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Abstract

Purpose Utilizing agricultural wastes for the production

of industrially valuable enzymes like lipases in solid state

fermentation holds a promising alternative for conventional

processes due to the various obvious advantages, especially

the cost-effectiveness of the process and sustainability. In

this present work, the feasibility of exploiting various

agricultural residues for lipase production was evaluated

and optimization of the important parameters was done

using statistical methods.

Methods Candida rugosa NCIM 3462 was used for the

production of lipase in solid state fermentation. Agro

industrial wastes such as sesame oil cake, groundnut oil

cake and coconut oil cake were used for the solid state

fermentation. The Energy dispersion spectrum of the solid

substrates was used to study the elemental composition

of oil cakes. The response surface methodology was

employed to optimize the lipase production and to study

the effect of temperature and substrate to moisture ratio.

Results The maximum lipase activity of 22.40 U/g sub-

strate was obtained using sesame oil cake which was 1.8

times the maximum activity obtained during the initial

screening of variables by ‘one-factor-at-time’ approach.

The optimized temperature and substrate to moisture ratio

were found to be 32.3 �C and 1:3.23 g/ml respectively.

Conclusions A predictive model for the combined effects

of the independent variables using response surface meth-

odology and artificial neural network was proved to

be excellent empirical model for lipase production by

C. rugosa in solid state fermentation and aid in improving

lipase fermentation utilizing agricultural residues as valu-

able substrates.

Keywords Lipase � Optimization � Response surface

methodology � Candida rugosa � Protease � Solid state

fermentation

Introduction

Lipase [EC 3.1.1.3] has significant industrial importance

due to its ability to bring about a range of bioconversions

such as hydrolysis, interesterification, esterification, alco-

holysis, acidolysis and aminolysis [1–3]. Candida rugosa,

an industrial producer is the potential microbial source for

lipase production [4–6]. Interest in C. rugosa lipase has

been greatly developed due to its enantiospecific and

stereoselective properties and its non-specificity towards

the different ester bonds in triglycerides. Lipases catalyze

complete hydrolysis of triglycerides to glycerol and free

fatty acids and also transesterification reaction [1–7],

which has found extensive application in the production of

biodiesel.

Among processes used for enzyme production, indus-

trially important enzymes have traditionally been obtained

from submerged culture because of ease of handling and

greater control of environmental factors, such as tempera-

ture and pH. Solid state fermentation (SSF) constitutes an

interesting alternative, since metabolites so obtained are

more concentrated and product costs are much lower due to

the efficient utilization and value addition of wastes. Some

of the advantages of SSF over conventional submerged

fermentation for work involving fungi are simplicity of

equipment and low moisture content, which prevents
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bacterial contamination, requires lower capital, reduced

energy requirement, simpler fermentation media (agro-

industrial residues) and absence of rigorous control of

fermentation parameters, uses less water and produces

lower wastewater [8–14]. Apart from various advantages

with SSF, the major challenges are in the scale up, purifi-

cation of end products and biomass estimation [14].

Usually SSF is a batch process that utilizes heteroge-

neous natural residues, which provides essential carbon,

nitrogen and mineral sources to the microorganisms.

Additional nutrients and mineral salt solution can be sup-

plemented to enhance the production [10]. In recent times,

increasing reports on enzyme production by SSF was

available in literature since the results have shown that SSF

can give higher yields and better product characteristics

than submerged fermentation [8–19]. Filamentous fungi

are best adopted for SSF and use of unicellular microbes

for SSF is sparse [15–18]. Benjamin and Pandey [17] have

reported coconut cake as a potent substrate for lipase

production by C. rugosa. Kamini et al. [20] produced lipase

from Aspergillus niger using gingelly oil cake. Mahadik

et al. [21] have compared the lipase production by A. niger

in both submerged and SSF and they have established the

need for lipid based carbon source for lipase production,

although its role in lipase synthesis was not well under-

stood. Oil cakes can serve this requirement of microbes to

synthesis lipase. Factors such as fermentation time, tem-

perature, pH, oxygen level, moisture content and water

activity significantly affect microbial growth and enzyme

secretion [10]. Rao et al. [15, 16] have studied the pro-

duction of lipase by C. rugosa using rice bran as substrate

and addition of rice bran oil increased the lipase activity up

to 17 %. The screening of several agro-industrial residues

in the SSF processes is the most important step and its

selection depends upon several factors mainly the cost and

the availability. In the SSF process, the solid substrate

supplies the essential nutrients to the culture and also

serves as an anchorage for the microbial cells.

The effect of SSF conditions were studied by varying

one parameter at a time [15] and the interaction effects

were studied by response surface methodology [16] in

various reports. The ‘one-factor-at-time’ approach may be

useful for estimating suitable operational intervals for

important inhibitory or stimulatory variables prior to con-

ducting response surface studies. Response surface meth-

odology (RSM) using central composite design (CCD) was

adopted to design the experiments and to study the inde-

pendent and interaction effects of variables on lipase pro-

duction, and was widely employed to optimize various

bioprocesses [22–24]. Mathematical models play an

important role in rational design and optimization of bio-

chemical process. However due to the inherent nonlinear-

ity, complexity and uncertainty of biochemical process, it

is usually difficult to obtain an accurate model for a bio-

chemical system. An artificial neural network (ANN) is a

modeling technique, which has the ability to ‘learn’ com-

plex non linear relationship with limited prior knowledge

about the process structure and to perform inferences for

unknown combinations of input variables [25]. The RSM

and ANN approach offers an attractive alternative to fun-

damental process model development.

In the present study, optimization strategy for lipase

production in SSF using C. rugosa was done which

includes,

1. Screening of various agro industrial residues sesame

oil cake, ground nut oil cake and coconut oil cake for

lipase production.

2. Elemental analysis of the oil cakes using energy disper-

sion spectrum by Scanning Electron microscope.

3. Optimization of temperature and substrate to moisture

ratio by central composite design using the best substrate.

4. Establishing a mathematical model expressing the

relationship between lipase production and fermenta-

tion conditions and verification of the model using

RSM.

5. Application of Artificial neural network model for the

prediction of lipase activity.

Materials and Methods

Microorganism

Candida rugosa NCIM 3462 was obtained from National

Chemical Laboratory, Pune, India. The medium compo-

nents were procured from Himedia Ltd, Mumbai, India. All

chemicals used in the experiments were of analytical grade.

Spirit blue agar was used for the detection of lipase activity

of C. rugosa.

Culture Maintenance

The C. rugosa stock culture was maintained on MGYP

agar slants containing (g/l): Malt extract, 3.0; Glucose,

10.0; Yeast extract, 3.0; Peptone, 5.0 and Agar, 10.0. The

48 h old culture, maintained in MGYP agar was used to

inoculate the seed culture medium (MGYP broth) in

250 ml Erlenmeyer flask with working volume of 100 ml

and incubated at 30 �C for 24 h.

Lipase Production in Solid State Fermentation

The experiments were conducted in 250 ml Erlenmeyer

flasks containing 10 g of solid substrate to which the

mineral salt solution was added in such a way that the
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substrate to moisture ratio is 1:3.5 g/ml for the initial

screening of substrates. The mineral salt solution contains

(g/l), KH2PO4, 4.0; NaCl, 0.3; MgSO4�7H2O, 0.3; CaCl2,

0.125; FeCl3�6H2O, 0.0019. The medium was sterilized at

15 psig and 121 �C for 15 min. The sterilized medium was

then cooled and inoculated with 5 % (v/w) of 24 h grown

C. rugosa. The contents of the flask were mixed thoroughly

and incubated at 30 �C.

Substrates for Solid State Fermentation

Commercially available groundnut oil cake, sesame oil

cake and coconut oil cake were used as solid substrates and

their effect on the production of lipase was investigated.

The oil cakes were collected from a local small scale oil

seed processing and pressing industry in Chidambaram,

Tamil Nadu, India. The raw materials for this industry

comes from the near by places of Chidambaram (Cudda-

lore District, Tamil Nadu, India). Since the quality of the

raw materials does not vary in large with respect to geo-

graphic and processing quality, there is not much variation

in the quality of the oil cakes we obtained for the pro-

duction of the hydrolytic enzyme. The results presented in

this work are mean of three experiments with oil cakes

obtained from different batches. The dry substrates were

grounded and sieved to provide uniform particle sizes

between 0.21 and 0.42 mm. The solid substrate that pro-

duced maximum lipase activity was used for further opti-

mization studies. Samples were taken for every 12 h time

interval for the fermentation period of 72 h. The energy

dispersion spectrums for elemental analysis of the sub-

strates were done using Scanning Electron Microscope

(SEM-JE0L-JSM-5610, Japan with EDS, Oxford, London).

Enzyme Extraction

Hundred millilitre of 50 mM phosphate buffer of pH 7.0

was added to the solid substrate and kept in a rotary shaker

at 200 rpm for 2 h at 30 �C for extraction of enzymes. The

suspension was filtered and centrifuged at 5,030g for

15 min and 4 �C. The supernatant was used for the deter-

mination of extracellular enzyme activity [26, 27].

Lipase Activity Assay

Lipase activity was estimated with olive oil emulsion by

the procedure of Ota and Yamada [28]. Olive oil emulsion

was prepared by homogenizing 25 ml of olive oil and

75 ml of 2 % polyvinyl alcohol solution in a homogenizer

for 6 min at 20,000 rpm. The reaction mixture composed

of 2 ml olive oil emulsion, 2.5 ml 0.05 M phosphate buffer

and 0.5 ml enzyme solution and the reaction mixture was

incubated at 37 �C for 15 min. The emulsion was

destroyed by addition of 10 ml acetone immediately after

incubation and the liberated fatty acid was titrated against

0.05N NaOH. One unit (U) of lipase activity is defined as

1 lmol of free fatty acid liberated per ml of enzyme per

minute at 37 �C.

Protease Activity Assay

The protease activity was assayed by modified Anson

method [29] using casein as the substrate. 2 ml of 1 %

(w/v) casein solution was mixed with 0.5 ml of enzyme

solution and incubated at 37 �C for 30 min. 2.5 ml of

0.4 M trichloroacetic acid was added to arrest the reaction.

The solution with precipitate was filtered and to the 1 ml of

filtrate, 5 ml of 0.4 M Na2CO3 and 0.5 ml of folin reagents

were added. After 10 min of incubation, the colour density

developed was determined at 660 nm. One unit (U) of

protease activity is defined as 1 lg of tyrosine liberated per

minute by 1 ml of enzyme at 37 �C.

Central Composite Experimental Design

and Optimization by Response Surface Methodology

Central composite design (CCD), one of the response

surface methodologies usually utilized to obtain data that

fits in a full second order polynomial model. The graphical

representation of the model equation results in the response

surface plots that represent the individual and interactive

effects of test variables on the response. A 22 full factorial

central composite design with five coded levels and five

replicates about the center point, making a total of 13 runs

[30], were used to study the effect of temperature (X1) and

substrate to moisture ratio (X2) on lipase production. If the

factorial is full factorial then,

a ¼ 2k
� �1=4 ð1Þ

In this study k = 2 factors (X1, X2) therefore a = 1.414.

The parameters were tested at five levels, coded -1.414,

-1, 0, ?1 and ?1.414 for lowest, low, middle, high and

highest concentration respectively. The CCD experiment

was designed using the MINITAB software package,

version 14.0, The Math Works Inc., Natick, Massa-

chusetts, USA. The variables were coded according to

the following equation,

xi ¼
Xi � Xc

DXi
; i ¼ 1; 2; 3; . . .; k ð2Þ

where xi is the coded value of an independent variable, Xi is

the real value of an independent variable, Xc the real value

of an independent variable at the center point and DXi is the

step change value. The experimental range with the levels

of independent variables and experimental plan is shown in
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Tables 1 and 2 respectively for medium optimization. The

behavior of the system is explained by the following

second degree polynomial equation,

Y ¼ b0 þ
X2

i¼1

bixi þ
X2

i¼1

biix
2
i þ

X2

i¼1

X

i\j

bijxixj ð3Þ

where Y is the predicted response, b0 the offset term, bi the

coefficient linear effect, bii the coefficient squared effect,

bij the coefficient of interaction effect, xi and xj the coded

level of variable Xi and Xj respectively. Thus, the second

order polynomial equation can be presented as follows;

Lipase activity ðYÞ ¼ b0 þ b1x1 þ b2x2 � b11x2
1 � b22x2

2þ
b12x1x2. The MINITAB software statistical program

package was used for regression analysis of the data

obtained and to estimate the coefficients of the regression

equation. The goodness of fit of the regression model

obtained was given by the coefficient of determination R2.

The statistical significance of the model was determined by

the application of Fischer’s F test. Since coding of the

variable enables direct comparison of the partial regression

coefficients, their significance was determined by students

t test and the associated probabilities. The response surface

plots were used to describe the individual and cumulative

effects of the variables as well as the mutual interactions

between the variables on the dependent variable (lipase

activity). The second degree polynomial equation was

maximized by a constraint search procedure using the

MATLAB software (Version 6.5, The MathWorks, Inc.

Natick, USA) to obtain the optimal levels of the indepen-

dent variables and the predicted maximum lipase activity.

The enzyme activity predicted by maximization procedure

was compared with the experimental values.

Artificial Neural Network Model

A feed forward back propagation algorithm was used in the

training of the neural network on the basis of varying input/

output pair data sets. Regression-based response surface

models require the order of the model to be stated

(i.e., second, third or fourth order), while ANN tends to

implicitly match the input vector (i.e., medium compo-

nents) to the output vector (enzyme production) [31]. ANN

was applied for the purpose of simulation on the same

experimental data (Table 2) used for RSM. A well trained

feed forward back propagation neural network with one

hidden layer can be employed to overcome the uncertain-

ties typical of biological reactions with no need for prior

knowledge of the relationships of the process variables

involved [32]. The goodness of fit of the trained neural

network to the reference data was determined by the

coefficient of determination R2. The accuracy of the neural

network estimation is strongly restricted to the complete-

ness and the preparation method of training patterns as well

Table 1 Experimental range and levels of the two significant independent variables used in response surface methodology in terms of actual and

coded factors

Variables with designate Coded levels

-1.414 -1 0 1 1.414

X1: temperature (�C) 24.93 27 32 37 39.07

X2: substrate to moisture ratio (g/ml) 1:1.59 1:2 1:3 1:4 1:4.41

Table 2 The central composite

design matrix of independent

variables used in response

surface methodology with

corresponding experimental and

predicted values of lipase

activity

a Data are means of triplicates

Experiment

no.

Temperature

(x1)

Substrate to

moisture

ratio (x2)

Observed lipase

activitya (U/g

substrate)

Predicted lipase

activity by RSM

(U/g substrate)

Predicted lipase

activity by ANN

(U/g substrate)

1 -1 -1 8.60 10.081 8.599

2 1 -1 8.4 11.597 8.607

3 -1 1 12.87 15.245 12.870

4 1 1 12.5 16.761 12.870

5 -1.414 0 17.17 15.569 17.170

6 1.414 0 21.46 17.713 21.460

7 0 -1.414 8.60 6.554 8.539

8 0 1.414 17.17 13.856 17.170

9 0 0 21.46 21.784 21.732

10 0 0 21.90 21.784 21.732

11 0 0 21.94 21.784 21.732

12 0 0 21.46 21.784 21.732

13 0 0 21.90 21.784 21.732

350 Waste Biomass Valor (2013) 4:347–357

123



as the structure of the neural network. Neural networks

consist of many processing elements called neurons inter-

connected by information channels. In this present work

one hidden layer was used with the three neurons. The

number of neurons in the input and output layers are given

by the number of input and output variables in the process

under investigation. The input signals are amplified or

dampened by a weight associated with each information

channel. The neuron then sums all weighted inputs and

passes them through a threshold to determine the activation

value (the fired output signal) of this neuron. The inter

neuron activity can be modeled by an activation function.

In a back propagation neural network, the function is

commonly in the form of sigmoid function.

yj ¼ � 1þ exp
Xn

i¼1

aiwij þ hj

 !" #�1

ð4Þ

where ai—input signal, yj—fired output signal, wij—weight

associated with the input signal ai, hj—threshold value of

neuron j. In back propagation networks, the process is

executed according to an error feedback method, by which

it will first update activity values of all the neurons

corresponding to input data based on current weights and

then adjust the weights according to the error between fixed

outputs and desired outputs to reduce the error. Let

E represent the summation of output errors

E ¼ 1

2

X

j

yj � dj

� �2 ð5Þ

where dj is the desired output from neuron j. According to

the maximum gradient scheme, a common scheme used for

neural network training each connection weight wik is

changed by

Dwik ¼ �� g
oE

owik
ð6Þ

where g is the positive constant controlling the speed of

learning. The Neural network toolbox in MATLAB soft-

ware was used to construct the ANN topology.

Results and Discussion

Effect of Various Agricultural Residues on Lipase

Production

The selection of suitable substrate is the most critical and

important factor in any SSF process. The lipase production

and protease production in SSF using various agro residues

namely sesame oil cake, groundnut oil cake and coconut oil

cake as substrates for lipase production by C. rugosa is

shown in Figs. 1 and 2 respectively. The lipase production

was found to be maximum at 12.47 U/(g substrate) for the

sesame oil cake as the substrate during 60 h of SSF and

was found to decrease later to a certain extent up to

10.28 U/(g substrate) till the end of the SSF of 72 h.

Groundnut oil cake and coconut oil cake as substrates gave

a maximum lipase production of 8.87 U/(g substrate) at

60 h and 8.58 U/(g substrate) at 48 h respectively. The

protease production was found to be maximum at 9.26 U/

(g substrate) for the groundnut oil cake as the substrate

during the 60 h of SSF and remains almost same at the end

of SSF at 72 h. The coconut oil cake and sesame oil cake as

substrate gave a maximum protease production of 6.6 U/

(g substrate) and 6 U/(g substrate) at 60 h of SSF

Fig. 1 Solid state fermentative production of lipase by C. rugosa
using various vegetable oil cakes

Fig. 2 Protease activity in solid state fermentative production of

lipase using C. rugosa in various oil cakes
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respectively. The increased protease activity in the all the

substrates during the later stages of fermentation might be

the reason for the reduction in lipase activity after 60 h of

SSF. Since sesame oil cake gave a maximum lipase pro-

duction 12.47 U/(g substrate) it was selected as the best

substrate for the further studies in solid state fermentation

using C. rugosa. A better lipase activity with sesame oil

cake might be due to the presence of essential nutrient

sources and fatty acid composition. Kamini et al. [20]

reported that A. niger produced high levels of lipase using

sesame oil cake. Lakshmi et al. [33] stated that the pres-

ence of high percentage of unsaturated (C18: n) free fatty

acid composition in sesame oil was responsible for higher

lipase production by C. rugosa. Roa et al. [15] have shown

the importance of oil content for the increased lipase pro-

duction. High level lipase activity in sesame oil cake shows

the presence of essential nutrient sources for growth and

lipase production by C. rugosa. However moderate level of

lipase production was observed with the other substrates

analyzed. Conversely, Benjamin and Pandey [17] have

observed coconut cake as best substrate for lipase secretion

using C. rugosa. A combination of olive oil cake and

bagasse was utilized by Cordova et al. [19]. Gombert et al.

[9] used babassu oil cake to produce lipase by Penicillium

restrictum.

Energy dispersion spectrum and the corresponding

scanning electron microscope picture and of the various oil

cakes exploited for SSF is shown in Fig. 3. The energy

dispersion spectrum is used to study the elemental com-

position of the substrates. The major elements present in

sesame oil cake were Ca, K, Cu, Mg and Si. The elements

Cu, K, Zn, Cl and Al were present in the coconut oil cake

and the elements Cu, K, Zn and Fe were present in the

groundnut oil cake significantly. The higher yield of lipase

in SSF using C. rugosa with sesame oil cake might be

attributed to the higher percentage of the elements calcium

and magnesium in the sesame oil cake. Coconut oil cake

did not contain calcium and gave a less production of

lipase. Reports confirmed that the presence of Ca2? and

Mg2? stimulated lipase production in Burkolderia sp. [34].

Sidhu et al. [35] reported that the presence of Ca2?

enhances lipase production by a thermophilic Bacillus

species RS-12. Lipase production by a thermophilic

Bacillus species was increased several fold when magne-

sium, iron and calcium ions were added in the production

medium [36].

Time Course of Lipase Production

The time course of lipase production in SSF using sesame

oil cake is illustrated in Fig. 1. Lipase activity reaches the

maximum of 12.47 U/g substrate at 60 h of fermentation.

This is in agreement with the results observed by Rao et al.

[15]. Beyond this time period, decrease in lipase activity

was observed. This may be due to the decrease in nutrient

content in the medium or may be due to the increase in the

protease activity [20]. Prolonged incubation after 60 h have

not shown any increase in enzyme activity.

Optimization of Fermentation Conditions by RSM

The most important process parameters that affect the solid

state fermentation were moisture, nature of solid substrate

employed and heat and mass transfer characteristics within

the substrate bed [14]. These key parameters are to be

addressed for successful scale-up of solid state fermenta-

tion [14]. Based on our previous experiments by one factor

time at time approach, we found that moisture content and

the temperature were the most critical parameters that have

significant effect on lipase production by C. rugosa NCIM

3462. The moisture level was proved to have a significant

effect on various enzyme production processes in SSF [21,

26, 27, 37]. High moisture level results in low substrate

porosity precluding mass transfer activities including

oxygen penetration, and low moisture levels impede the

microbial growth by decreasing the accessibility of nutri-

ents to the microorganism and by a lowering the degree of

substrate swelling [21, 26, 27, 37]. Incubation temperature

of the process could have an effect on moisture content by

deciding the metabolic activities of the microorganisms

and also on the water evaporation.

Response surface methodology using central composite

experimental design was used to study the effect of sig-

nificant factors affecting the lipase production in SSF by

C. rugosa. The individual effects and the interaction effects

of these factors were studied. The artificial neural network

was trained using the experimental data obtained from

CCD and the well trained ANN was used to predict the

lipase activity in SSF by C. rugosa. The variables fer-

mentation temperature (X1) and the substrate to moisture

ratio (X2) were optimized to enhance the lipase production

in SSF. The CCD experimental plan along with the

experimental and predicted values of RSM and ANN are

presented in Table 2.

The lipase activity varied markedly in a range of

8.60–21.9 U/g substrate, under the conditions tested. The

lowest level of activities was observed when the substrate to

moisture ratio was very less (Experiment number 1, 2 and 7

in Table 2). Although when the substrate to moisture ratio

was high, lipase activity of 17.17 U/g substrate was

observed in experiment number 8 (Table 2), which suggests

that higher substrate to moisture ratio also would not favor

the increased lipase activity. Maximum lipase activities

were observed when sesame oil cake was moistened with

mineral solution in 1:3 ratio. There is a decline in the lipase

production above this ratio as the porosity of the medium is
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decreased [21]. Increase in the lipase activity was observed

at the higher temperature ranges experimented in the range

of 24.9–39 �C. The elliptical contour obtained as response

in Fig. 4 shows the perfect interaction of these variables.

Multiple regression analysis of the experimental data gives

the following second order polynomial equation,

Lipase activity ðYÞ ¼ 21:73þ 0:69x1 þ 2:56x2

� 2:59x2
1 � 5:8x2

2 � 0:042x1x2 ð7Þ

where Y is the lipase activity and x1 and x2 are the coded

values of the independent variables temperature and

substrate to moisture ratio respectively. The correlation

Fig. 3 Scanning Electron

Microscope picture and

corresponding Energy

Dispersion Spectrum of the

solid substrates a Sesame oil

b Coconut oil c Groundnut oil
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measures for testing the goodness of fit of the regression

equation are the multiple correlation coefficient, R and the

determination coefficient, R2. The closer the value of R to 1

the better is the correlation between the experimental val-

ues and the predicted values by the second order polyno-

mial equation. The value of the determination coefficient

R2 is 0.821 (Fig. 5a), suggests that the model does not

explain only about 16.9 % of the total variations. The

adjusted determination coefficient (Adj R2) corrects the R2

value for the sample size and the number of terms in the

model. If there are many terms in the model and the sample

size is not very large, the adjusted R2 may be noticeably

smaller than the R2. The adjusted R2 in this study was 0.70,

which was close to R2 value. Statistical testing of the model

was done in the form of analysis of variance (ANOVA),

which is required to the test the significance and adequacy

of the model. The ANOVA result for the quadratic

regression model is given in Table 3. The mean squares are

obtained by dividing the sum of squares of each of the two

sources of variation, the model and the error variance, by

the respective degrees of freedom. The Fisher’s variance

Fig. 4 Response surface plot and contour plots showing the effects of

temperature and substrate to moisture ratio on lipase production by

C. rugosa using the central composite experimental design

Fig. 5 a Plot for the comparison of experimental and response

surface methodology model predicted values of lipase activity by

C. rugosa; b Plot for the comparison of experimental and artificial

neural network model predicted values of lipase activity by C. rugosa

Table 3 Analysis of variance

values for the quadratic

regression model obtained from

central composite design

Source Degree of freedom Sum of squares Mean square F value P value

Regression 5 313.98 62.936 6.45 0.015

Linear 2 56.25 28.977 2.89 0.122

Square 2 257.7 128.362 13.23 0.004

Interaction 1 0.007 0.000 0.000 0.979

Error 7 68.179 9.168

Total 12 382.1
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ratio, the F value S2
r=S2

e

� �
, which is a statistically valid

measure of how well the factors describe the variations in

the data about its mean which can be calculated from

ANOVA, is the ratio of the mean square due to regression

to the mean square due to the error. Generally the calcu-

lated F value should be greater than the tabulated F value if

the model is a good prediction of the experimental results

and the estimated factor effects are real [38]. Here the

ANOVA of the regression model demonstrates that the

model is highly significant, as is evident from the calcu-

lated F value (Fmodel = 6.45) and a very low probability

value (Pmodel [ F = 0.0). Moreover the computed F value

is much greater than the tabulated F value (F5,7 = 3.95 at

5 %) indicating that the treatment differences are highly

significant. A well-trained neural network was employed

for the prediction of lipase production by C. rugosa in SSF.

The developed neural network model performed acute

satisfactorily when the results were compared with exper-

imental values obtained. A relatively good fit to the

experimental data was evident, with an R2 = 0.99 (Fig. 5b)

using ANN.

The students t distribution and the corresponding P val-

ues, along with parameter estimate were evaluated in

MINITAB software and are given in Table 4. The P values

are used as a tool to check the significance of each of the

coefficients, which in turn may indicate the pattern of the

interactions between the variable. The smaller the value of

P, the more significant is the corresponding coefficient.

The P value signifies that the coefficient for the linear

effect of substrate to moisture ratio and squared effect of

substrate to moisture ratio are significant. The regression

equation was solved by using MATLAB and the optimal

values of the test variables in uncoded values were

X1 = 32.36 �C, X2 = 1:3.235, giving a predicted optimum

lipase activity of 22.112 U/g substrate. The shape of the

response surface, circular or elliptical, indicates if the

interactions between the variables are significant or not.

The elliptical nature of the contour plot between the

parameters temperature and substrate to moisture ratio

indicates that the mutual interaction between these set of

variables has a significant effect on lipase yield. Checking

the adequacy of the model needs information on lack of fit,

which is contained is the residuals. The normal probability

plot (Fig. 6) of the residuals is an important diagnostic tool

to detect and explain the systematic departures from the

assumptions that errors are normally distributed and are

independent of each other and that the error variances are

homogenous. An excellent normal distribution confirmed

the normality assumption and the independence of the

residuals. The residual plot (Fig. 7) which shows equal

Table 4 Regression results from the data of the central composite

designed experiments

Terms in

designate

Coefficient Standard error

of coefficient

t value P value

Constant 21.73 1.396 15.57 0.0

x1 0.69 1.103 0.623 0.553

x2 2.56 1.103 2.321 0.053

x1 x1 -2.59 1.183 -2.185 0.065

x2 x2 -5.8 1.183 -4.902 0.002

x1 x2 -0.042 1.56 -0.027 0.979

Fig. 6 The Normal probability plot for lipase production model

Fig. 7 The residual plot for lipase production model
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scatter of the residual data above and below the x-axis

indicates that the variance is independent of the value of

the lipase production and thus supporting the adequacy of

the least squares fit.

To confirm the predicted optimized condition by RSM,

experiment was conducted at the optimum values of the

test variables (Table 5) and the maximum lipase activity of

22.4 U/g substrate was obtained at 60 h of cultivation and

is illustrated in Fig. 8. The lipase activity was found to

reduce after 60 h, which may be due to the increase in

protease activity (Fig. 2) at the post exponential growth

phase of the microorganism or due to the availability of

low level of oil and other essential nutrients in the culti-

vation broth or may be due to the accumulation of fatty

acids [34]. The graphical representations of the regression

equation, the response surface plots obtained using MINI-

TAB software package is presented in Fig. 4, which shows

the effects of temperature and substrate to moisture ratio on

the lipase production while keeping the other factors con-

stant at the middle value.

Conclusions

The statistical design of experiments offers efficient

methodology to optimize the factors with minimum num-

ber of experiments. Response surface methodology using

central composite design was useful in determining the

optimum values of the variables that affect lipase produc-

tion. Substrate optimization studies showed sesame oil

cake as the best substrate for lipase production in SSF. The

optimized temperature and substrate to moisture ratio were

found to be 32.36 �C and 1:3.23 g ml-1 respectively. The

experimental results agree closely with the results pre-

dicted by response surface methodology confirming that

response surface methodology using the statistical design

of experiments can be effectively used to optimize the

process parameters for lipase production. Both the RSM

and ANN models predicted the experimental lipase activity

with high R2 value but ANN provided superior results. We

are presently focusing on scaling up the process by

developing a novel rotating biological reactor and exam-

ining various options to determine the biomass concentra-

tion to perform kinetic analysis and modeling of solid state

fermentation.
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