. [22] investigated 
the effects of multiple operating conditions on the Pb (II) 
adsorption efficiency using a neural fuzzy model. Calero 
et al. [23] adopted a neural fuzzy model to determine the 
optimal copper biosorption capacity under the influence of 
three operational parameters. Iáñez-Rodríguez et al. [24] 
conducted research on the optimal temperature and resi-
dence time during a crop torrefaction process using a neu-
ral fuzzy model. Nevertheless, the values of the response 
variables predicted by the afore-mentioned researchers using 
neural fuzzy models were discrete. Arithmetic expressions, 
established by the neural fuzzy model between the multi-
ple operating parameters and the response variables how-
ever, are continuous. Therefore, the robustness of predicted 
optimal operating conditions can be improved. Hence, it is 
necessary to adopt a mathematical calculation method for 
determining the optimal operating parameters in accordance 
with the arithmetic expression established using a neural 
fuzzy model.

Regarding the global extremum calculation, the genetic 
algorithm (GA) is a promising method to find the optimal 
operating parameters based on the existing mathematical 
models. Javed et al. [25] utilized the GA for optimization 
of a hybrid energy storage system. Tuchler et al. [26] opti-
mized the radial compressor of an automobile by evaluating 
the isentropic efficiency with the GA. Ascione et al. [27] 
conducted an optimization design of an envelope enclosure 
with the GA with multiple objective functional assessments. 
Rezaie et al. [28] adopted multiple objective functions to 
evaluate heat recovery in a steam generator. Subsequently, 
the GA was used to optimize the thermal design.

As there has been little research into the optimal WP 
conversion and pyrolysis rates with different temperatures 
and heating rates, this work aims to fully investigate the 
WP pyrolysis process, to provide guidance for industrial and 
commercial applications. This study investigated the optimal 
operating parameters—the temperature and the heating rate 
of the WP thermal pyrolysis conversions and the pyrolysis 
rates over different temperature ranges. Four TG experi-
ments with different heating rates were conducted to obtain 
the experimental WP mass fraction during the pyrolysis pro-
cess. Subsequently, the experimental WP conversion (cal-
culated as WP conversion = 1−WP relative weight) and the 
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pyrolysis rate (by derivation) were obtained. As previously 
discussed, the neural fuzzy model was adopted to establish 
arithmetic expressions to describe the relationships between 
the independent and dependent variables. The neural fuzzy 
model predicted WP mass fraction, conversion, and pyroly-
sis rate were highly accurate. Finally, the optimal operating 
conditions were determined using the GA.

Experiments and Methods

TG Experiments

The WP used for pyrolysis experiments, illustrated in 
Fig. 1a, was provided by Wanbei Plastic Recycling Devel-
opment Base (Anhui-China). The WP is mainly composed of 
polyethylene (PE). In order to ensure the uniform composi-
tion of the WP, the WP was heated and melted and made into 
3 mm pellets. As shown in Fig. 1b, the WP’s main functional 
groups are –CH2–, –CH, –CH3, and –OH [29]. The TG 
experiments were conducted at temperatures ranging from 
25 °C to 600 °C at five representative heating rates—5, 10, 
12, 15 and 20 °C/min [15, 19, 30–32]. Consequently, the WP 
mass fraction m variation with time was obtained for differ-
ent heating rates. Hence, the conversion α and the pyrolysis 
rate rp were determined by the following equations.

where mi and ti represent the ith mass fraction (wt%) and 
time (min) and mi+1 and ti+1 represent the (i + 1)th mass frac-
tion (wt%) and time (min).

(1)� = 1 − m

(2)rp =
(

mi+1 − mi

)

∕
(

ti+1 − ti
)

Methods

Neural Fuzzy Model

The neural fuzzy model is inspired by the humanoid rea-
soning and the neural network’ structure. The neural fuzzy 
model was adopted for predicting the mass fractions and the 
WP conversion and pyrolysis rates based on the TG experi-
mental data previously described. In the present study, there 
were two independent variables, i.e., the temperature and 
the heating rate. The certain dependent variable could be 
predicted by the following equation [20, 21]:

where ypre, n, ai and FRi represent the predicted value, the 
number of rules, the constant of each rule and the fuzzy rule, 
respectively.

The fuzzy rule can be expressed with the following 
equation:

where m, xi, xi(Θ) and μi(xi(Θ)) represent the number of 
independent values, the evaluation value of the level of the 
independent variable, the value of independent variable and 
the membership function, respectively.

According to previous studies [20, 23], the Gaussian 
membership function μi(xi(Θ)) can predict the dependent 
variables most accurately. Therefore, in the present study, 
the Gaussian membership function μi(x) was adopted. It can 
be expressed using the following equation:

(3)ypre =
∑n

i=1

(

ai ⋅ FRi

)

/

∑n

i=1
FRi

(4)FRi =
∏m

i=1
�i

(

xi, xi(Θ)
)

(5)�i

(

xi, xi(Θ)
)

= exp
(

−0.5 ⋅
((

xi − xi(Θ)
)

∕L
)2
)

Fig. 1  WP used for pyrolysis experiments in this study: a WP pellets; b FTIR spectrum
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where L represents the Gaussian distribution width.

GA

When the experimental data was processed with the neural 
fuzzy model, the constant of each rule ai and the Gaussian dis-
tribution width L could be obtained. Accordingly, the GA was 
adopted to determine the optimal operating conditions of the 
WP pyrolysis process. The GA is literally developed accord-
ing to evolution theory and is designed to obtain an optimal 
condition containing multiple chosen parameters [15, 33–37].

The WP conversion, for example, was determined by two 
parameters, i.e., the temperature and the heating rate. Hence, 
a single value for the WP conversion was considered to be 
an individual. It contained two “genes”, the temperature and 
the heating rate. A population was studied, composed of N 
individuals. In the first generation, these N individuals were 
treated as “parents”. N children were reproduced after N sets 
of parents underwent mutation and crossover processes. The 
next step was to calculate the fitness values of these N chil-
dren. Children with worse fitness were replaced by children 
with better fitness to complete the first generation. In the next 
generation, these N children would be treated as the “parents” 
and follow the same processes as mentioned before. Therefore, 
the GA optimization procedure could be described using the 
following equations:

The mutation is expressed according to the following 
equation:

where i, j, νmut, t, and iter represent the number of individu-
als, the number of genes, the probability of mutation, the 
number of the generation and the number of total genera-
tions, respectively.

The crossover is expressed using the following equation:

(6)child
j

i
= �mut ⋅ (1 − t∕iter)2 ⋅ parent

j

i

(7)ifri,cro < 𝜈cro, child
j

i
= childj

n

where ri,cro, νcro, and n represent a random number value 
between 0 and 1, the probability of a crossover and the ran-
dom number iteration between 1 and N, respectively.

The fitness of an individual and the highest fitness could 
be expressed using the following equations:

where fitnessi and fitnessbest represent the fitness of the i-th 
individual and the maximum value of fitness, respectively. 
The best child is the one with the maximum fitness value.

The replacement can be expressed with the following 
equation:

where childj
i,best

 represents the best child.
In the present study, the number of individuals N and 

generations iter are 1000 and 1000. The probabilities of 
mutation νmut and crossover νcro are 0.2 and 0.2. Moreover, 
the neural fuzzy model used in the present study is from the 
Matlab software toolbox. The GA was also coded in Matlab.

Results and Discussion

TG Analysis

Figure 2 illustrates the experimental WP mass fractions and 
pyrolysis rates (which vary with the pyrolysis temperature) 
for heating rates of 5, 10, 12, 15 and 20 °C/min. The pyrol-
ysis onset temperature To, the end pyrolysis temperature 
Te and the maximum pyrolysis temperature Tm are also 
shown. To, Te and Tm were proposed to describe the pyrol-
ysis process more precisely [38–40]. The onset pyrolysis 

(8)fitnessi =
∑n

i=1

(

ai ⋅ FRi

)

/

∑n

i=1
FRi

(9)fitnessbest = max
(

fitnessi
)

If fitnessi < 0.2 ⋅
(

max
(

fitnessi
)

−min
(

fitnessi
))

+min
(

fitnessi
)

,

(10)child
j

i
= child

j

i,best

Fig. 2  Experimental WP mass 
fractions (a) and pyrolysis rates 
(b) at different heating rates
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temperature To occurs at the intersection of the tangent to 
the pyrolysis rate rise curve and the temperature-axis; The 
end pyrolysis temperature Tm occurs at the intersection of 
the tangent to the falling part of the pyrolysis rate curve and 
the temperature-axis; The maximum pyrolysis temperature 
Tm is the temperature coordinate value at the pyrolysis rate 
curve’s peak. As shown in Fig. 2a, the WP mass fraction 
curves have the same trend regardless of the different heat-
ing rates. The WP mass fraction curve decreases slowly at 
the initial pyrolysis stage and the WP decomposed at a rela-
tively high speed over a narrow temperature range. Finally, 
at high temperatures, the WP mass fraction curve flattened 
out again. Besides that, the WP mass fraction curve shifted 
laterally to a higher temperature when the heating rate was 
increased from 5 to 20 °C/min.

In terms of the pyrolysis rate, the WP had one peak at all 
heating rates. The single peak only represents the overall 
conversion rate, which does not indicate the WP is pyrolyzed 
in a one-step mechanism [41, 42]. The WP is decomposed 
into short-chain hydrocarbons via random and Beta scission 
reactions [43, 44]. The peak of WP pyrolysis rate curves 
shifted laterally to a higher temperature when the heating 
rate was increased from 5 to 20 °C/min, which had the same 

trend as the WP mass fraction curves. Higher heating rates 
resulted in the thermal hysteresis from the TG instrument 
to WP, thereby extending the time to reach the WP’s initial 
pyrolysis heat [45]. On the other hand, higher heating rates 
could accelerate the WP pyrolysis process by providing suf-
ficient heat [45, 46]. Therefore, the maximum pyrolysis rate 
increased with the increasing heating rate. The WP pyrolysis 
rate curves were more complex compared to those for the 
individual plastic types [13, 14], e.g., PE, PS, PET, etc. This 
is because that the pyrolysis mechanism transformations are 
caused by the co-pyrolysis effects from the different indi-
vidual plastics [13, 15, 16].

To, Te, Tm and the maximum pyrolysis rates of the WP at 
different heating rates are listed in Table 1. The values of To, 
Te and Tm increased with the heating rate, which is consist-
ent with the literature results [13, 14, 17, 40, 47, 48]. While 
it was noticeable that the difference between To and Te was 
quite constant, at the different heating rates, they shifted by 
up to 50 °C. Moreover, the WP was undergoing pyrolysis at 
a relatively high-speed considering the maximum pyrolysis 
rate values. For instance, the maximum WP pyrolysis rate 
could reach up to 59.82 wt%/min at a heating rate of 20 °C/
min. Additionally, the pyrolysis rate also increased with the 
heating rate.

Neural Fuzzy Model Predicted Results

In Fig. 3, the WP mass fraction and the pyrolysis rate were 
determined as functions of the temperature and the heat-
ing rate using the neural fuzzy model. Experimental data 
obtained for different heating rates—5, 10, 15 to 20 °C/min 
was used. In order to reduce the calculation time, the data 
set used by the neural fuzzy model to predict the WP mass 
fraction and pyrolysis rate was sampled to be one fifth the 
size of the experimental data. The experimental data was 

Table 1  To, Te, Tm and the WP maximum pyrolysis rates for differ-
ent heating rates

Heating rate 
(℃/min)

To (℃) Te (℃) Tm (℃) Maximum pyroly-
sis rate (wt%/min)

5 442.54 485.14 468.05 17.60
10 451.57 498.64 478.49 34.19
12 454.58 502.39 480.72 40.65
15 459.05 506.59 486.78 48.02
20 460.15 510.19 487.77 59.82

Fig. 3  The neural fuzzy model predicted WP mass fraction (a) and pyrolysis rate (b)
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chosen with equal time intervals. As depicted in Fig. 3a, 
the WP mass fraction predicted by the neural fuzzy model 
followed the same trend as the experimental data. The slope 
of the predicted WP mass fraction surface was small in the 
temperature range of 300–400 °C. Subsequently, the slope 
became very steep at the temperature range of 400–500 °C. 
However, the predicted WP mass fraction surface became 
flat again after a pyrolysis temperature of 500 °C. Regarding 
the effect of the heating rate on the WP mass fraction during 
the pyrolysis process, the surface becomes bumpy when the 
heating rate is close to 10 °C/min. In addition, the WP mass 
fraction decreased faster at a higher heating rate, which was 
consistent with the results obtained experimentally for the 
WP mass fraction, as depicted in Fig. 2.

As for the predicted pyrolysis rate of the WP, it was note-
worthy that the peak value increased with the heating rate 
as illustrated in Fig. 3b. This was in good agreement with 
the experimental WP pyrolysis rate as shown in Fig. 2b. At 
first, the predicted pyrolysis rate increased with temperature, 
then at higher temperatures it decreased. The temperature of 
the maximum pyrolysis rate became higher when the heating 
rate increased.

The Accuracy of the Neural Fuzzy Model

In Figs.  4a–d the WP mass fraction and pyrolysis rate 
obtained experimentally were compared with the neural 
fuzzy model predictions at different heating rates of 5, 10, 
15 and 20 °C/min, respectively. Additionally, we calculated 
the R-squared values between the experimental and the pre-
dicted WP mass fraction and pyrolysis rates to determine the 
accuracy of the neural fuzzy model. The R-squared values 
of the WP mass fraction and the pyrolysis rates at heating 
rates of 5, 10, 15 and 20 °C/min are depicted in Figs. 4e, f, 
respectively. In Figs. 4a–d, the predicted WP mass fraction 
and the pyrolysis rate are in good agreement with the experi-
mental values regardless of the temperature and heating rate. 
The coincidence degrees between the experimental and the 
predicted WP mass fraction were very high at all heating 
rates. As demonstrated in Fig. 4e, the R-squared values of 
the WP mass fraction were 0.99999 at heating rates of 5, 
10, 15 and 20 °C/min. The R-squared values were close to 1 
for every heating rate which indicated that the neural fuzzy 
model predicted values were highly accurate [45].

As for the WP pyrolysis rate, the neural fuzzy model pre-
dicted results also coincided with the experimental results to 
a great extent. For a heating rate of 5 °C/min, as illustrated 
in Fig. 4a, the predicted and the experimental WP pyrolysis 
rates had the same trend. The maximum experimental WP 
pyrolysis rate was 17.18 wt%/min at 467.5 °C. The maxi-
mum predicted WP pyrolysis rate was 17.73 wt%/min at 
472.5 °C. The agreement between the experimental and 
the predicted maximum pyrolysis rates was within 3.2%. 

For the heating rate of 10 °C/min, as depicted in Fig. 4b, 
the maximum experimental and the predicted WP pyroly-
sis rates were 33.80 wt%/min at 482.5 °C, and 32.59 wt%/
min at 482.5 °C, respectively. The difference between the 
experimental and the predicted maximum pyrolysis rates 
was around 3.6%. As shown in Fig. 4c, the peak values of the 
experimental and the predicted WP pyrolysis rate curves at 
15 °C/min were 47.81 wt%/min at 490.0 °C, and 47.59 wt%/
min at 487.5 °C, respectively. The error of the peak val-
ues between the experimental and the predicted maximum 
pyrolysis rates was 0.46%. For a heating rate of 20 °C/
min, as illustrated in Fig. 4d, the maximum experimental 
and the predicted WP pyrolysis rates were 59.51 wt%/min 
at 489.3 °C, and 60.63 wt%/min at 491.7 °C, respectively. 
The difference between the experimental and the predicted 
maximum pyrolysis rates was 1.9% at a rate of 20 °C/min. 
As described in Fig. 4f, the R-squared values of the WP 
pyrolysis rate were 0.99674, 0.99697, 0.99923 and 0.99934 
at heating rates of 5, 10, 15 and 20 °C/min, respectively. In 
conclusion, the neural fuzzy model allowed for a high accu-
racy in predicting the WP mass fractions and pyrolysis rates.

GA Optimization

GA is a promising optimization method to determine the 
multiple operating parameters needed to obtain the optimal 
objective results. In this study, GA is used to calculate the 
optimal WP conversions and pyrolysis rates in different 
pyrolysis temperature ranges, based on neural fuzzy model 
predicted data. From the experimental WP mass fractions 
described in Fig. 2, it could be concluded that the WP 
pyrolysis process started at about 300 °C and finished at 
around 550 °C. Simultaneously, the WP pyrolysis process 
proceeded relatively slowly before 400 °C. Hence, accord-
ing to [19], 6 temperature ranges were chosen to investigate 
the optimal WP conversions: 300–400 °C, 400–430 °C, 
430–460 °C, 460–490 °C, 490–520 °C, and 520–550 °C, in 
this sequence. The optimal WP conversions in different tem-
perature ranges calculated using GA are shown in Figs. 5a–f. 
As depicted in Fig. 5a, generally a larger WP conversion 
was obtained for a higher pyrolysis temperature and lower 
heating rate. For instance, the WP conversion increased from 
0.66% to 1.37% when the pyrolysis temperature increased 
from 300 °C to 400 °C at 20 °C/min. Furthermore, the WP 
conversions were enhanced from 1.37% to 1.64% when the 
heating rate decreased from 20 to 5 °C/min. Additionally, 
a hollow appeared at around 15 °C/min on the WP conver-
sion surface, as seen in Fig. 5a. The same situation occurred 
for the temperature range of 400–430 °C shown in Fig. 5b. 
Subsequently, the optimal WP conversion determined using 
the GA was 1.64% at 5.00 °C/min and 400 °C. The optimal 
WP conversions were 2.35% at 5.00 °C/min and 430.00 °C, 
20.31% at 5.00 °C/min and 460.00 °C, 96.24% at 5.00 °C/
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min and 490.00 °C, 97.68% at 5.00 °C/min and 497.89 °C, 
and 97.63% at 5.00 °C/min and 550 °C in the tempera-
ture ranges of 400–430  °C, 430–460  °C, 460–490  °C, 
490–520 °C, and 520–550 °C, respectively. It is notewor-
thy that the predicted WP conversion slightly lowered from 
97.68% to 97.63% when the temperature increased from 
497.89 °C to 550 °C, which contradicted the other results 
of the experiment. However, the difference value was just 
− 0.05%, which is almost negligible.

Figures 5g, h depict the experimental and predicted opti-
mal WP conversions for temperature ranges of 300–400 °C, 

400–430 °C, 430–460 °C, 460–490 °C, 490–520 °C and 
520–550 °C. These temperature intervals are denoted as 1 
to 6, respectively in Figs. 5g, h. As shown in Fig. 5g, the 
experimental WP conversions were 1.59%, 2.43%, 20.11%, 
96.39%, 97.51% and 97.63% at a heating rate of 5.00 °C/min, 
and at temperatures of 400.00 °C, 430.00 °C, 460.00 °C, 
490.00 °C, 497.89 °C and 550.00 °C, respectively. Moreo-
ver, as demonstrated in Fig. 5h, the relative errors between 
the experimental and the predicted optimal WP conversions 
for different temperature ranges were 3.18%, − 3.25%, 
0.96%, − 0.16%, 0.17% and 0.00%. The absolute values 

Fig. 4  Comparisons of the experimental WP mass fraction and the pyrolysis rate with the neural fuzzy model predicted values: a At 5 °C/min; b 
At 10 °C/min; c At 15 °C/min; d At 20 °C/min; e R-squared values of the WP mass fraction; f R-squared values of the WP pyrolysis rate
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Fig. 5  Optimal WP conversions in different temperature ranges cal-
culated using GA: a 300–400  °C; b 400–430  °C; c 430–460  °C; d 
460–490 °C; e 490–520 °C; f 520–550 °C; g Experimental and pre-

dicted optimal conversions; h Relative errors between experimental 
and predicted optimal conversions



143Waste and Biomass Valorization (2022) 13:135–148 

1 3

of the relative error were less than 3.50%. Moreover, the 
deviation percentage Dev% between the experimental and 
predicted WP conversions was 0.13, which satisfied the fit-
ting acceptability Dev% < 4, according to [14, 49]. This also 
indicated a satisfactory accuracy for the WP conversions 
predicted by the neural fuzzy model.

Figure 6 describes the optimal WP pyrolysis rates for 
the different temperature ranges calculated using the GA. 
Because of the low pyrolysis rate before 400 °C and after 
550 °C, 5 temperature ranges were used to investigate the 
WP optimal pyrolysis rates, i.e., 400–430 °C, 430–460 °C, 
460–490 °C, 490–520 °C, and 520–550 °C, in this sequence 
[19]. The GA determined optimal WP pyrolysis rates in dif-
ferent temperature ranges are depicted in Figs. 6a–e. As 
shown in Fig. 6a, the WP pyrolysis rate decreased with a 
heating rate of around 5–10 °C/min, while it increased with 
a heating rate of around 10–20 °C/min in a temperature 
range of around 400–405 °C. Moreover, in the temperature 
range of 405–425 °C, the WP pyrolysis rate decreased with 
a heating rate from around 5–10 °C/min, increased with a 
heating rate of around 10–15 °C/min, and decreased again 
with a heating rate of around 15–20 °C/min. Consequently, 
the optimal WP pyrolysis rate determined by the GA was 
0.39 wt%/min at 20.00 °C/min and 430.00 °C in the tem-
perature range of 400–430 °C. Furthermore, as depicted in 
6b–e, the GA optimized WP pyrolysis rates were 9.78 wt%/
min at 5.00  °C/min and 460.00  °C, 60.07  wt%/min at 
20.00 °C/min and 490.00 °C, 60.66 wt%/min at 20.00 °C/
min and 492.09 °C, and 0.84 wt%/min at 20.00 °C/min 
and 520.00 °C in the temperature ranges of 430–460 °C, 
460–490 °C, 490–520 °C, and 520–550 °C, respectively. 
In conclusion, the optimal heating rate is 20 °C/min in the 
lower temperature range (400–430 °C) and the higher tem-
perature range (460–550 °C), while the optimal heating rate 
is 5 °C/min in the medium temperature range (430–460 °C). 
Higher heating rates could accelerate the WP’s mass loss, 
thereby increasing the pyrolysis rate [4]. However, higher 
heating rates can also cause thermal hysteresis, which is 
not conducive to the thermal decomposition of WP [3]. The 
thermal hysteresis might have a stronger influence on the 
WP’s pyrolysis than the acceleration of WP’s mass loss in 
the medium temperature range, thus the lowest heating rate 
was most conducive to the reaction rate of WP’s pyrolysis. 
Moreover, the maximum WP pyrolysis rate was obtained at 
492.09 °C and 20.00 °C/min.

Figures 6f, g illustrate the experimental and the GA 
optimized WP pyrolysis rates in the temperature ranges 
of 400–430 ℃, 430–460 ℃, 460–490 ℃, 490–520 ℃, and 
520–550 °C, denoted 1 to 5 respectively in Figs. 6f, g. As 
demonstrated in Fig. 6f, the experimental WP pyrolysis 
rates were 0.39 wt%/min, 9.68 wt%/min, 59.25 wt%/min, 
59.14 wt%/min, and 0.53 wt%/min in the temperature ranges 
of 400–430 °C, 430–460 °C, 460–490 °C, 490–520 °C, and 

520–550 °C, respectively. Furthermore, as described in 
Fig. 6g, the relative errors between the experimental and 
the predicted optimal WP pyrolysis rates in the different 
temperature ranges were 0.57%, 1.04%, 1.39%, 2.57%, and 
57.63%. Except for the temperature range of 520–550 °C, 
the absolute values of relative error between the experimen-
tal and the predicted optimal pyrolysis rates were less than 
2.6%. The temperature range of 520–550 °C was approach-
ing the end of the WP pyrolysis [43], in which the highest 
pyrolysis rate was merely 0.53 wt%/min. Although the rela-
tive error was high, the difference between predicted and 
the experimental optimal pyrolysis rates was only 0.31 wt%/
min in the temperature range of 520–550 °C. Besides, the 
deviation percentage Dev% between the experimental and 
predicted WP pyrolysis rates was 1.33, which showed the 
high accuracy of the neural fuzzy model predicted results 
[14, 49].

Applicability of the Neural Fuzzy Model

For the purpose of certifying the applicability of the neural 
fuzzy model, one fifth of the experimental data for the WP 
conversion and the pyrolysis rate, different from that used 
for predicting by the neural fuzzy model, was sampled at 
equal interval for comparison with the neural fuzzy model 
predicted results. Figures 7a–e illustrate the comparison 
between the experimental and predicted WP mass frac-
tions and pyrolysis rates at heating rates of 5–20 °C/min, 
respectively. Overall, the predicted WP mass fraction and 
the pyrolysis rate were consistent with the experimental data. 
Moreover, in order to determine the reliability of the neu-
ral fuzzy model predicted data, the R-squared values of the 
WP conversion and the pyrolysis rate were calculated, as 
depicted in Figs. 7f, g. It was noteworthy that the accuracy 
of the neural fuzzy model prediction of the WP mass frac-
tion was lower at 12 °C/min compared to the predicted data 
at heating rates of 5, 10, 15 and 20 °C/min. As shown in 
Fig. 7e, the R-squared value of the WP conversion at 12 °C/
min was 0.99996, while the R-squared values of the WP 
conversion were all 0.99999 at heating rates of 5, 10, 15 and 
20 °C/min, respectively. The R-squared values of the WP 
mass fraction were all close to 1 at heating rates of 5–20 °C/
min, exhibiting a high accuracy for the neural fuzzy model 
predicted values.

In terms of the WP pyrolysis rate, the neural fuzzy model 
predicted results were in good agreement with the experi-
mental data. As described in Fig. 7a, the predicted and 
experimental WP pyrolysis rate curves almost coincided 
with each other at 5 °C/min. Moreover, the predicted and 
the experimental maximum pyrolysis rates were 17.66 wt%/
min at 473.8 °C, and 17.73 wt%/min at 468.8 °C, respec-
tively. The relative error between the predicted and the 
experimental maximum pyrolysis rates was around 0.39%. 
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Fig. 6  Optimal WP pyrolysis rates in different temperature ranges 
calculated using GA: a 400–430  °C; b 430–460  °C; c 460–490  °C; 
d 490–520 °C; e 520–550 °C; f Experimental and predicted optimal 

pyrolysis rates; g Relative errors between experimental and predicted 
optimal pyrolysis rates
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Fig. 7  Applicability of the neural fuzzy model: a At 5 °C/min; b At 10 °C/min; c At 15 °C/min; d At 20 °C/min; e At 12 °C/min; f R-squared 
values of the WP mass fraction; g R-squared values of the WP pyrolysis rate
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As depicted in Fig. 7b, the predicted and the experimental 
maximum pyrolysis rates at 10 °C/min were 32.62 wt%/min 
at 483.7 °C, and 34.04 wt%/min at 481.2 °C, respectively. 
The agreement between the predicted and the experimental 
maximum pyrolysis rates was within 4.18%. As illustrated 
in Fig. 7c, the peak values of the predicted and experi-
mental WP pyrolysis rate curves were 47.61 wt%/min and 
48.02 wt%/min at 488.8 °C, respectively. The relative error 
of the peak values between the predicted and the experi-
mental maximum pyrolysis rates was 0.84%. As shown 
in Fig. 7d, the predicted and the experimental maximum 
pyrolysis at 20 °C/min were 60.61 wt%/min at 492.7 °C, and 
59.52 wt%/min at 488.0 °C, respectively. The relative error 
between the experimental and predicted maximum pyrolysis 
rates was around − 1.84%. Additionally, as demonstrated in 
Fig. 7f, the R-squared values of the WP pyrolysis rates were 
0.99675, 0.99658, 0.99911 and 0.99926 at heating rates of 5, 
10, 15 and 20 °C/min, respectively. Moreover, the R-squared 
value of the WP pyrolysis rate was 0.99449 at 12 °C/min, 
which indicated that the neural fuzzy model predicted values 
were highly precise.

Conclusion

This study investigated the WP thermal pyrolysis process 
to provide guidance for prospective industrial and commer-
cial applications. The temperature, the conversion and the 
pyrolysis rate are the determining factors for industrial appli-
cations. Therefore, TG experiments were conducted at dif-
ferent heating rates of 5, 10, 12, 15 and 20 °C/min to obtain 
the WP mass fraction, the conversion and the pyrolysis rate, 
which varied with the temperature and heating rate. A neu-
ral fuzzy model was adopted to predict the WP conversion 
and the pyrolysis rate based on the experimental TG data. 
According to the experimental results, the WP conversion 
and the pyrolysis rate were investigated for the temperature 
ranges of 300–550 °C and 400–550 °C, respectively. Fur-
thermore, the GA was adopted to determine the optimal 
operating conditions in the different temperature ranges. 
The neural fuzzy model was validated using the compari-
son of the experimental and predicted results. The accuracy 
of neural fuzzy model predicted results was investigated by 
determining the R-squared values of the mass fraction (~ 1) 
and the pyrolysis rate (> 0.994) compared with the avail-
able experimental observations. Subsequently, the GA opti-
mized WP conversion and the pyrolysis rate were 97.68% at 
5.00 °C/min and 497.89 °C, and 60.66 wt%/min at 20.00 °C/
min and 492.09 °C, respectively. Additionally, the neural 
fuzzy model predicted results were consistent with the sup-
plementary experimental data, which certified the applica-
bility of the neural fuzzy model. The hybrid algorithm of the 
neural fuzzy model coupled with GA could be used to model 

and analyze the co-pyrolysis behavior of WP and other mate-
rials (biomass, waste paper, etc.).
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