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Abstract 
The present study concerns to the evaluation of non-linear empirical logistic models applied to bioprocess modeling. The 
substrate degradation, as a function of fermentation time, enzymatic activity, as a function of substrate degradation, and cell 
growth, as a function of dissolved oxygen concentration were modeled using this proposed approach. Different concentra-
tions of sugarcane bagasse (5, 10, 13, 15, and 20 g L−1) were used in a stirred tank bioreactor with Aspergillus niger. The 
parameter estimation, based on assays with 5, 10, 13 and 20 g L−1 of sugarcane bagasse, was performed by non-linear least 
square method and one assay with 15 g L−1 of sugarcane bagasse was used for models’ validation. The results obtained allow 
to conclude that sugarcane bagasse was efficient as carbon source for cellulases production, requiring no other carbon sources. 
The use of agricultural waste reduces the production costs of cellulases, making de process feasible. The non-linear empiri-
cal models proposed this work allowed to predict the variables. The use of these models could be encouraged to evaluate 
submerged fermentation’s characteristics in new experimental works due to its mathematical simplicity and utility. Besides 
that, they can provide relevant information from the point of view of process control and optimization because they allow to 
infer about the inflection point which characterizes the maximum rate of variation of the function.

Graphic Abstract

Keywords  Mathematical modeling · Parameter estimation · Chemical process optimization · Submerged fermentation

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s12649-020-01337-2&domain=pdf


4434	 Waste and Biomass Valorization (2021) 12:4433–4440

1 3

Statement of Novelty

Mathematical modeling can provide useful suggestions 
for the analysis, design and operations of fermentative 
processes. To the best of our knowledge, there is no stud-
ies using logistic models to predict substrate (cellulose) 
degradation as function of the time ferment, enzymatic 
activity (cellulase) as function of the substrate degradation 
and the cell growth as function of concentration dissolved 
oxygen in a stirred-tank bioreactor, containing Aspergillus 
niger and solids (sugarcane bagasse) in suspension.

Introduction

A large part of fuel ethanol produced in the world is 
sourced from starchy biomass or sucrose, especially cane 
juice [1]. Recently new technologies have been developed 
about alcohol’s manufacture using non-food biomass, as 
sugar cane bagasse, rice straw, water hyacinth, and another 
[2, 3]. The use of non-food biomass reduces cost of “bio-
ethanol” and, therefore, propels the large-scale production.

Theses lignocellulosic sources are mainly made up of cel-
lulose, hemicellulose and lignin. The cellulose is the major 
component and can be enzymatically hydrolyzed to ferment-
able monomeric sugars [4, 5]. Cellulase enzyme secreted by 
filamentous fungus Trichoderma and Aspergillus have been 
showed great potential to hydrolyze the agricultural resi-
dues for lignocellulosic biofuel production. Theses fungus 
are highly specific and of high-cost commercial, but they 
have been presented high cellular activity [3, 6, 7].

The cultivation methods applied to produce enzymes 
can be conducted in either a liquid or solid medium. Solid-
state fermentation is particularly advantageous for the 
growth of filamentous fungi, because it simulates the nat-
ural habitat of these microorganisms, resulting in higher 
enzyme productivity [8]. On the other hand, the applica-
tion of solid-state fermentation in industrial processes has 
been delayed due to the difficulties involved in monitoring 
and controlling the various process parameters [9, 10]. For 
this reason, most large-scale industrial enzyme production 
processes currently use submerged fermentation [11, 12].

Several enzyme inducers have been studied and used to 
improve the synthesis of enzymes. Among them, the use 
of the substrates themselves as inducers stands out. The 
use of lignocellulosic raw materials as a source of nutri-
ents, mainly carbon, for microorganisms in different types 
of fermentation processes reduce the costs of enzymatic 
production [13]. On the other hand, the use of lignocel-
lulosic biomass provides an additional difficulty that is the 
cells quantification.

The quantification of cell biomass in fermentation 
media containing solids is complicated due to the difficulty 
involved in separating the microorganisms from the substrate 
and, often, require an indirect quantification methodology 
[14]. Different techniques for estimation of cell concentra-
tions in the presence of suspended solids have been showed 
in biotechnological area [15].

Measurement of either oxygen consumed or carbon diox-
ide evolved are common methodologies used for estimating 
growth for cultivations carried out in bioreactors [16–20]. 
The use mass balance equations and kinetic expressions too 
have been employed [21–24]. Although theoretical models 
allow extrapolations most trusted, they are more complex, 
expensive and more time needed. These disadvantages favor 
the use of empirical models.

Mathematical models can explain quantitatively the 
behavior of a system and provide useful suggestions for the 
analysis, design and operation of a fermenter [25]. The pre-
sent study focused in the use of non-linear empirical models 
to quantification of substrate degradation, enzyme activity, 
oxygen degradation, and cell growth in a submerged fermen-
tation medium containing sugarcane bagasse and Aspergillus 
niger.

Materials and Methods

Carbon Source

Sugarcane bagasse (SB) was employed as main carbon 
source. The sugarcane bagasse was obtained from the Des-
tilaria Itaúnas S/A, Espírito Santo, Brazil. The SB was dried 
in drying oven (EDUTEC) at 55 °C until constant. Then, 
the material was milled in a knife mill SL 32 (SOLAB) and 
sieved using the mesh with an upper opening of 0.500 mm 
and a lower opening of 0.355 mm.

Microorganisms

The filamentous fungus Aspergillus niger INCQS 40,018 
was used in this study. The culture was obtained from the 
Oswaldo Cruz Foundation, Rio de Janeiro, Brazil. It was 
grown on potato dextrose agar (4.2% w/v) at 28 °C for 5 days 
and then used for inoculum preparation. Spores were har-
vested adding 10 mL of Tween-80 (0.1% v/v).

Operation Conditions in Bioreactor

Batch type of fermentation process was employed using the 
bioreactor 1.5 L TEC-BIO-7.5 V (TECNAL). The concen-
trations of 5, 10, 13, 15 and 20 g L−1 of pretreated sugarcane 
bagasse in 1.0 L of saline solution [26] was added in the bio-
reactor. The pH value was maintained constant (pH 5.0) and 
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the bioreactor was autoclaved at 121 °C for 40 min. Then, 
106 spore mL−1 were transferred into the bioreactor. Stirring 
was carried out using with 250 rpm Rushton type turbine 
and was maintained constant. The temperature (30 °C) and 
aeration rate (1 L min−1) too were maintained constants dur-
ing fermentation’s time. The samples were collected at 0, 10, 
24, 48 and 72 h for analysis of cellulose concentration, cells 
and enzymatic activity.

Analytical Procedures

Enzymatic activity of cellulases (CMCase) was determined 
using the methodology described by Ghose [27]. The quan-
tification of cellulose concentration, total dry mass and cells 
were determined using the methodology described by Gelain 
et al. [24]. The analyses were carried out in quadruplicate. 
The data given here are the average of the measurements. 
The oxygen dissolved during the microbial fermentation was 
obtained real-time detected by the reactor’s sensor (MET-
TLER TOLEDO).

Dimensionless Variables

Substrate degradation, dissolvide oxygen, enzyme activ-
ity and cells growth are variables that have different orders 
of magnitude. Therefore, comparisons between these data 
would be invalid because the measurement depends on the 
scale of the numbers used. As a general modeling procedure, 
it is convenient to redefine the problem variables in order 
to make them dimensionless, thus avoiding interpretation 
problems arising from the use of different units and allow-
ing to group the parameters into a smaller set of parametric 
groups [28]. In this study, the standardization of variables 
was calculated as the difference in the trait values (substrate, 
oxygen, enzyme activity and cells growth) divided by the 
overall range for the trait, as follows:

where ze
i
 is the standardized variable; ye

i
 and ye

0
 are the origi-

nal values of variables at time ferment and t time ferment 
initial, respectively; ye

max
 and ye

min
 are the maximal and mini-
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cells growth and enzyme activity, respectively. This method 
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large scales. Furthermore, the use of standardized variables 
not requires the parameters’s dimensional analysis.

Models for Substrate Degradation and Enzyme 
Activity

After inoculation, the culture shows a lag phase to adapt on the 
new conditions of reactor. Then, occurs an exponential growth 
suppose that microorganisms’ life maintenance need is covered 
by uptake of substrate [29]. The enzyme activity is susceptible 
to substrate inhibition problems, changes of temperature or 
pH [9, 10, 30]. The lack of substrate in fermentation medium 
results a decrease of biomass. However, the low enzyme pro-
duction at high substrate concentrations may be attributed to 
production of toxic products which adversely affect the growth 
of the cells. It is reasonable to assume that consume of sub-
strate and production of enzymes can be approximation by a 
sigmoidal function.

Sigmoidal function ("S" shaped curve) exhibits a small 
progression in initial stages, that accelerates and approaches 
a climax over time. These functions have horizontal asymp-
totes (t →  ± ∞), they don’t have extreme points (relative maxi-
mum and minimum), but they have an inflection point that 
corresponds to the maximum rate of variation of the function 
[31]. The logistic model is an example of sigmoidal function 
studied in microorganism’s growth [25, 32–35]. In this work, 
the evolution of substrate degradation ( S ) was followed by the 
logistic equation:

where Sm is the minimal substrate degradation level (or 
upper asymptote of the sigmoid curve); t  is the time fer-
ment; C is the time ferment at the midpoint of the sigmoid 
curve; μ is the maximum substrate degradation rate (or slope 
of the sigmoid curve). In the standardized form, Sm values 
are established at the beginning of fermentation ( Sm = 1 ). 
Thus, to determine substrate degradation using the Eq. (3) 
it is necessary to know the parameters C and μ.

During microorganism’s growth to occurs consume of sub-
strate and production of enzymes. Therefore, the substrate deg-
radation and enzyme activity have an inversely relationship. In 
this work, the evolution of enzyme activity ( E ) was followed 
by the logistic equation:

where Em is the minimal enzyme activity level (or upper 
asymptote of the sigmoid curve); S is the evolution of sub-
strate degradation; C1 is the time ferment at the midpoint of 
the sigmoid curve; μ1 is the maximum enzyme activity rate 

(3)S =
Sm

1 + exp
[

−μ(t − C)
]

(4)E =
Em

1 + exp
[

−μ1
(

S − C1

)]
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(or slope of the sigmoid curve). In the standardized form, 
a good parameters estimation should give Em value nearby 
of 1.

Models for Cells Growth and Oxygen Degradation

During cells growth, microorganisms degrade the substrate 
to use as an energy source. In this respiration activity pro-
cess occurs oxygen degradation and carbon dioxide pro-
duction. There is a strong in oxygen degradation the begin-
ning fermentation. After this period, the amount of oxygen 
increases in the bioreactor [16–19, 24]. Thus, it is reasonable 
to assume that sigmoidal form be able of fitting relationship 
between the cell growth ( X ) and oxygen dissolved ( OD ) as 
followed:

where C2 is the time ferment at the midpoint of the sigmoid 
curve; μ2 is the cell maturity rate (or upper asymptote of 
the sigmoid curve); OD is the oxygen dissolved during the 
microbial fermentation.

Parameter Estimation

The estimation of kinetic parameters can be performed 
using non-linear least square fitting [36]. The least-squares 
assumes that the dependent variables can be calculated as 
function of the independent variables and of the model 
parameters. The least-squares function is usually inappro-
priate for multi-response models [37] and can be calculated 
as follows:

where F(θ) is the objective function to be minimized with 
respect to the parameter vector θ , ye

i
 and ym

i
 are the vector 

of experimental observations and model predictions of the 
dependent variables at experimental condition i and NE is 
the number of observations.

Due to existence of experimental errors, the results 
obtained after the parameters estimation are also uncertain. 
Thus, information concerning the sensitivity of the objective 
function to changes in a parameter is very important. That 
is, how much the objective function value changes when a 
parameter changes [37]. For some problems, a sensitivity 
analysis can be carried out analytically, but in others the 
sensitivity coefficients must be determined numerically 
[38]. This work, the relative sensitivity analysis consisted 
changed each parameter separately (one at a time) inside 
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95% confidence bounds (inferior and upper limits) and com-
pute the values of models.

Statistical Analysis

The coefficient of determination ( R2 ), reduced chi-square 
( �2 ), and standard residual deviation ( SRD ) were used in 
this study to evaluate the goodness of fit. Theses statistical 
values can be calculated as follows:

where NE is the number of observations, NP is the num-
ber of constants in model, ŷ is the value about ym

i
 mean, ye

i
 

and ym
i

 are the experimental and predicted moisture ratios, 
respectively. Higher values of R2 and lower values of �2 
indicate better goodness of fit [39]. According to Atala et al. 
[40], values of SRD lower than 10% are acceptable for bio-
technological process.

Results and Discussion

Tables  1, 2, 3 and 4 show the substrate degradation, 
enzyme activity, oxygen dissolved, and cells growth (all 
in dimensionless form) during the fermentation time. Sug-
arcane bagasse proved to be efficient as a carbon source 
for cellulases production with the fungus Aspergillus 
niger in stirred-tank bioreactor, requiring no other carbon 
sources. There seems to be some degree of inverse depend-
ence between substrate degradation and enzyme activity 
and between dissolved oxygen and cells growth. In other 
words, fluctuations in substrate degradation (or dissolved 
oxygen) above average are accompanied by fluctuations 
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Table 1   Substrate degradation in dimensionless form

Time (h) 5 g L−1 10 g L−1 13 g L−1 15 g L−1 20 g L−1

0 1.0000 1.0000 1.0000 1.0000 1.0000
10 0.9333 0.9583 0.9127 0.9062 0.9187
24 0.4667 0.4583 0.4847 0.4155 0.4258
48 0.1667 0.1771 0.1703 0.1206 0.1435
72 0.0000 0.0000 0.0000 0.0000 0.0000
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in enzyme activity (or cell growth) below average, and 
vice versa. This degree of inverse dependence between 
variables can be seen in Figs. 1 and 2, where substrate 

degradation (and dissolved oxygen) is the independent 
variable and enzyme activity (and cell growth) is the 
dependent variable.

The kinetics of the process with four initials substrate 
concentration (5, 10, 13 and 20 g L−1 SB) was used simulta-
neously for parameters estimation. Table 5 shows the values 
of estimated parameters, using non-linear least square fitting 
in software Matlab R2015a. The assay using an initial con-
centration of 15 g L−1 SB was used to evaluate the model’s 
prediction capacity. Table 6 shows the estimated parameters 
for 15 g L−1 SB with 95% confidence bounds.

The estimated parameters values (except for μ, μ1 and 
μ2) showed that the likelihood confidence regions are nar-
row and do not contain zero values, which could indicated 
that the parameters were well estimated. Sm and Em param-
eters are an estimate of the minimal substrate degrada-
tion level and of the minimal enzyme activity level, there-
fore, they represent the upper asymptote of the sigmoid 
curve. In the standardized form, a good estimation these 

Table 2   Enzyme activity in dimensionless form

Time (h) 5 g L−1 10 g L−1 13 g L−1 15 g L−1 20 g L−1

0 0.0000 0.0000 0.0000 0.0000 0.0000
10 0.0464 0.0417 0.0480 0.0486 0.0403
24 0.3245 0.3624 0.3886 0.3859 0.3532
48 0.9338 0.9658 0.9127 0.9946 0.9213
72 1.0000 1.0000 1.0000 1.0000 1.0000

Table 3   Oxygen consumption in dimensionless form

Time (h) 5 g L−1 10 g L−1 13 g L−1 15 g L−1 20 g L−1

0 1.0000 1.0000 1.0000 1.0000 1.0000
10 0.5661 0.5767 0.5914 0.5965 0.5997
24 0.0000 0.0000 0.0000 0.0000 0.0000
48 0.8403 0.8280 0.8672 0.8639 0.8563
72 0.8544 0.8301 0.8694 0.8669 0.8611

Table 4   Cells growth in dimensionless form

Time (h) 5 g L−1 10 g L−1 13 g L−1 15 g L−1 20 g L−1

0 0.0000 0.0000 0.0000 0.0000 0.0000
10 0.4754 0.4435 0.4031 0.4207 0.4581
24 1.0000 1.0000 1.0000 1.0000 1.0000
48 0.3279 0.3548 0.3874 0.3448 0.3871
72 0.3115 0.3306 0.3770 0.3241 0.3742
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Fig. 1   Linear relationship in the inverse form between substrate deg-
radation and enzyme activity

Oxygen dissolved
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
el

ls 
gr

ow
th

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 g/L
10 g/L
13 g/L
15 g/L
20 g/L

Fig. 2   Linear relationship in the inverse form between oxygen dis-
solved versus cells growth

Table 5   Estimated model parameters for the concentrations of 5, 10, 
13 and 20 g L−1 SB

Parameters 5 g L−1 10 g L−1 13 g L−1 20 g L−1

S
m

1.222 1.226 1.233 1.193
E
m

1.021 1.006 1.049 1.037
C 0.286 0.2881 0.2848 0.2756
C
1

0.3929 0.4151 0.4165 0.3574
C
2

0.6028 0.5997 0.6094 0.6411
μ − 5.976 − 6.038 − 5.643 − 6.767
μ1 − 10.23 − 13.23 − 7.515 − 9.514
μ2 − 4.731 − 4.661 − 4.056 − 4.475
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parameters should give values nearby of 1. The datas of 
Tables 5 and 6 show this proximity.

Table 7 shows the forecast quality statistics for the 
experimental data of 15 g L−1, using Eqs.  (3), (4) and 
(5) with the parameters shown in Table 6. The R2 values 
were high, while the �2 and SRD had low values. The 
statistical values indicated a very good concordance with 
the experimental data. Thus, all models could reasonably 
describe biological process. In this particular case, the 
good agreement between model predictions and available 
experimental data, shown in Figs. 3, 4 and 5, supports the 
use of these models (Tables 8 and 9).

C, C1 and C2 parameters are an inference about the 
inflection point of the sigmoid curves, therefore, they 
indicates the value of the independent variable for which 

the function’s concavity change occurs. These values can 
be seen directly in Figs. 3, 4 and 5. The inflection point is 

Table 6   Estimated model parameters for the concentrations of 
15 g L−1 SB

Parameters 15 g L−1 Lower limit
(95%)

Upper limit
(95%)

S
m

1.145 0.341 1.949
E
m

1.002 0.821 1.184
C 0.280 0.021 0.539
C
1

0.388 0.229 0.547
C
2

0.601 0.295 0.907
μ − 7.708 − 19.86 4.448
μ1 − 17.44 − 109.6 74.74
μ2 − 4.454 − 10.19 1.287

Table 7   Model prediction quality statistics for substrate

Parameters R
2 �2 SRD (%)

5 g L−1 0.9843 0.0063 7.92
10 g L−1 0.9769 0.0094 9.69
13 g L−1 0.9892 0.0042 6.47
15 g L−1 0.9888 0.0046 6.75
20 g L−1 0.9844 0.0063 7.927

Table 8   Model prediction quality statistics for activity

Parameters R
2 �2 SRD (%)

5 g L−1 0.998 0.0009 3.024
10 g L−1 0.9982 0.0008 2.903
13 g L−1 0.9991 0.0004 1.997
15 g L−1 0.9975 0.0012 3.434
20 g L−1 0.9986 0.0006 2.540

Table 9   Model prediction quality statistics for cells

Parameters R
2 �2 SRD (%)

5 g L−1 0.929 0.0190 11.27
10 g L−1 0.9169 0.0218 12.06
13 g L−1 0.8475 0.0393 16.18
15 g L−1 0.9016 0.0658 13.16
20 g L−1 0.8809 0.0307 14.30
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Substrate degradation
-0.2 0 0.2 0.4 0.6 0.8 1 1.2

En
zy

m
e 

ac
tiv

ity

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Experimental values
Model

Fig. 4   Enzyme activity versus substrate degradation



4439Waste and Biomass Valorization (2021) 12:4433–4440	

1 3

a relevant information from the point of view of process 
control and optimization.

Conclusion

The use of the agricultural waste make the fermentative 
production of cellulase enzyme more feasible. In this 
study, the sugarcane bagasse proved to be efficient as a car-
bon source for the production of cellulases with Aspergil-
lus niger, requiring no other carbon sources in the bioreac-
tor. The models proposed in this work allowed to predict 
the substrate degradation, as function of the fermentation 
time, enzymatic activity, as function of the substrate deg-
radation, and cell growth, as function of dissolved oxygen 
concentration in the stirred-tank bioreactor. Combina-
tion of the non-linear empirical logistic models and the 
relative sensitivity analysis allowed for proper analysis of 
parameter estimates without introduction of unnecessary 
simplifications that may lead to erroneous conclusions 
when nonlinear models are considered. The use of these 
models could be encouraged to investigate submerged 
fermentation’s characteristics in new experimental due to 
its mathematical simplicity and utility. Besides that, they 
provide relevant information from the point of view of 
process control and optimization, allowing to infer about 
the inflection point, which characterizes the maximum rate 
of variation of the function.
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