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Sharma-mittal HDE model in anisotropic universe

T Vinutha1*, K Niharika1 and K V Vasavi2

1Department of Applied Mathematics, AUCST, Andhra University, Visakhapatnam, India

2Department of Mathematics, B V Raju Institute of Technology, Narsapur, Telangana, India

Received: 23 February 2024 / Accepted: 30 July 2024

Abstract: The current study explores the Sharma-Mittal holographic dark energy (SMHDE) by considering Bianchi-VI0
space-time in Saez-Ballester’s theory. The model’s exact solutions are procured by assuming the relationship between

metric potentials. The Hubble horizon is regarded as the Infrared cutoff to examine our model’s cosmic effects. The

physical behavior of the model is investigated by considering two fluids- SMHDE and pressureless matter. The behavior of

the cosmological parameters, such as the deceleration parameter, EoS parameter, qde, qm, statefinder, and v2
s , was evaluated

with the help of their plots with respect to redshift(z) to study the nature of the universe. The figure of the deceleration

parameter predicts that the present model transits from the deceleration to the acceleration period of the universe. The EoS

parameter for this model agrees with the recent astrophysical observations, which lie within the range of quintessence

region. In the case of statefinder and v2
s , the model shows Chaplygin gas and stability throughout the region. The

perturbation technique is used to evaluate the stability of the resulting model. Finally, the results of the current model

support the existence of an accelerating universe with the present observational data.

Keywords: Bianchi - VI0 spacetime; Sharma-Mittal HDE; Pressureless matter; Saez-Ballester theory

1. Introduction

The universe’s accelerating expansion has been an inter-

esting research topic for the past 20 years, which has been a

contentious issue. Many scientific investigations have been

conducted to understand the mysterious behavior of the

universe during the last few decades. The early evolution

of the cosmos continues to present difficulties for mankind,

even with the successful explanation of accelerated cos-

mology. The supernova cosmology project and the High-Z

supernova search team published Type Ia supernova

observations in 1998, concluding that the universe is

accelerating [1, 2]. This has been further supported by

recent observations of SNe Ia [3–5], cosmic microwave

background [6], and large-scale structure [7]. The idea of

dark energy was put forth in the late 1990 s by examining

the brightness of many supernovae that were exploding

stars. A hypothesized dark energy opposes gravity by

exerting a repulsive, negative pressure. One of the most

effective initial theories was dark energy, which sought to

explain late-time acceleration but failed to explain fine-

tuning and coincidence problems [8, 9]. Two techniques

have been proposed to solve the dark energy problems: one

involves studying the dynamics of various dark energy

models, and the other involves modifying general relativ-

ity’s Hilbert action to produce new theories of gravity(al-

ternative theories of gravity). Although Einstein’s general

theory of relativity has always been extremely helpful in

revealing several of nature’s hidden mysteries, the evi-

dence for the universe’s possible dark matter existence and

late-time acceleration of the universe posses a serious

theoretical challenge to this theory. Scalar fields like K-

essence [10], Phantom [11–14], quintom [15, 16], quin-

tessence [17–20], Chaplygin gas [21–23], and Holographic

dark energy [24–28] can be found in significant and viable

dynamical dark energy models. Among the various

dynamic models of dark energy, the HDE model has

recently become a successful approach for studying the

dark energy puzzle. It was developed using the quantum

properties of black holes, which have been extensively

researched in the literature to examine quantum gravity. A

new alternative to the dark energy issue can be found in the

holographic principle. The most outstanding achievement

of the holographic principle is the AdS/CFT*Corresponding author, E-mail: vinuthatummala@gmail.com
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correspondence, as seen from the reference [29]. Currently,

the holographic principle ought to be a fundamental prin-

ciple of quantum gravity because it has significance in

other branches of physics, such as nuclear physics [30] and

cosmology [31]. As a result, the two physical parameters of

the universe’s boundary on which a dark energy model

depends are the reduced Planck mass and a cosmological

length scale, considered the universe’s future event hori-

zon. Based on the dimensional analysis, we have

qde ¼ a1m
4
p þ a2m

4
pL

�2 þ a3L
4� ð1Þ

where a1; a2 and a3 are constants. According to the author

[32], the a1 expression is not feasible using the Holo-

graphic principle. According to the holographic principle,

the local quantum field (LQF) theory should not be used to

describe a black hole. Specifically, the usual estimate

qdeua1m
4
p the (LQF) this explanation should not involve

any theory. The LQF hypothesis achieves a significant ’UV

cutoff’ K. As a result of the QF theory, the determined

vacuum fluctuation is qdeua2m
4
pL

�2. The HDE idea was

based on the notion of (QF) theory, which states that a

short-distance cutoff is coupled with a long-distance cutoff

owing to the limit established by forming a black hole

[33–39]. We compared only the second term and ignored

the other terms, yielding HDE. The holographic dark

energy density [32] is defined as qde ¼ 3c2m2
pL

�2, where

m2
p, c and L are the reduced Planck mass, numerical con-

stant and IR cutoff, taken as H�1 respectively. In Eq. (2)

the a1 term is not present in the qde expression. It is worth

noting that this formulation of qde is determined by

dimensional analysis and holographic principle rather than

simply adding a dark energy component to the Lagrangian.

This distinguishing characteristic differentiates HDE the-

ory from other dark energy theories. Due to the constraint

of forming a black hole, a short-distance (UV) cutoff in

quantum field theory is coupled to a long-distance(IR)

cutoff. The holographic principle, which declares that the

entropy of a particular system depends on its surrounding

surface area rather than its volume, has drawn much focus

in the present years because of its significance in quantum

gravity. The HDE model is the first theoretical dark energy

model influenced by the holographic principle and is con-

sistent with current cosmological findings. As a result,

HDE is an attractive alternative to dark energy. Further-

more, the HDE concept has attracted much attention and

has been thoroughly researched recently. These are the

following: 1. The characteristics of HDE are addressed in

numerous modified gravity theories, including scalar-ten-

sor theories such as Brans-Dicke theory, Saez-Ballester

theory, and DGP brane-world theories, which may be

found in the literature [40–43] 2. The HDE reconstructs

different scalar-field dark energy and modified gravity

models. The Saez-Ballester theory gives a dynamical

framework that is more appropriate for studying HDE

models since HDE belongs to the family of dynamical dark

energy candidates. Many researchers have studied various

cosmological models with different aspects of holographic

dark energy. Vinutha et al. [44], studied ‘‘The study of

hypersurface-homogeneous space-time in Renyi holo-

graphic dark energy‘‘. Sharma and Dubey [45] have

worked on ‘‘Exploring the Sharma-Mittal HDE models

with different diagnostic tools’’. Manoharan et al. [46],

investigated ‘‘Holographic dark energy from the laws of

thermodynamics with Renyi entropy‘‘. Iqbal and Jawad

[47] have explored ‘‘Tsallis, Renyi and Sharma-Mittal

holographic dark energy models in DGP braneworld’’.

Jawad et al. [48], worked on ‘‘Tsallis, Renyi, and Sharma-

Mittal Holographic Dark Energy Models in Loop Quantum

Cosmology‘‘. Maity and Debnath [49] have studied

‘‘Tsallis, Renyi, and Sharma-Mittal holographic and new

agegraphic dark energy models in D-dimensional fractal

universe’’. Dubey et al. [50], have explored the ‘‘Sharma-

Mittal holographic dark energy model in conharmonically

flat space-time‘‘. Shekh et al. [51] investigated the

‘‘Physical Acceptability of the Renyi, Tsallis, and Sharma-

Mittal Holographic Dark Energy Models in the

f(T, B) Gravity under Hubble’s Cutoff’’. Gao [52] investi-

gated the ‘‘Explaining Holographic Dark Energy‘‘. Ali

et al. [53] have worked on ‘‘The Sharma-Mittal Model’s

Implications on FRW Universe in Chern-Simons Gravity’’.

Korunur [54] studied ‘‘Kaniadakis holographic dark energy

with scalar field in Bianchi type-V universe‘‘. Korunur [55]

worked on ‘‘Sharma-Mittal holographic dark energy and

scalar field in Bianchi type-I cosmology’’. Several theories

of gravity have been produced in recent years as alterna-

tives to Einstein’s theory. The most significant of these

theories of gravity are the scalar-tensor theories given by

Brans and Dicke [56], Nordvedt [57], Wagoner [58], Ross

[59], Dun [60], Sáez and Ballester [61], Barber [62], La

and Steinhardt [63]. In the inflationary period, the scalar-

tensor theories of gravitation are crucial for removing the

graceful exit problem [64]. In the last few decades, much

research has been done on cosmological models within the

context of scalar-tensor theories. There are two ways

gravitational theories are based on the scalar field; one is

the Brans-Dicke theory of gravity, which includes a scalar

field with a dimension equal to the inverse of the gravita-

tional constant G, and the other is the Saez-Ballester the-

ory, where the metric is associated with a dimensionless

scalar field which provides an excellent summary of the

weak fields. Despite the scalar field’s lack of dimensions,

the theory predicts the existence of an antigravity regime.

In 1986, Saez and Ballester proposed a Saez-Ballester
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theory of gravitation, and by using this theory, the missing

matter problem in non-flat FRW cosmologies may be

resolved. In this theory, the metric potentials connect with

a scalar field. In this scenario, the intensity of the rela-

tionship between gravity and field was determined by the

parameter w. Scalar fields ð/Þ have significance in gravity

and cosmology because they may describe phenomena like

dark energy, dark matter, and others. These may be factors

in the universe’s future time acceleration.

The Saez and Ballester (1986) theory’s Lagrangian is

given by

L ¼ R� w/n/;a/
;a; ð2Þ

where / and R are dimensionless scalar field and scalar

curvature. n and w are arbitrary dimensionless constants,

/;i ¼ gij/;j. The two terms on the right hand of equation

(2) have different dimensions for a scalar field with the

dimension G�1, hence the Lagrangian is not physically

possible. In the case of a dimensionless scalar field, it is

much more appropriate to use a Lagrangian.

The general Saez-Ballester theory action is given by

I ¼
Z
PðLþ fLmÞ

ffiffiffiffi�p
gdx1dx2dx3dx4; ð3Þ

where
P

, Lm and g are the arbitrary region of integration,

matter Lagrangian and determinant of the matrix gij
respectively, f ¼ �8p. As a result, the action principle

leads to the following equation

Rij �
1

2
Rgij � w/nð/;i/;j �

1

2
gij/;k/

;kÞ ¼ �8pTij; ð4Þ

and

2/n/;i
;i þ n/n�1/;k/

;k ¼ 0; ð5Þ

where Tij is the matter Lagrangian’s stress energy-tensor

and here 8p is taken to be one.

The energy-conservation equation is defined as

Tij
;j ¼ 0: ð6Þ

The authors who explored Saez-Ballester’s scalar-tensor

theory on anisotropic spacetime are given in the references

[65–76]. However, SMHDE in this theory with Bianchi-VI0
space-time is a quite new study. Moreover, Vinutha et al.

[77–80], have investigated Saez-Ballester theory very

clearly and explained it in detail in their works. Consid-

ering these studies, this article aims to formulate an

SMHDE model in Bianchi-VI0 using Saez-Ballester’s

theory.

2. Bianchi-VI0 cosmology in Saez-Ballester theory

Furthermore, in the early epochs of the cosmos, the iso-

tropic FRW model may not comprehensively and accu-

rately describe matter. As a result, for a precise

investigation of cosmological models to examine whether

they may evolve to the observed amount of homogeneity

and isotropy, one needs to assume spatially homogenous

and anisotropic spacetimes. Among the numerous aniso-

tropic spacetimes, many researchers have been drawn to

Bianchi-type cosmological models, which are homogenous

but not necessarily isotropic. In recent years, several

researchers have developed intriguing cosmological mod-

els in the presence of dark energy against the background

of anisotropic Bianchi spacetimes. In the early universe,

spatially homogeneous and anisotropic Bianchi-type cos-

mological models play an important role. The study of

anisotropic geometries is becoming increasingly important

due to recent Planck probe results. The existence of an

anisotropic phase that transforms into an isotropic one is

provided by the theoretical argument and the most recent

experimental results. In the framework of Bianchi-type

space times, it is found that the anisotropy of the dark

energy can be used to generate arbitrary ellipsoidal of the

universe and fine-tune the observed CMBR anisotropies.

Due to their less symmetrical structure, Bianchi-type

models were investigated to expand more universal cos-

mological models than the FRW model. Bianchi-VI0 metric

takes the form

ds2 ¼ dt2 � L2dx2 �M2e2xdy2 � N2e�2xdz2; ð7Þ

where L, M and N are metric potentials and functions of

cosmic time t. Here the co-moving co-ordinates are

(t, x, y, z). Sahoo et al. [81] have explored Bianchi-III

and VI0 cosmological models with string fluid source in

f(R, T) gravity in the context of late time accelerating

universe expansion. Prasanthi and Aditya [82, 83] have

studied an anisotropic universe with Renyi holographic

dark energy in general relativity. Vinutha et al. [84–86],

have worked on an anisotropic universe in f(R, T) gravity.

Mishra and Sahoo [87] have worked on Bianchi-type VIh
perfect fluid cosmological model in f(R, T) theory. Hegazy

and Rahaman [88] studied Bianchi-type VI0 cosmological

model in self-creation theory in general relativity and Lyra

geometry. Rodrigues et al. [89], investigated anisotropic

universe models in f(T) gravity. The Saez-Ballester field

equations are stated as

Rij �
1

2
Rgij � w/nð/;i/;j �

1

2
gij/;k/

;kÞ ¼ �ðTij þ �TijÞ;

ð8Þ

and the conservation equation is
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ðTij þ �TijÞ;j ¼ 0; ð9Þ

where Tij and �Tij are pressureless matter and HDE,

respectively, which are given as

Tij ¼ qmuiuj; ð10Þ

where qm and ui are the energy density of matter and fluid’s

four-velocity vector components, i.e., ui ¼ ð0; 0; 0; 1Þ,
respectively.

�Tij ¼ uiujðqde þ pdeÞ � pdegij; ð11Þ

here, qde and pde are energy density and pressure of HDE

respectively. By using EoS parameter (xde ¼ pde
qde

) the above

equations of pressureless matter are written as

Tij ¼ diag½0; 0; 0; qm�; ð12Þ

and HDE is written as
�Tij ¼ ½�xdeqde;�xdeqde;�xdeqde; qde�,
�Tij ¼ ½�xdeqde;�ðxde þ aÞqde;�ðxde þ bÞqde; qde�;

ð13Þ

using pressureless matter (12), HDE (13), Bianchi-VI0
spacetime (7), and Saez-Ballester field Eq. (8) gives the

following equations.

€M

M
þ

€N

N
þ

_M _N

MN
þ 1

L2
� w/n _/2

2
¼ �qdexde; ð14Þ

€L

L
þ

€N

N
þ

_L _N

LN
� 1

L2
� w/n _/2

2
¼ �ðxde þ aÞqde; ð15Þ

€L

L
þ

€M

M
þ

_L _M

LM
� 1

L2
� w/n _/2

2
¼ �ðxde þ bÞqde; ð16Þ

_L _M

LM
þ

_M _N

MN
þ

_L _N

LN
� 1

L2
þ w/n _/2

2
¼ qde þ qm; ð17Þ

_M

M
�

_N

N
¼ 0; ð18Þ

€/þ _/
_L

L
þ

_M

M
þ

_N

N

� �
þ n _/

2

2/
¼ 0: ð19Þ

From Eq. (18), we get

M ¼ N; ð20Þ

with the aid of above Eq. (20), Eqs. (14)–(19) reduces to

2 €M

M
þ

_M
2

M2
þ 1

L2
� w/n _/2

2
¼ �qdexde; ð21Þ

€L

L
þ

€M

M
þ

_L _M

LM
� 1

L2
� w/n _/2

2
¼ �ðxde þ aÞqde; ð22Þ

€L

L
þ

€M

M
þ

_L _M

LM
� 1

L2
� w/n _/2

2
¼ �ðxde þ bÞqde; ð23Þ

2 _L _M

LM
þ

_M2

M2
� 1

L2
þ w/n _/2

2
¼ qde þ qm; ð24Þ

€/þ _/
_L

L
þ 2 _M

M

� �
þ n _/

2

2/
¼ 0: ð25Þ

The conservation equation for matter and HDE is

_qm þ _qde þ
� _L

L
þ 2 _M

M

��
qm þ ð1 þ xdeÞqde

�
þ
� ðaþ bÞ _M

M

�
¼ 0:

ð26Þ

From Eqs. (22) and (23), we get

a ¼ b: ð27Þ

2.1. Solutions of the field equations

As per Eq. (27), the field Eqs. (21)–(25) form a system of

four independent equations with seven unknowns. The

following physical condition is considered to solve these

equations. The relationship between two metric potentials

L and M, i.e., expansion scalar h is proportional to shear

scalar r which is given as,

L ¼ Ml ð28Þ

l 6¼ 0; 1 is constant. Throne’s [90] work can describe the

physical reason for this supposition, i.e., the Hubble

expansion of the universe is currently isotropic by

approximately 30% according to the observations of the

velocity redshift relation for extragalactic sources. In the

vicinity of our galaxy, redshift places the limit as the ratio

of shear scalar (r) and Hubble constant (H) r
H � 0:30

[91, 92].

From Eqs. (28), (21) and (22), we get

_MM1þl ¼ c1exp

Z  
M

ðl� 1Þ _M

� 2

M2l
� bqde

�!
dt: ð29Þ

To solve the above Eq. (29), the following relationship

between the skewness parameter ðbÞ and the energy density

of dark energy ðqdeÞ is taken into consideration.

b ¼ 1

qde

h 2

M2l
þ b1ð1 � lÞ

_M

M

i
; ð30Þ

here b1 is an arbitrary constant.

Now solving Eqs. (29) and (30), the metric potentials are

procured as

L ¼
h c1ðlþ 2Þeb1t

b1

þ c2ðlþ 2Þ
i l
lþ2

; ð31Þ
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M ¼ N ¼
h c1ðlþ 2Þeb1t

b1

þ c2ðlþ 2Þ
i 1
lþ2

; ð32Þ

where c1, c2 are arbitrary constants. Using Eqs. (31) and

(32), the metric is procured as

ds2 ¼ dt2 �
� c1ðlþ 2Þeb1t

b1

þ c2ðlþ 2Þ
� 2l

lþ2

dx2

�
� c1ðlþ 2Þeb1t

b1

þ c2ðlþ 2Þ
� 2

lþ2ðe2xdy2 þ e�2xdz2Þ:
ð33Þ

3. Sharma-Mittal HDE

A novel type of holographic dark energy model, known as

Sharma-Mittal holographic dark energy, has recently been

developed [93], using the generalized entropy measure

proposed by Sharma-Mittal and inspired by the holographic

principle. The Sharma-Mittal holographic dark energy

model is significant because it can give a theoretical

framework for understanding the essential characteristics

of dark energy and its consequences for the universe’s fate.

A two-parametric entropy generated by Sharma-Mittal, and

is given as

SSM ¼ 1

R

�
ð1 þ d

A

4
Þ
R
d � 1

�
; ð34Þ

here A ¼ 4pL2, and L is the IR cutoff. d and R are two free

parameters. Tsallis and Renyi entropies can be retrieved at

the appropriate limits of R. Sharma-Mittal entropy changes

into Renyi entropy when the limit R ! 0, and it changes

into Tsallis entropy when R ! 1 � d. As stated by Cohen

et al., the energy density is produced by the relationship

between the IR and UV cutoffs.

qde /
SSM
L4

! 3c2SSM
8pL4

: ð35Þ

Here suppose the Hubble horizon cutoff as L ¼ 1
H. Using

above equation, the energy density of SMHDE is obtained

as

qde ¼
3c2H4

8pR

�
ð1 þ dp

H2
Þ
R
d � 1

�
; ð36Þ

where c2 is numerical constant and assume 8p=1. In the

above equation, H denotes the Hubble parameter and its

value is given by

H ¼ c1expðb1tÞb1

ð3c1expðb1tÞ þ 3c2b1Þ
: ð37Þ

By the use of Eq. (37) in (36), the energy density for

Sharma-Mittal HDE (qde) is attained as

qde ¼
c2c4

1expð4b1tÞb4
1

�
i1 � 1

�
27ðc1expðb1tÞ þ c2b1Þ4R

: ð38Þ

The energy density (qm) of pressureless matter and

skewness parameter (b) are obtained by using the

Eq. (38) in Eqs. (24) and (30)

qm ¼ �54Rðlþ 2Þ2

ðb4
1c

4
2 þ 4b3

1expðb1tÞc1c
3
2 þ 6b2

1expð2b1tÞc2
1c

2
2

þ 4b1expð3b1tÞc3
1c2 þ c4

1expð4b1tÞÞ

ððlþ 2Þðc1expðb1tÞ þ c2b1Þ
b1

Þ
�2l
lþ2 � 2ð�54c2

1

ðc2
2ðlþ 1=2Þb2

1 þ ð1=4Þwc2
3ÞRexpð2b1tÞ

þ c4
1nði

R
d
1 � 1ÞÞc2ðlþ 2Þ2

b2
1 � 54Rl� 27RÞexpð4b1tÞ � i7Þb2

1;

ð39Þ

b ¼ i8
ðlþ 2Þ ði1 � 1Þb4

1c
4
1c

2
� � ð40Þ

where

i1 ¼ ð9pexpð2b1tÞc2
1dþ 18pexpðb1tÞb1c1c2dþ 9pb2

1c
2
2dþ c2

1expð2b1tÞb2
1Þexpð�2b1tÞ

c2
1b

2
1

 !R
d

: ð41Þ

i7 ¼
27 8c3

1 lþ 1
2

� �
exp 3b1tð Þ þ wc2

3 c2b1 þ 2c1expð Þ b1tð Þ
� �� �

Rc2b1

2
: ð42Þ

i8 ¼ 54Rðc1expðb1tÞ þ c2b1Þ3expð�4b1tÞððlþ 2Þðc1expðb1tÞ

þ c2b1Þ
ðlþ 2Þðc1expðb1tÞ þ c2b1Þ

b1

� � 1
lþ2

 !�2l

� c1b
2
1expðb1tÞð�1 þ lÞ

2
Þ: ð43Þ
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Figs. 1, 2, and 3 study the graphical behavior of energy

density (qde) of SMHDE, energy density (qm) of pres-

sureless matter, and skewness parameter (b), respectively,

for two different values of b1 ¼ 0:135; 0:139 with respect

to redshift (z). Figures 1 and 2 show that qde and qm are

positive throughout the universe’s evolution. qde and qm
decreases with the decrease of redshift (z), i.e., decreases as

time increases for both the values of b1 ¼ 0:135; 0:139.

Figure 3, shows that the skewness parameter ðbÞ is a

positive value that increases at an early time and gradually

decreases at a late time against redshift for both the values

of b1 ¼ 0:135; 0:139.

4. Properties of the model

Here in this part, the investigation of cosmological

behavior such as volume (V), deceleration parameter (q),

squared speed of sound (v2
s ), EoS parameter (xde), and

statefinder parameter (r, s) of the model is discussed.

The average scale factor of the model is given by

aðtÞ ¼ ðLMNÞ
1
3 ¼ ðlþ 2Þðc1expðb1tÞ þ c2b1Þ

b1

� �1
3

: ð44Þ

The volume of the model is obtained as

V ¼ ðaðtÞÞ3 ¼ ðlþ 2Þðc1expðb1tÞ þ c2b1Þ
b1

: ð45Þ

From Fig. 4, it is noticed that the volume is positive

throughout the universe’s evolution and increases with the

decrease of redshift (z), i.e., increases as time increases for

both the values of b1 ¼ 0:135; 0:139, which represents the

expansion of the cosmos.

4.1. Decelaration parameter

The nature of the universe’s expansion rate is determined

by the deceleration parameter q. The deceleration

Fig. 2 Plot of energy density (qm) versus redshift (z)

Fig. 3 Plot of skewness parameter (b) versus redshift (z)

Fig. 4 Plot of volume (V) versus redshift (z)

Fig. 1 Plot of energy density (qde) versus redshift (z)
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parameter explains both the universe’s accelerations and

deceleration behavior. The cosmos exhibits five different

types of expansion: accelerating power-law expansion for

�1\q\0, decelerating expansion for q[ 0, constant rate

expansion for q ¼ 0, exponential growth for q ¼ �1, and

super-exponential expansion for q\� 1. The deceleration

parameter is stated as

q ¼ d

dt

� 1

H

�
� 1:

The deceleration parameter of our model is attained as

q ¼ �expð�b1tÞðc1expðb1tÞ þ 3c2b1Þ
c1

: ð46Þ

It is observed from Fig. 5 that, the deceleration parameter

(q) changes its sign from positive to negative values. From

this, it is clear that it exhibits a transition from decelerating

(q[ 0) to the accelerating phase (q\0). The transition

point (zt) observed in the present model is 0.56 for both the

values of b1 ¼ 0:135; 0:139 which match with various

theoretical observations such as Capozziello et al. [94],

zt ¼ 0:7679þ0:1831
�0:1829, Yang and Gong [95] zt ¼ 0:60þ0:21

�0:12, Lu

et al. [96] zt ¼ 0:69þ0:23
�0:12. In the current model, the decel-

erating phase is noticed if q[ 0, accelerating phase is

noticed if q\0. At z ¼ 0, the value of the deceleration

parameter obtained in the present model is q ¼
�0:6491;�0:6581 for b1 ¼ 0:135; 0:139 respectively and

matches with the observations of [97].

4.2. EoS parameter

The equation of state parameter (EoS) plays a significant

part in evaluating the expanding cosmos. Three different

classes of scalar field dark energy models are available to

examine the model’s dark energy characteristics: quintes-

sence �1\xde\ �1
3

, phantom xde\� 1, and quintom

xde ¼ 1. The EoS parameter (xde) is defined as

xde ¼
pde
qde

:

The EoS parameter of the present model is obtained as

dxde ¼
i2
i3
: ð47Þ

The behavior of the EoS (xde) parameter against redshift

(z) for both the values of b1 ¼ 0:135; 0:139 is graphically

shown in Fig. 6. For both values of b1, the model enters

into quintessence from matter dominated phase at z ¼ 0:18,

and the model has transitioned from decelerating to

accelerating phase. The model matches with present

observational data, which is a good result.

4.3. Statefinder parameter

Sahni et al. [98], initially developed a cosmological diag-

nostic parameter set known as the statefinder pair. The

statefinder parameter is directly derived from a space-time

metric, making it more general compared to physical

variables that are model-dependent and rely on the

Fig. 5 Plot of deceleration parameter (q) versus redshift (z)

Fig. 6 Plot of EoS parameter (xde) versus redshift (z) Fig. 7 Plot of r versus s
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characteristics of physical fields characterizing dark

energy. Dark energy models’ reliability is evaluated using

the statefinder diagnostic pair (r, s), which indicates the

model’s geometrical nature. The values of this pair give

different ranges of the scenarios those are KCDM model

for ðr; sÞ ¼ ð1; 0Þ, (ii) the CDM limit for ðr; sÞ ¼ ð1; 1Þ,
(iii) the quintessence region if r\1, s[ 0 and (iv) Chap-

lygin gas model if r[ 1, s\0. The general form of this

parameter set is stated as

r ¼ a
...

aH3
; s ¼ r � 1

3ðq� 1
2
Þ
;

where a and q are the scale factor and deceleration

parameter, respectively. The present values of this set for

our model are obtained as

r ¼ ðc2
1expð2b1tÞ þ 9b2

1c
2
2Þexpð�2b1tÞ

c2
1

; ð48Þ

s ¼ � 2ðb3
1c

3
2expð�b1tÞ þ expð2b1tÞc3

1 þ 3b1expðb1tÞc2
1c2 þ 3b2

1c1c
2
2ÞÞb

2
1c

2
2

ðc1expðb1tÞ þ c2b1Þ3ðc1expðb1tÞ þ 2c2b1Þc1

:

ð49Þ

From Fig. 7, it is observed that, it shows Chaplygin gas

behavior, i.e., r[ 1, s\0 for both the values of b1, and for

all values of r, it is clear that the parameter s remains

negative all over the region.

4.4. Scalar field

Scalar fields are essential because they illustrate matter

fields with spin-less quanta and represent gravitational

fields. Zero mass scalar fields and massive scalar fields are

two different types of scalar fields that indicate long-range

interactions and short-range interactions, respectively. This

is the primary motivator for why so many researchers are

interested in studying scalar fields. Besides this, scalar

fields help solve the horizon problem in the cosmos, and it

is also presumed that the scalar fields are responsible for

cosmic expansion. The scalar field affects all the physical

parameters in the model, giving better results.

/ ¼ dðlogðexpðb1tÞÞ � logðc1expðb1tÞ þ c2b1ÞÞ
c2ðlþ 2Þb1

: ð50Þ

The plot of the scalar field ð/Þ against redshift (z) is

shown in Fig. 8. This figure shows that the scalar field is

positive for both the values of b1 ¼ 0:135; 0:139

throughout the evolution of the cosmos.

4.5. Squared speed of sound

The squared speed of sound is an essential parameter in

cosmology that is crucial in verifying the stability analysis

of any dark energy model and in the context of the theory

of cosmic perturbations and the evolution of structure in

the cosmos. It is also very significant in understanding the

development of density fluctuations, such as those found in

the cosmic microwave background (CMB), as well as the

large-scale structure of the cosmos. Depending on the sign

value of v2
s represents whether the model is stable or

unstable. If v2
s is positive, the model has a stable behavior,

whereas if v2
s is negative, it shows unstable model behavior.

It is described as

v2
s ¼

_pde
_qde

¼ _xde þ
xde _qde
qde

: ð51Þ

The stability of the model can be obtained by substituting

the values of qde and xde and its derivatives, as

v2
s ¼

i4
i5
: ð52Þ

The i4 and i5 values are given in the appendix

section. Moreover, our model exhibits stable behavior as

for all values of z, we have v2
s [ 0 for both the values

Fig. 8 Plot of scalar field (/) versus redshift (z) Fig. 9 Plot of squared speed of sound (v2
s ) versus redshift (z)
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b1 ¼ 0:135; 0:139, whose behavior was represented

graphically in Fig. 9.

5. Analysis of solution through perturbation techniques

The perturbation approach [99–101] is mostly used to

determine approximations of the acquired exact solutions.

In this part, the stability of the solution against metric

perturbation will be examined.

ai ! aBi
þ dai ¼ aBi

ð1 þ dbiÞ: ð53Þ

The perturbation of volume scale factor, mean Hubble

factors and directional Hubble factors are

V ! VB

P
i dbi þ VB,

h ! 1
3

P
i dbi þ hB,

hi !
P

i dbi þ hBi.
The metric perturbations dbi are shown in the equations

given belowX
i

d €bi þ 2
X
i

hBid _bi ¼ 0; ð54Þ

d €bi þ
_VB

VB
d _bi þ

X
j

d _bjhBi ¼ 0; ð55Þ

X
i

d _bi ¼ 0: ð56Þ

Solving Eqs. (54)–(56) we obtain

d bi
::

þ
_VB

VB
d bi

:

¼ 0; ð57Þ

in Eq. (54), VB is background volume factor. The value of

VB for the present model is given as,

VB ¼ ðlþ 2Þðc1expðb1tÞ þ c2b1Þ
b1

; ð58Þ

Now on integrating Eq. (59) with the help VB, we obtain

the value of dbi as,

dbi ¼
d1ðb1t � logðc1expðb1tÞ þ c2b1ÞÞ

ðlþ 2Þc2b1

þ d2: ð59Þ

here d1, d2 are integrating constants. The actual fluctuations

ðdaiÞ can be obtained by substituting dbi in the equation

dai ¼ aBidbi

dai ¼
b1

ðlþ 2Þðc1expðb1tÞ þ c2b1Þ
d1ðb1t � logðc1expðb1tÞ þ c2b1ÞÞ

ðlþ 2Þc2b1

þ d2

� �
:

ð60Þ

The behavior of actual fluctuations is shown against

redshift in Fig. 10, and it is clear that it decreases with the

decrease of redshift, i.e., decreases as time increases.

6. Conclusions

Bianchi’s space-time plays a significant role in describing

the accelerated expansion of the cosmos. The Sharma-

Mittal HDE model was investigated in this work within the

context of the Saez-Ballester theory while considering the

Bianchi-VI0 space-time. The consistency of the Sharma-

Mittal HDE model in our work is studied by applying the

Infrared cutoff as L ¼ H�1. The graphical behavior of the

model is accomplished using specific cosmological

parameters like the deceleration parameter, EoS parameter

(xde), statefinder parameter(r, s), squared speed of sound

(v2
s ) for two different values of b1 ¼ 0:135; 0:139. In the

analysis of the present work, the following results were

found.

Figures 1 and 2 depict the behavior of energy density

(qde) of Sharma-Mittal HDE and energy density (qm) of

pressureless matter respectively against redshift (z).

Graphs 1 and 2 depict that qde and qm are positive for the

entire cosmos evolution and decreases with the decrease of

redshift (z) for both the values of b1 ¼ 0:135; 0:139. The

positive nature of energy density is accountable for the

universe’s accelerating expansion.

Figure 3 exhibits the behavior of the skewness param-

eter (b) against redshift (z). This figure shows that the

skewness parameter is positive for z[ 0, and at present,

Fig. 10 Plot of actual fluctuations (dai) versus redshift (z)
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z ¼ 0, whereas it is negative for z\0 for both the values of

b1 ¼ 0:135; 0:139.

Figure 4 illustrates that the volume increases with the

decrease of redshift z, demonstrating that the universe is

expanding. The exciting aspect of the deceleration

parameter elucidates the transition from the decelerating to

the accelerating phase for both the values of

b1=0.135, 0.139, and it is shown in Fig. 5. The transition

point (zt ¼ 0:56) obtained here matches with the recent

observational data.

Figure 6 shows that the EoS parameter (xde) displays a

transition from the decelerating to the accelerating phase

and enters into the quintessence phase (xde [ � 1) from

the matter-dominated phase representing the acceleration

expansion of the cosmos. xde ¼ �1:13þ0:24
�0:25

[102](Planck?nine years WMAP), SNe Ia data with galaxy

clustering, CMBR anisotropy statistics �1:33\xde\�
0:79 and �1:67\xde\� 0:62 [103] respectively and

present Planck collaboration data (2018) [104] gives the

range of EoS as xde ¼ �1:028 � 0:031 (68%, Planck TT,

TE, EE?lowE? lensing?SNe?BAO), xde ¼ �0:76 �
0:20 (Planck?BAO/RSD?WL), xde ¼ �0:957 � 0:080

(Planck?SNe?BAO), xde\� 0:95 (95%, Planck TT, TE,

EE?low E? lensing?SNe?BAO) with the help of these

observations, it is clear that the current model’s EoS

parameter (xde) is in good agreement with the observa-

tional data.

From Fig. 7, it is noticed that, the statefinder parameter

exhibits the Chaplygin gas phase ðs\0; r[ 1Þ for both the

values of b1 ¼ 0:135; 0:139. Figure 8 shows that scalar

field / is positive all through the universe’s evolution and

increases with the decrease of redshift (z) for both the

values of b1 ¼ 0:135; 0:139.

From Fig. 9, it is observed that ðv2
s Þ is positive

throughout the evolution of the model i. e. for all the values

of (z). As ðv2
s Þ is positive, it is observed that our model

shows stable behavior for both the values of

b1 ¼ 0:135; 0:139.

From Fig. 10, the actual fluctuations decreases with the

decrease of redshift (z) which is obvious that dai ! 0 at

future epoch. Hence, the background solution remains

stable even in a perturbated gravitational field. The current

model’s cosmological parameters are discussed clearly in

this article and the most favorable results that corroborate

the present cosmology are obtained. This research can

extend to other anisotropic models and examine their

similarities and differences.

A comparative study of the obtained model with the

recent works on this subject and a comparison of our

results with current observational data related to the

dynamical parameters are given below: Shekh et al. [51]

investigated the Physical Acceptability of the Renyi,

Tsallis, and Sharma Mittal Holographic Dark Energy

Models in the f(T, B) Gravity under Hubble’s Cutoff. The

obtained energy density for SMHDE is in good agreement

with their work. But we noticed by the behavior of EoS

parameter, that our model displays a transition from the

decelerating to the accelerating phase and enters into the

quintessence phase from the matter dominated phase rep-

resenting the acceleration expansion of the cosmos, where

as in their work it shows KCDM. Divya Prasanthi and

Aditya [82] have investigated Anisotropic Renyi holo-

graphic dark energy models in general relativity. We

observed that our findings are in good agreement with their

work. Vinutha et al. [44, 79] have explored the study of

anisotropic space-time in holographic dark energy. Our

results of EoS parameter and deceleration parameter are in

good agreement with their results. The deceleration

parameter of our model are consistent with the observa-

tional data such as Capozziello et al. [94],

zt ¼ 0:7679þ0:1831
�0:1829, Yang and Gong [95] zt ¼ 0:60þ0:21

�0:12, Lu

et al. [96] zt ¼ 0:69þ0:23
�0:12. We have made a comparison of

our results with present xde ¼ �1:13þ0:24
�0:25

[102](Planck?nine years WMAP), SNe Ia data with galaxy

clustering, CMBR anisotropy statistics �1:33\xde\�
0:79 and �1:67\xde\� 0:62 [103] respectively and

present Planck collaboration data (2018) [104] gives the

range of EoS as xde ¼ �1:028 � 0:031 (68%, Planck TT,

TE, EE?lowE? lensing?SNe?BAO), xde ¼ �0:76 �
0:20 (Planck?BAO/RSD?WL), xde ¼ �0:957 � 0:080

(Planck?SNe?BAO), xde\� 0:95 (95%, Planck TT, TE,

EE?low E? lensing?SNe?BAO).
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þ p2Rd2ð�1 þ lÞÞc3
2expð4b1tÞ þ 3c5

1b
2
1ðð

8c2dðlþ 2Þ2p
1701

þ Rð�1 þ lÞ
567

Þb4
1

þ
20pð2c2dðlþ2Þ2p

5
þ Rð�1 þ lÞÞdb2

1

189

þ p2Rd2ð�1 þ lÞÞc2
2expð5b1tÞ þ 3pc2

1b
5
1ðð

2c2dðlþ 2Þ2p
189

þ 2Rð�1 þ lÞ
189

Þb2
1 þ pRdð�1 þ lÞÞc5

2dexpð2b1tÞ

þ 5pc3
1b

4
1ðð

8c2dðlþ 2Þ2p
315

þ 2Rð�1 þ lÞ
63

Þb2
1

þ pRdð�1 þ lÞÞc4
2dexpð3b1tÞ þ R

� ðpdþ b2
1

9
Þ2c7

1expð7b1tÞ
7

þ p2c26b6
1d

2ðc1expðb1tÞ þ
c2b1

7
Þ
�
ð�1 þ lÞÞ
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