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Abstract
Bio-based polymers have emerged as a feasible alternative to petrochemical polymers mainly due to their biodegradability and 
renewable feedstock. Brazil is considered one of the largest producers of agricultural commodities. Hence, the country is also 
distinguished by the large generation of this residue type, which can be potentially used as a source to obtain biopolymers, 
such as cellulose. Based on the Brazil agriculture market, the study aims to analyze the suitability of agroindustrial residues 
as raw material for cellulose-based materials. A methodology for the selection of the most suitable residues is proposed, 
which takes into account the chemical composition of residues, namely the cellulose content and the cellulose-to-lignin 
ratio, as well as, their availability. In order to meet conservation issues, the availability of residues is calculated as a func-
tion of sustainable removal rates and competitive uses. Taking as reference the main crops identified, the average amount of 
agroindustrial residues available in Brazil was estimated at 108 million tons/year. Among the most suitable residues to be 
used as cellulose feedstock are soybean straw, sugarcane top/leaves, maize husk and stover and sugarcane bagasse.

Graphical Abstract

Keywords Cellulose · Lignocellulosic biomass · Bio-based materials · Availability of residues

 * David Jefferson Cardoso Araújo 
 david_bct@hotmail.com

Extended author information available on the last page of the article

http://orcid.org/0000-0002-9110-1952
http://crossmark.crossref.org/dialog/?doi=10.1007/s12649-018-0291-0&domain=pdf


2864 Waste and Biomass Valorization (2019) 10:2863–2878

1 3

Introduction

In the last decades, the industrial segment of polymeric 
products has shaped the humankind life. Increasing 
demand for versatile products for several applications has 
been a major factor responsible for the growth of this seg-
ment. Nowadays, polymers are found throughout many 
sectors and industries including packaging, build and con-
struction, automotive, electric and electronics, agriculture 
and consumer goods [1].

Currently, its improper disposal, persistence and fossil-
based raw material represent factors with negative envi-
ronmental and economic effects, namely greenhouse gas 
emission and land and marine pollution [2, 3]. In terms 
of disposal for example, only in Brazil, plastic represents 
around 13.5% of the total solid waste collectible [4]. None-
theless, in 2015, from 72.5 million tons of solid waste 
collected, almost 30 million tons were sent to unsuitable 
destinations such as dumps [4]. Depending on the kind 
of plastic, it will take a very long time to degrade when 
released into the environment, enhancing its accumulation 
[5]. Even in the controlled environment of landfills plastics 
hardly degrade [6]. In the marine environment, common 
plastics used in packaging degrade at a very slow rate [2, 
7]. According to Eriksen et al. [8], a minimum of 5.25 tril-
lion plastic particles weighing 268,940 tons is estimated 
to be floating in the world’s oceans.

In this sense, the search for renewable raw materials 
suitable for the production of biodegradable polymeric 
products is imperative, especially considering the deple-
tion of fossil resources, fluctuation in oil price and the 
negative environmental impacts. Indeed, bioplastics have 
been mentioned as a lead market by the European Com-
mission, with global production capacity set to grow 350% 
by 2019 [1]. In recent years, the group of bioplastics 
derived from renewable and biodegradable resources has 
received greater interest. They can be manufactured by 
different techniques using biopolymers as feedstock, such 
as cellulose, lignin and starch.

Among the available sources of renewable feedstock, 
lignocellulosic biomass stands out in the global scenario. 
Currently, this category of biomass assumes relevant 
importance for the generation of renewable energy, fuels 
and several other products (composites, dispersants, floc-
culants, textile fibers and activated carbon), mainly due 
to its chemical constitution. Lignocellulosic biomass con-
sists mainly of three natural organic polymers—cellulose, 
hemicellulose and lignin—and small amounts of proteins, 
pectin and extractives [9, 10]. Among the aforementioned 
components, cellulose is the most abundant organic poly-
mer on earth, and owing to its mechanical and thermal 
properties, renewability, widely availability, non-toxic, 

low cost, biodegradability and derivatizability, cellulose 
is considered a promising feedstock for the development 
of sustainable materials [11–14].

Cellulose is a high molecular weight homopolymer 
assembled from the repetition of cellobiose units (β 1–4 
glucosidic covalent bonds between d-glucopyranose sub-
units) [15, 16]. Each cellobiose unit has hydroxyl groups 
that promote strong interactions by intra and intermolecular 
hydrogen bonds. This spatial structure allows the molecules 
to crystallize in a horizontal plane and in parallel chains, 
forming microfiber packages [17]. In the plant cell walls, 
the cellulose is embedded in a matrix of hemicellulose and 
lignin, bound together by covalent cross-links, which results 
in the recalcitrant property of the lignocellulosic biomass. 
Hence, the performance of physical or chemical pretreat-
ments aiming the fractionation of lignocellulosic biomass is 
essential to convert cellulose into polymeric materials [10, 
18]. After extraction, cellulose can be processed in the form 
of nanocellulose, derivatized cellulose, composites fillers 
or matrix and regenerated materials, such as films and gels 
[13, 19].

In general, lignocellulosic biomass may result from agri-
cultural waste, forest waste, energy crops and municipal and 
industrial wastes [10, 20]. The set of activities associated 
with the vegetable agribusiness sector stands out as one of 
the main residues generators. Framed worldwide as one of 
the leading agricultural producers, Brazil also excels due 
to the large waste generation originated from this type of 
activity. It is estimated that the production of agricultural 
residues in Brazil exceeds 200 million tons per year [21, 
22]. Despite some of these residues are currently applied 
to a range of valorization processing, a large portion is still 
directed to sanitarium landfills and incineration plants, or 
burned in the harvest field.

The first step in the sense of analyze the valorization fea-
sibility of agroindustrial residues, regarding its application 
to produce cellulose-based products, consists in the identi-
fication of residues types that besides to have high content 
of cellulose, are also generated and available in significant 
quantities. In general, the availability of agroindustrial resi-
dues is estimated based on the annual production of crops 
and its respective residue-generation-rate. In Brazil, studies 
aiming this type of estimation have already been performed 
by [22–25]. However, besides the time lag and lack of prop-
erly environmental constraints and competitive uses assump-
tions, these studies are focused on the assessment of residues 
as an energy resource and, in many cases, potentials and 
limitations are exclusively based on the residues availability.

The present study aims to estimate the amount of agroin-
dustrial residues available in Brazil and to identify the most 
suitable residues that can be used as raw material in the 
production of cellulose-based materials. The required esti-
mates were carried out based on the agroindustrial market 
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of Brazil and the availability of residues was calculated as 
a function of the average crop production and conservative 
assumptions, such as sustainable removal rates and com-
petitive uses. Furthermore, the availability and chemical 
composition of residues were taken into account in order 
to assess their suitability to produce for the development of 
cellulose-based materials.

Methodology

Crop Residues Production and Chemical 
Composition

Spatiotemporal characterization of agricultural crops pro-
duction was performed with statistical data of Brazilian 
Institute of Geography and Statistics (IBGE) [26], extend-
ing from 2004 to 2014. In order to complement this previous 
assessment and support the selection of main crops, infor-
mation about residues types and their respective cellulose, 
hemicellulose and lignin contents were obtained from asso-
ciated literature.

The crop residues production can be calculated in terms 
of the average annual production of crops (AAP) and the 
residue generation rate (RGR). The AAP of crops intended 

to processing industries was set as the portion of produc-
tion allocated for this purpose. For all other residues, the 
AAP values resulted directly from IBGE database. RGR 
values were obtained directly as default values from natural 
resource module (NRM), as well as from other published 
documents. The NRM consist of a data processing and han-
dling digital module, applied to assess the availability of 
bioenergy feedstock originating from crop production, agri-
cultural residues and forestry [27].

Residue Generation Rate

The RGR can be understood as the ratio, on a dry basis, of 
the weight of residue produced to the total weight of the 
main crop product (e.g. the ratio of straw to wheat grain). 
RGR values may vary temporally and spatially according to 
several aspects, depending on the cultivation techniques, soil 
fertility and weather conditions [22]. Considering that RGR 
data used come from other studies targeted to different geo-
graphic areas, including those belonging to NRM database, 
it is expected that these values encompass a technical, envi-
ronmental and cultural variability, so that their application 
meet only a rough estimate. The diversity and variability of 
residues generation rates can be seen in Table 1.

Table 1  Residues generation 
rates of agroindustrial residues

Crop Residue Residues generation rate

Cotton Hull 0.26 [27] 2.95 [22]
Stalk 3.4 [27] 3.0 [28]

Rice Husk 0.25 [27] 1.49 [22] 1.0 [29] 0.26 [30]
Straw 1.33 [27] 1.0 [28] 1.55 [30]

Banana Tree pruning 0.8 [31]
Potato Skin 0.04 [32, 33]
Cocoa Pod 1.5 [27]
Coffee Husk 1.32 [27]
Sugarcane Top/leaves 0.20 [27] 0.22 [22] 0.1 [28]

Bagasse 0.26 [27]
Coconut Husk 0.49 [27]

Shell 0.39 [27]
Beam Straw 1.7 [28]
Apple Pomace 0.30 [34]
Cassava Stalk 0.13 [27] 0.20 [22]
Maize Cob 0.30 [27] 1.42 [22] 0.7 [29] 1.96 [30]

Husk 0.22 [27]
Stover 1.96 [27] 2.0 [28]

Soybeam Straw 1.53 [27] 2.05 [22] 2.12 [30]
Pod 1.09 [27]

Tomato Pomace 0.01 [35, 36]
Wheat Straw 1.28 [27] 1.42 [22] 1.1 [28] 1.0 [29] 1.5 [30]
Mango Seed 0.07 [37, 38]
Pineapple Peel 0.12 [37, 39]
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Availability of Agricultural Residues

After identifying the main crops produced in Brazil, the 
availability of crop residues  (ARCR) (Eq. 1) was calculated 
as a function of the AAP, RGR, sustainable removal rate 
(SSR) and other competitive uses, while the availability of 
industry-driven crops residues  (ARIDC) (Eq. 2) took into 
consideration the AAP, the portion of production allocated 
to industrial processing (IP), RGR and other competitive 
uses (CU).

Sustainable Removal Rate

SRR of crop residues are required to meet environmental 
and economic sustainability associated with the agricultural 
activity. The main objectives of sustainable crop residues 
removal consist in maintaining the natural soil fertility via 
incorporation of nutrients, promoting stability of upper soil 
layers and increase the organic matter content [40]. The 
percentage of crop residues that must be kept in the field 
depends on factors, such as the soil structure and type, plant-
ing techniques (e.g. fertilizers usage, crop rotation and till or 
no-till farming) and conservation practices.

In the literature is commonly suggested that a resi-
due removal up to 30% does not imply damage to the 
soil [41–44]. However, estimates for sustainable residue 
removal may vary greatly from crop to crop, and it depends 
on another series of factors, such as geographical, climatic 
and technical/technological. For example, according to SoCo 
project team [45], regardless the cultivation method, it is 
indicated a maximum removal rate of straw around 70%. 
Karkee et al. [46] found that depending on soil character-
istics, topography and farming practices (tillage, conven-
tional and no-till), the percentage of available biomass to be 
removed may vary from 0 to 98%, without negative effects 
on the soil. In this study we adopted the sustainable removal 
rates of 40% for wheat straw, maize residues, rice straw and 
husk, bean straw and cotton stalk [24], and 30% for sugar-
cane top/leaves [41], cassava stalk and soybean straw and 
pods [24].

Competitive Use of Residues

Besides SRR, agroindustrial residues may be used in a range 
of applications, including energetic valorization, animal feed 
and bedding, application in the construction sector, as well as 
starting materials for activated carbon production [45, 47–49]. 
These applications represent competitive use with direct influ-
ence over the availability of residues and must be taken into 

(1)ARCR = (AAP)(RGR)(SRR)(1 − CU)

(2)ARIDC = (AAP)(IP)(RGR)(1 − CU)

account. It is worth mentioning that Brazil, besides being one 
of the main producers/generators of lignocellulosic fibers, also 
stands out for the development of projects and research related 
to the valorization of this sort of material/residue [50]. Con-
siderable attention has been given to the application of some 
lignocellulosic residues as reinforcing agents/fillers in com-
posite materials [50–54]. While recognizing such applications, 
the use of some residues is still restricted to research activities, 
and therefore they were not handled as a competitive use since 
they still do not have commercial or large-scale application.

Generally, very little information is available on industrial 
processing residues used for recycling/reuse purposes. Not-
withstanding, in order to proceed with conservative estimates, 
for those crops with no information on the percentage of resi-
dues destined for other valorization routes it is assumed that 
only 50% is available. For residues that no other valorization 
route was identified, such as cassava stalk, rice straw, cotton 
stalk, soybean straw and sugarcane top/leaves, is estimated 
that 75% of the total generated is available (Table 2). It was 
also assumed that 35% of coconut [55], 10% of mango [56, 
57], 40% of tomato [58], 10% of potato [59] and 15% of apple 
national production [60] are allocated to industries process-
ing. Besides, it is verified that practically all the production of 
cocoa and coffee goes to processing industries [61, 62].

Suitability of Agroindustrial Residues to Develop 
Cellulose‑Based Products

The assessment of residues suitability has been carried out 
based on methodology reported by Araújo et al. [80], where 
the suitability scale of residues is measured (Eq. 3) taking into 
account the normalized values of three main parameters ( � ′

i
 ): 

Availability of residues (AR), cellulose content (CC) and cel-
lulose to lignin ratio  (RC/L). The presence of lignin in lignocel-
lulosic biomass can be considered as one of the major obsta-
cle in biomass pretreatment processes [81, 82]. Therefore, the 
influence of lignin over the selection of residues was accounted 
by including the cellulose-to-lignin ratio. The greater the ratio, 
the greater is the cellulose percentage compared to the lignin 
content, and thus more efficient is the biomass treatment.

where,

The constants a and b in Eq. 4 correspond to arbitrary 
points, equivalent to 0.1 and 1, respectively, used to restrict 
the range of suitability values. Besides, wi correspond to 

(3)S�
ij
=

n
∑

i

wi × 𝜒
�

ij
; Lignin content > 0

(4)�
�

ij
=a+

[(

�j − �min

)

(b − a)
(

�max − �min

)

]

;



2867Waste and Biomass Valorization (2019) 10:2863–2878 

1 3

weights of parameters AR, CC and  RC/L, which are equiva-
lent to 35, 45 and 20, respectively, and the subscript index 
j represents the residue under evaluation. In the same equa-
tions, the parameters designated by maximum and minimum 
subscripts are related to residues that present the highest 
and lowest values, respectively, of the parameter concerned. 
Thus, for each residue, the suitability index  (Sij′) may vary 
from 10 (lowest suitability) to 100 (highest suitability), 
expressed as dimensionless (Eq. 3).

Results and Discussion

Agricultural Production and Harvested Area

The crop production can be divided into two categories: 
(i) permanent and (ii) temporary. The permanent category 
includes the long-term crops that do not require replanting 
after harvesting, while the temporary one generally require 
replanting after harvesting. Within the period from 2004 to 
2014, among all permanent crops, excel the high production 
of orange, banana, coffee and coconut (Fig. 1). In fact, Brazil 
is among the world’s leading producers of these crops. Only 
the Southeast region is responsible for more than 80% of 
national orange production and 55% of the total permanent 
crops production. Northeast region accounts the largest pro-
duction of coconut and banana and 23% of permanent crops 
production (Fig. 2a, b).

Southeast and Northeast regions accounted about 
5,224,000 ha (43.43 and 39.68%, respectively), on aver-
age, of the total area used for the cultivation of perma-
nent crops in Brazil. Around 80% of coffee plantation 
and 74% of orange plantation are located in the Southeast 
region. In the Northeast predominates plantation areas for 
banana, cocoa, cashew nut, coconut and sisal. In other 
regions, crops with lower percentage of area for cultiva-
tion prevails.

Regarding the temporary crops, over the last 11 years of 
data, it was possible to verify that the production has almost 
doubled, reaching 972.2 megatons in 2014. Among all the 
temporary crops, sugarcane production is by far the most 
relevant. In 2014 were produced 737.2 Mt of sugarcane, 
86.7 Mt of soybean, and 79.8 Mt of maize (Fig. 2). These 
figures place Brazil among the world’s largest producers of 
these crops. The other crops, which account for a total of 28 
different types, contributed with 68.5 Mt (about 7% of the 
total production) (Fig. 2). About 52% of the national tem-
porary crops production takes place in the Southeast region. 
The Centre-West region presents the second higher percent-
age contribution, mainly due to its leadership as maize and 
soybean producer.

It could also be noticed that 43% of the total harvesting 
area was used for soybean crop, 22.5% was used for maize 
plantation and 14.8% for sugarcane growing. It is worth 
highlighting that, in 2014, two Brazilians regions accounted 
for about 45% of all harvested areas, namely Centre-west 

Table 2  Competitive uses of agroresidues

Residue Avail-
ability 
(%)

Competitive uses Reference

Sugarcane bagasse 10 Fired in stem boilers in the own mill to produce electricity [63, 64]
Sugarcane top/leaves 75 Not identified –
Maize husk, cob and stover 40 Animal feed [63]
Rice husk 25 Drying, power generation at rice mills and chicken bedding production [63]
Rice straw 75 Usually burned in the harvest field [64]
Bean straw 50 Used to produce activated carbon and as a substrate for the production of other crops [65, 66]
Cassava stalk 75 Used as animal feed, but its toxic principle limits this kind of application [23, 64]
Orange residues 0 Aromatizing and animal feed [67]
Grape residues 0 Used in food, pharmaceutical and cosmetics industries [21, 68]
Coconut residues 90 Biomass, composites, agricultural fertilizer, activated carbon and filler for automotive banks [69–71]
Mango stone and husk 50 Animal feed [72, 73]
Tomato pomace 50 Fractionation of components, carotenoids extraction and biofuels [74–76]
Potato skin 50 Cattle feed [77]
Appla pomace 50 Organic fertilizer and animal feed [78]
Cocoa shell 50 Energetic valorization [79]
Coffee husk 50 Animal bedding [63]
Cotton stalk 75 Not identified –
Soybean straw 75 Not identified –
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(with 24.3 million hectares) and South (with 21 million 
hectares).

Chemical Composition of Agroindustrial Residues

Depending on the morphological structure of crops and the 
processing levels to which they are subject, different types 
of residues with specific cellulose, hemicellulose and lignin 
contents can be obtained (Fig. 3; Tables 3, 4). Cereals and 
oilseed crops may be mentioned as crops capable of gen-
erating residues still in the harvesting phase. On the other 
hand, crops such as grape, orange, apple, potato, coconut, 
coffee, mango and cocoa, particularly interesting to obtain 
processed products, may result in the generation of residues 

at different stages of industrial processing. Figure 3 presents 
different agroindustrial residues provided by local farmers 
and processing industries. Tables 3 and 4 present cellulose, 
hemicellulose and lignin values for a range of lignocellulosic 
residues derived from temporary and permanent agricultural 
crops, respectively. These tables highlight several agroin-
dustrial residues with high cellulose content and potentially 
interesting to be used as sustainable resources to produce 
cellulose-based materials.

Availability of Agroindustrial Residues

The availability of residues related to the main crops iden-
tified in previous assessment took into consideration: (i) 

Fig. 1  Average production of permanent crops in Brazil. a Average percentage of the main crops produced by each macroregion. b Average pro-
duction of permanent crops from 2004 to 2014 and average percentage of permanent crop production by macroregions

Fig. 2  Annual evolution of 
temporary agricultural crops 
production from 1990 to 2014
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Table 3  Chemical composition 
of lignocellulosic biomass 
derived from temporary crops

Biomass Cellulose (%) Hemicellulose (%) Lignin (%) Reference

Pineapple Peel 21.98 74.96 2.68 [83]
Cotton Hull 44.35 11.2 16.15 [84]

Stalk 40.4 – 20.9 [85]
Garlic Skin 41.7 ± 2.1 20.8 ± 1.6 34.5 ± 2.4 [86]
Peanut Shell 49.4 ± 1.4 8.1 ± 0.6 33.1 ± 1.5 [87]
Rice Straw 39.5–41 24.4–31 15.9–24 [88, 89]

Husk 35 33 23 [90]
Oat Stalk 31–48 27–38 16–19 [91]
Potato Skin 10.5 – 4.0 [92]
Sugarcane Top/leaves 39.8 28.6 22.5 [93]

Bagasse 43.10 22.82 24.09 [12]
Onion Skin 41.1 ± 1.1 16.2 ± 0.6 38.9 ± 1.3 [94]
Rye (stalk) Stalk 33–50 27–30 16–19 [91]
Barley Straw 33–40 20–35 8–17 [10]
Pea Hull 62.3 8.2 – [95]
Bean Straw 40.2 19.32 18.13 [96]
Sunflower Straw 40.41 31.44 19.45 [96]
Jute Stem 61–71.5 13.6–20.4 12–13 [97]
Flax Stem 75.4 ± 0.2 13.4 ± 2.8 3.4 ± 0.9 [98]
Cassava Stalk 38.8 7.2 11.8 [99]
Maize Husk 62.07 ± 0.86 17.93 ± 0.86 14.6 ± 0.6 [100]

Stover 40.8 34 22 [89]
Cob 31.2–45 35–43.1 15–16.5 [10, 101]

Ramie Fiber 69–91 5–17 < 1 [102, 103]
Soybean Straw 44–83 24.3 ± 3.0 5.0–14 [104]
Sorghum Stalk 41.7 23 18.2 [105]
Tomato Plant 39.1 28.8 12.1 [106]

Pomace 29.1 13.5 57.4 [107]
Wheat Straw 30–40.8 38.32–50 15–22.45 [10, 96]
Triticale Straw 32.20 – 15.02 [108]

Table 4  Chemical composition 
of lignocellulosic biomass 
derived from permanent crops

Biomass Cellulose (%) Hemicellulose (%) Lignin (%) Reference

Olive Pomace 24.1–14.45 11.0–6.63 14.1–8.54 [109]
Banana Raquis 48.7 16.1 12.2 [110]

Pseudostem 48.19–59.22 12.09–15.91 14.39–21.56 [111]
Peduncle 48.31–60.41 10.20–13.99 17.56–20.66

Cocoa Shell 35.4 14.0 37 [79]
Coffee Husk 43.0 ± 8.0 7.0 ± 3.0 9.0 ± 1.6 [112]
Coconut Husk 37.0 – 32.5 [113]
Orange Pell 14.4–37.08 10.9–11.04 1.33–7.52 [114]
Lemon Pell 23.06 ± 2.11 8.09 ± 0.81 7.56 ± 0.54 [114]
Apple Pomace 7.2 – 23.5 [115]
Mango Seed 55.0 ± 1.0 20.6 ± 0.3 23.85 ± 0.21 [116]
Nut Shell 53.9 15.4 30.7 [107]
Oil palm Empty fruit brunch 40–50 20–30 20–30 [117]
Pear Pomace 32.9 ± 0.3 22.1 ± 0.2 17.0 ± 0.4 [118]
Sisal Fiber 64.9–78 10–25.4 8–11.7 [119, 120]
Grape Pomace 27.9 9.1 63.0 [107]
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average annual production of crops; (ii) residue generation 
rate; (iii) sustainable removal rates; and (iv) other competi-
tive uses. Table 5 shows the values of variables encompassed 
in Eqs. 1 and 2, as well as the annual RP and the availability 
of residues. Exclusively for the industry-driven crops, the 
AAP is equivalent to the portion of production allocated for 
industrial processing. Residues classified in this approach 
are highlighted in Table 6.

Taking into account only the main residues identified, 
the total amount of agroindustrial residues produced in 
Brazil is estimated at over 589 million tons/year on aver-
age. However, in response to the conservation assump-
tions, the availability of residues is estimated at about 
108 million tons/year (Table 6). The analysis of these 
results along with the data provided in Tables 2 and 3, 

Fig. 3  Agroindustrial residues: a olive pomace, b soybean husk, c barley (brewing by-product), d apple pomace, e sugarcane bagasse, f potato 
skin, g pear pomace, h corncob, i maize stover, j coconut husk

Table 5  Availability of residues, 
cellulose content and cellulose-
to-lignin ratio normalized 
values

Residue Normalized available 
residue  (ARi′)

Normalized cellulose 
content  (CCi′)

Normalized cellulose-
to-lignin ratio  (RC/Li′)

Cocoa shell 0.105 0.551 0.353
Coconut husk 0.110 0.576 0.195
Coffee husk 0.156 0.672 0.610
Maize cob 0.196 0.484 0.302
Maize husk 0.164 0.977 0.550
Maize stover 0.668 0.637 0.277
Sugarcane bagasse 0.620 0.674 0.269
Cassava stalk 0.123 0.605 0.440
Rice husk 0.124 0.544 0.239
Rice straw 0.255 0.616 0.348
Bean straw 0.135 0.628 0.318
Cotton hull 0.116 0.694 0.378
Cotton stalk 0.224 0.631 0.285
Banana pruning 0.188 0.816 0.426
Mango seed 0.100 0.864 0.328
Apple pomace 0.101 0.100 0.100
Soybean straw 0.807 1.000 0.827
Sorghum stalk 0.112 0.652 0.326
Sugarcane top/leaves 1.000 0.621 0.267
Wheat straw 0.142 0.551 0.281
Pineapple peel 0.101 0.336 1.000
Tomato pomace 0.100 0.450 0.123
Potato skin 0.100 0.153 0.364
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Table 6  Average availability of 
agricultural residues

AAP average annual production of crops, RGR  residue generation rate, RP annual residue production, SRR 
sustainable removal rate, AR availability of residues, CU competitive uses
a Production intended to industry processing

Residues AAP (kt/year) RGR 
 (tresíduo/tcrop)

RP (kt/year) SRR (%) CU (%) AR (kt/year)

Cocoa 227.83
Shell 1.5 314.75 – 50 170.87
Coconut 694.86a

Husk 0.49 340.48 – 10 306.43
Shell 0.39 270.99 – 10 243.90
Coffee 2643.6
Husk 1.32 3489.60 – 50 1744.8
Banana 6923.9
Pruning 0.8 5539.12 – 50 2769.6
Mango 115.50a

Seed 0.07 8.09 – 50 4.05
Apple 173.5a

Pomace 0.30 52.05 – 50 26.03
Maize 56,688.7
Cob 0.33 18,707.3 40 60 2993.2
Husk 0.22 12,471.5 40 60 1995.4
Stover 1.96 111,109.9 40 60 17,777.6
Soybean 64,194.4
Straw 1.53 98,217.4 30 25 22,098.9
Sorghum 1861.00
Stalk 1.4 2,605.4 30 50 390.80
Sugarcane 625,452.7
Top/leaves 0.20 125,090.5 30 25 28,145.4
Bagasse 0.26 162,617.7 90 16,261.8
Cassava 24,743.0
Stalk 0.13 3,216.6 30 25 723.73
Wheat 5130.8
Straw 1.28 6567.5 40 50 1313.5
Rice 12,181.0
Husk 0.25 3045.2 75 761.3
Straw 1.33 16,200.7 40 25 4860.2
Bean 3194.5
Straw 1.7 5430.7 40 50 1086.1
Cotton 3818.0
Hull 0.26 992.7 50 496.3
Stalk 3.4 12.981.4 40 25 3894.4
Pineapple 648.9a

Peel 0.12 77.9 – 50 38.9
Tomato 1265.4a

Pomace 0.01 12.7 – 50 6.3
Potato 349.5a

Skin 0.04 13.98 – 50 6.99
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emphasize the potential of the accounted residues as a 
cellulosic feedstock for valorization options.

Figure 4 summarizes the information discussed so far 
about the availability of residues and the average percentage 
of cellulose. Evaluating only these two parameters, it can be 
observed the greater relevance of sugarcane top/leaves, soy-
bean straw, maize stover, sugarcane bagasse and rice straw, 
which accounted for about 82% of the total generation of 
available residues. It is worth highlight the relevance of sug-
arcane crop, which contributes alone with 41% of the total 
available residues. The remaining residues, despite having 
reasonably high percentages of cellulose, are generated and 
available in smaller quantities.

By comparison, the estimates obtained in this study are 
similar to others identified in literature, especially when 
taken into consideration the total production of residues 
and not only the portion available [22–24]. For instance, 
Forster-Carneiro et al. [22] also highlight the sugarcane as 
the crop with the largest production of residues (estimated 
at 157 million tons), and stressed a possible increase in the 
generation of agroindustrial residues around 25.2% by 2020.

Assessing the annual variability of AR for the whole 
historical series (Fig. 5) it is possible to notice a marked 
increase of residues generation throughout the years. For 
instance, from 2005 to 2014 the availability of residues 
increased 40%. It is estimated that 134 million tons of resi-
dues were available in Brazil in 2014. These estimates are 

consistent with current developments in the global agri-
cultural sector. Only in the last three decades the Brazilian 
agricultural production has more than doubled in volume. 
The sector has contributed significantly to the country’s 
trade balance, mainly as a foreign currency collector due 
to export business. Driven by continuous productivity 
improvements, and the implementation of stimulus and 
investment policies in research and development as well, 
the outlook for 2024 is that the sector will continue to 
grow [121].

Fig. 4  Availability and cellulose 
content of the major agroindus-
trial residues identified

Fig. 5  Annual evolution of availability of residues in Brazil
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In Brazil, the massive generation of agroindustrial resi-
dues (Fig. 6), which still have marginal economical use [22], 
has kept pace with the high agricultural productivity. Taking 
as reference the average availability of residues from 2004 to 
2014, positive and negative variations of availability ranging 
from − 25.7 to + 24.04% were found. Moreover, it is possible 
to predict an increase of agroindustrial residues generation, 
considering that, since 2005, the availability of residues has 
shown positive growth rate, with average annual fluctuation 
of about + 5.43%.

Suitability of Agroindustrial Residues

The ranking of residues with greater potential to be used as 
raw material (Fig. 6) was obtained by applying  ARi′,  CCi′ e 
 RC/Li′ (previously calculated and shown in Table 5) as input 
parameters in Eq. 3. From the results obtained, it could be 
noticed that the parameters AR e  RC/L play an important 
role in the final ranking of suitability. The low lignin con-
tent associated with pineapple peel resulted in a normal-
ized cellulose-to-lignin ratio much higher than the others’ 
(Tables 3, 5), which contributed significantly to the final 
value of suitability. The same is true for sugarcane top/leaves 
and soybean straw, in response to their great availability.

Among the main agroindustrial residues identified, those 
with greater potential to be used as raw material are soy-
bean straw, sugarcane top/leaves, maize husk, maize stover 
and sugarcane bagasse. The lowest suitability values were 
assigned to apple pomace, potato skin and tomato pomace 
(Fig. 6). A close relationship between the suitability of resi-
dues and the productivity of crops was identified, since the 
most suitable residues are originated from the most produc-
tivity crops. Additionally, in the production and manufac-
turing cycle of agricultural products, the largest parcel of 

residues is generated during the harvest phase. However, 
some residues coming from processing industries excel as 
potential feedstock for cellulose-based materials manufac-
turing, namely sugarcane bagasse, mango seed, coffee husk 
and pineapple peel.

Residues with intermediate or low value of suitability 
may also be applied to the application concerned. However, 
in such situations, the feasibility of using these residues 
should be assessed, since the improvement and optimizing of 
treatments or pretreatments techniques must be carried out. 
For instance, besides to affect the efficiency of pretreatment 
steps, the presence of substantial amounts of non-cellulosic 
components may negatively influence their biodegradability, 
crystallinity, density, tensile strength, modulus and moisture 
of fibers and end products [11, 122, 123].

It is worth mentioning that the use of agricultural residues 
as a polymeric feedstock requires to encompass, besides 
availability and good chemical composition, a number of 
issues, including the temporal variability of generation, 
technological alternatives affordable, perception and social 
impact on different farmers’ category and logistical issues. 
For instance, in Brazil, about 63% of sugarcane production 
takes place in the southeast region, hence, the largest share 
of sugarcane residues will be available in that region.

Several agroindustrial residues highlighted herein have 
already been reported as source for nanocellulose produc-
tion, namely mango seed [116], soy hulls [124], cotton stalk 
[125], sugarcane bagasse [126], oil palm empty fruit bunch 
pulp [127], corncob [128] and wheat straw [129]. Ongo-
ing studies in this field are focused mainly on the use of 
nanocrystalline cellulose (NCC) and microfibrillated cel-
lulose (MFC) as fillers to nanocomposites, aiming the 
improvement of packaging and films properties [130–132].

Other newly applications and trends on cellulose-based 
materials are focused on the functionalization of natural 
lignocellulosic fibers, to produce polymeric composites 
[133–135] and biosorbents [136, 137], and NCC and MFC 
for assembling well-defined nanomaterials with unique prop-
erties [14, 125, 132, 138]. Additionally, is worth mentioning 
the development of regenerated cellulose, which is manu-
factured through the dissolution of cellulose, followed by 
its shaping and subsequent regeneration [13], as well as the 
conversion of lignocellulosic biomass into chemical building 
blocks through the biorefinery concept approach [139, 140].

Conclusion

In this study, a methodology to select agroindustrial residues 
suitable for cellulose-based materials production has been 
conducted based on the agricultural sector of Brazil. Besides 
the availability of residues, the chemical composition was 
also taken into account. The results indicated a large amount 

Fig. 6  Suitability of agroresidues for cellulose-based materials pro-
duction
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of residues available (108 million tons/year, on average) that 
could be recovered. Furthermore, since 2005 the availability 
of residues has shown positive growth rate, and it is likely 
that the generation of residues will continue to increase in 
the coming years along with the expected increase in agri-
cultural productivity. Based on the methodology applied, the 
results indicate that the soybean straw is the most suitable 
residue to be used as feedstock to produce cellulose-based 
materials, followed by sugarcane top/leaves, maize husk 
and stover and sugarcane bagasse. This clearly reveals that 
the most suitable residues are derived from the main agri-
cultural crops produced in the country. Moreover, over the 
next decades these residues tend to increase and be used as 
a potential resource.

As future works and improvements, should be mention 
that spatial and temporal variability related to residues gen-
eration should also be considered when planning valoriza-
tions routes. Besides acceptable physical performance, the 
viability of using the new developed products will be defined 
by environmental and economic aspects associated with 
their production, use and post use destination chains, which 
must be assessed by life and cost cycle analysis.
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