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Abstract: The current study employs the Nikiforov-Uvarov method to solve the Schrödinger equation for quarkonium

systems, utilizing the radial scalar power potential. The eigenvalues of energy and their corresponding wave functions are

determined by including the spin–spin, spin–orbit, and tensor interactions in the radial scalar power potential. The mass

spectra of charmonia, bottomonia, and bottom-charm in their S, P, D, and F states were determined. Our theoretical states

for quarkonium systems align with experimental data across a range of spin levels, as evidenced by our comparison. The

total percentage error of our work was computed, yielding a high level of accuracy. The cumulative percentage error for the

meson masses of charmonia and bottomonia was determined to be 0.324% and 0.333%, respectively. The masses of the

bottom-charm mesons had a total percentage error of 0.012%. Consequently, the present potential yields favorable

outcomes for the quarkonium masses, surpassing previous theoretical studies and aligning well with experimental data.

Keywords: Radial scalar power potential; Mass spectra; Nikiforov-Uvarov method; Schrödinger equation; Quarkonium

system

1. Introduction

Generally, particles can be divided into groups based on

their roles in matter and interactions. Particles like elec-

trons, protons, and neutrons are considered fermions, while

force carriers like photons are considered bosons. The

distinction between fermions and bosons lies in their

quantum mechanical properties, such as spin and helicity.

Hadrons are composite particles made up of fundamental

particles called quarks [1]. Theorists have attempted to

explain various aspects of the quark-antiquark system,

including mass spectra and properties related to decay

modes [2–6]. Several researchers have employed different

theoretical frameworks to study this phenomenon, includ-

ing the lattice quantum chromodynamics approach [7–10],

semirelativistic potential models [4], and nonrelativistic

potential models [11, 12]. These models all incorporated

the Coulomb and linear potentials [13, 14]. The properties

of these particles have been accurately characterized

through the application of quantum chromodynamics

(QCD) theory. This theory features color confinement,

spontaneous symmetry breaking, and asymptotic freedom.

Hadrons can be studied using the relativistic and non-rel-

ativistic quark models [15–19]. The non-relativistic

approach effectively explains heavy meson spectroscopic

properties like mass spectrum, decay rates, radius, etc.

Joshi and Mitra [20] examined the spectroscopy of heavy

mesons by employing the Schrödinger equation (SE) with a

harmonic oscillator and an inverse square potential. Find-

ing an analytical solution to the SE with the addition of

spin-orbit coupling to the potential function is challenging,

leading to limited attention in the literature [21–25]. In

such scenarios, numerical solutions are often employed

[26–29]. Decay characteristics can be determined by

incorporating a spin component into the potential model

[30]. For instance, Ali et al. [31] examined meson energy

spectra using Numerov’s method and compared their
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findings to empirical elementary particle data. Luz et al.

[32] solved the SE using the Cornell potential to examine

the Wigner function and the associated Airy function of the

charmonium meson. Gupta and Mehrotra [33] studied

heavy quark systems in a non-relativistic framework using

an energy-dependent global potential. They calculated root

mean square radii (RMSR) for quantum mechanical states,

derived mass spectra, and studied leptonic decay, noting

that the energy-dependent potential component saturates

mass spectra. Boroun and Abdolmalki [34] employed the

SE solution with a global potential to find the radial

expectation values for heavy and heavy-light mesons

(HLMs), as well as the wave function at the origin. Fur-

thermore, they calculated the average masses and RMSR of

heavy mesons using a potential derived from superstring

theory [35]. Several authors have investigated the mass

spectra of heavy and light mesons with the Cornell and

generalized Cornell potential [36–40]. Additionally,

authors have solved the modified SE [41–45]. In this study,

the radial scalar power potential (RSPP) is used, as it

contains both the Coulomb and linear terms of the standard

Cornell potential. The work is driven by two goals:

(a) solving meson-bound states under spin-spin interaction

analytically, and (b) determining mesonic system mass

spectra using the bound state solution. To the best of our

knowledge, this work has never been published.

2. Theory

For bound systems in the quarkonium system, a non-rela-

tivistic approach is suitable. The Schrödinger equation (SE)

for a spherically symmetric potential is given by [46].

d2RðrÞ
dr2

þ 2l

�h2
E � VðrÞð Þ � lðlþ 1Þ

r2

� �
RðrÞ ¼ 0 ð1Þ

where l; l; r and �h denote the angular momentum quantum

number, the reduced mass of the quarkonium particle, the

distance between particles, and the reduced Planck con-

stant, respectively.

Our potential of interest is of the form [47]

VðrÞ ¼ ar þ br2 þ d � g

r
þ k

r2
ð2Þ

where a; b; d:g; and k represents the potential strength.

It is common practice to model quarkonium systems

using the first and fourth terms, which represent linear

confinement and Coulombic terms, respectively. The

power term in the radial scalar potential provides greater

flexibility in characterizing the confining force, allowing

for the selection of a precise power value to better fit

experimental data. Additionally, it has been demonstrated

that a potential with more fitting parameters fits

experimental data better than a potential with fewer

parameters [48, 49].

In the nonrelativistic quark model, the quark-antiquark

potential (VqqðrÞ) is composed of two components: the

spin-independent potential denoted as ðVSlðrÞÞ which con-

tain a vector and scalar parts, and the spin-dependent

potential [50] denoted as ðVSDðrÞÞ as follows

VqqðrÞ ¼ VSlðrÞ þ VSDðrÞ ð3Þ

Introducing spin-dependent terms to the potential used

in studying quarkonium systems accounts for the effects of

the intrinsic spin of the quarks and antiquarks. These spin-

dependent interactions arise due to the strong force

mediated by gluons, which can couple to the spin of the

quarks. The spin-dependent terms in the potential

contribute to the overall energy levels and dynamics of

the quarkonium system and are crucial for understanding

properties like spin splittings and hyperfine structure.

VSDðrÞ ¼ VTðrÞ þ VSSðrÞ ð4Þ

where

VSSðrÞ ¼
2

3mqmq
r2VV rð Þ S~q:S~q

h i
ð5Þ

VSlðrÞ ¼
1

2mqmqr
3
dVvðrÞ
dr

� dVsðrÞ
dr

� �
L~:S~
h i

ð6Þ

VTðrÞ ¼
1

12mqmq

1

r

dVvðrÞ
dr

� d2VvðrÞ
dr2

� �

6 S~q:
r~

rj j

� �
S~q~:

r~

rj j

� �
� 2S~q:S~q

� � ð7Þ

The spin–orbit term VSlðrÞ describes a relatively small

correction to the potential energy that a quarkonium system

experiences as a result of the interaction between the quark

and antiquark’s spins and their relative motion. The tensor

term VTðrÞ explains how the orbital motion of the quark

and the antiquark, together with their combined effects,

affect the potential energy and its characterizes the intricate

details of fine structure of states, whereas the spin–spin

term VSSðrÞ is the total effect that the quark and antiquark

spins have on one another in a quarkonium system and

also, delineates the phenomenon of hyperfine splitting.

mqmq is the quark and antiquark mass, L is a quantum

operator that represents angular momentum, while S is an

operator that represents spin and VvðrÞ is the vector part,

which are crucial tools for characterizing their directional

aspects of a quarkonium systems. The scalar potential VsðrÞ
typically represents the interaction between the quark and

antiquark mediated by the exchange of scalar particles,

such as mesons or gluons. The scalar potential plays a

crucial role in determining the energy levels and the overall

dynamics of the quarkonium system. It governs the binding
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energy of the quark and antiquark, influencing properties

like the spectrum of bound states and their wave functions.

S~q:S~q describes the interaction between the quark and

antiquark spins in the bound state. Both the relative

orientation and the magnitude of their spins affect the

interaction.

Putting Eqs. (5), (6), (7) into Eq. (4) and then substi-

tuting in Eqs.(3) and (2) then finally into Eq. (1) using

natural units gives

Table 1 Calculated potential function parameters

Parameters Charmonium Bottomonium Bottomcharm

Mass ðGeVÞ mcc ¼ 1:2090 mbb ¼ 5:1473 mb ¼ 5:1473;mc ¼ 1:2090

aðGeVÞ 5.7787 3.9997 0.6754

bðGeV2Þ 0.1498 0.2584 0.2346

dðGeV2Þ 0.1653 0.3345 0.3654

gðGeVÞ 3.5647 2.7375 0.6148

kðGeVÞ 3.6402 0.2911 0.4532

Table 2 Charmonia mass spectrum in GeV for the S and P-states

State Present study [59] [60] [5] [61] [62] [3] EXP [58]

11S0 2.9835 2.981 2.984 2.989 2.979 2.982 3.088 2.984 (0.02%)

13S1 3.0957 3.096 3.097 3.094 3.097 3.090 3.168 3.097 (0.04%)

21S0 3.6389 3.635 3.637 3.602 3.623 3.630 3.669 3.639 (0.01%)

23S1 3.6857 3.685 3.679 3.681 3.673 3.672 3.707 3.686 (0.014%)

31S0 4.0548 3.989 4.004 4.058 3.991 4.043 4.067 –

33S1 4.0380 4.039 4.030 4.129 4.022 4.072 4.094 4.039 (0.02%)

41S0 4.3987 4.401 4.264 4.448 4.250 4.384 4.398 –

43S1 4.4206 4.427 4.281 4.514 4.273 4.406 4.420 4.421 (0.01%)

51S0 4.6719 4.811 4.459 4.799 4.446 – – –

53S1 4.6892 4.837 4.472 4.863 4.463 – – –

61S0 5.1226 5.155 – 5.124 4.595 – – –

63S1 5.1480 5.167 – 5.185 4.608 – – –

13P0 3.4138 3.413 3.415 3.428 3.433 3.424 3.448 3.415 (0.04%)

13P1 3.5107 3.511 3.521 3.468 3.510 3.505 3.520 3.511 (0.01%)

11P1 3.5235 3.525 3.526 3.470 3.556 3.516 3.536 3.525 (0.04%)

13P2 3.5549 3.555 3.553 3.480 3.842 3.556 3.564 3.556 (0.03%)

23P0 3.9184 3.870 3.848 3.897 3.901 3.852 3.870 3.918 (0.01%)

23P1 3.9375 3.906 3.914 3.938 3.908 3.925 3.934 –

21P1 3.9440 3.926 3.916 3.943 3.937 3.934 3.950 –

23P2 3.9252 3.949 3.937 3.955 4.131 3.972 3.976 3.927 (0.05%)

33P0 4.2896 4.301 4.146 4.296 4.178 4.202 4.214 –

33P1 4.3485 4.319 4.192 4.338 4.184 4.271 4.275 –

31P1 4.3546 4.337 4.193 4.344 4.208 4.279 4.291 –

33P2 4.3684 4.354 4.211 4.358 – 4.317 4.316 –

43P0 4.6739 4.698 – 4.653 – – – –

43P1 4.6867 4.728 – 4.696 – – – –

41P1 4.7039 4.744 – 4.704 – – – –

43P2 4.7179 4.763 – 4.718 – – – –

The radial scalar power potential



d2RðrÞ
dr2

þ 2lE � 2lF2

r2
� 2lF3

r
� 2lF4

r

�

þ2lF5 � 2lbr � 2lar2 � lðl� 1Þ
r2

�
RðrÞ ¼ 0

ð8Þ

where

F2 ¼ 3kvðslÞ
2mqmq

þ kvðtÞ
4mqmq

ð9Þ

F3 ¼ � 2bvðssÞ
3mqmq

þ bvðtÞ
12mqmq

ð10Þ

F4 ¼ 4gvðssÞ
3mqmq

þ 3gvðslÞ
2mqmq

þ gvðtÞ
12mqmq

ð11Þ

F5 ¼ dvðslÞ
mqmq

ð12Þ

and [51, 52]

vðssÞ ¼ sðsþ 1Þ
2

� 3

4

vðslÞ ¼ 1

2
jðjþ 1Þð Þ � lðlþ 1Þ � sðsþ 1Þ

vðtÞ ¼
�l

6ð2lþ3Þ ; j ¼ lþ 1
1
6
; j ¼ 1

�l�1
6ð2l�1Þ ; j ¼ l� 1

8><
>:

To further simplify Eq. (8), we set x ¼ 1=r and

substitute it into Eq. (8). With simplification, we obtain

d2R

dx2
þ 2

x

dR

dx
þ 1

x2
nþ H4

x2
þ H2x

2 þ H3

x
� A

x3
� D

x4

� �
R ¼ 0

ð13Þ

where

Table 3 Charmonia mass spectrum in GeV for the D and F-states

State Present study [59] [61] [5] [60] [62] [3] EXP [58]

13D3 3.8089 3.813 3.808 3.755 3.799 3.806 3.809 –

11D1 3.8058 3.807 3.805 3.765 3.796 3.799 3.803 –

13D2 3.8076 3.795 3.807 3.772 3.798 3.800 3.804 –

13D1 3.7735 3.783 3.792 3.775 3.787 3.785 3.789 3.774 (0.01%)

23D2 3.8234 4.220 4.112 4.176 4.103 4.167 4.167 3.824 (0.02%)

21D2 3.9998 4.190 4.108 4.182 4.099 4.158 4.158 –

23D2 4.1889 4.105 4.109 4.188 4.100 4.158 4.159 –

23D1 4.1895 4.574 4.095 4.188 4.089 4.142 4.143 –

33D3 4.2494 3.549 4.340 4.549 4.331 – – –

31D2 4.3533 4.544 4.336 4.553 4.326 – – –

33D2 4.4575 4.507 4337 4.557 4.327 – – –

33D1 4.5656 4.920 4.324 4.555 4.317 – – –

43D3 4.8979 4.898 – 4.890 – – – –

41D2 4.8923 4.896 – 4.892 – – – –

43D2 4.8964 4.857 – 4.896 – – – –

43D1 4.8909 4.041 – 4.891 – – – –

13F2 4.0010 4.068 – 3.990 – 4.029 – –

13F3 4.0126 4.071 – 4.012 – 4.029 – –

11F3 4.0169 4.093 – 4.017 – 4.026 – –

13F4 4.0364 4.361 – 4.036 – 4.021 – –

23F2 4.3779 4.400 – 4.378 – 4.351 – –

23F3 4.3958 4.406 – 4.396 – 3.352 – –

21F3 4.4099 4.434 – 4.400 – 4.350 – –

23F4 4.4155 – – 4.415 – 4.348 – –

33F2 4.7314 – – 4.730 – – – –

33F3 4.7464 – – 4.746 – – – –

31F3 4.7492 – – 4.749 – – – –

33F4 4.7609 – – 4.761 – – – –
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n ¼ 2lE;H2 ¼ 2lF3c� 2lF2 � lðl� 1Þ;H3 ¼ 2lF2c� F3

2lc
2

þ 2l

� �
� 2lF4

H4 ¼ 2lF5 þ n; 2ld ¼ D; 2la ¼ A;

9>=
>;

ð14Þ

Because of the singularity point in Eq. (13), we set

yþ d ¼ x, and by using Taylor series expansion up to the

second-order terms around r0 d ¼ 1
r0

� �
, which is assumed to

be the mesons’ characteristic radius [53], we obtain

d2R

dy2
þ 2

y

dR

dy
þ 1

y2
�qe þ wey� zey

2
� 	

R ¼ 0 ð15Þ

where

�qe ¼
3H3

d
þ 6H4

d2
� 15D

d4
� 10A

d3

we ¼
3H3

d2
þ 8H4

d3
� 24D

d5
� 15A

d4

ze ¼ H2 þ
H3

d3
þ 3H4

d4
� 10D

d6
� 6A

d5

9>>>>>>=
>>>>>>;

ð16Þ

The Nikiforov-Uvarov (NU) method is adopted for this

research, as detailed in Ref. [54]. The eigenvalue and

eigenfunction equations are obtained as

Table 4 Bottomonia mass spectrum in GeV for the S and P-states

State Present study [59] [60] [2] [65] [66] [62] EXP [58]

11S0 9.3976 9.398 9.390 9.414 9.389 9.393 9.392 9.398 (0.040%)

13S1 9.4608 9.460 9.460 9.490 9.460 9.460 9.460 9.460 (0.010%)

21S0 9.9989 9.990 9.990 9.987 9.987 9.987 9.991 9.999 (0.001%)

23S1 10.0226 10.023 10.015 10.089 10.016 10.023 10.024 10.023 (0.004%)

31S0 10.3307 10.329 10.326 – 10.330 10.345 10.323 –

33S1 10.3548 10.355 10.343 10.327 10.351 10.364 10.346 10.355 (0.002%)

41S0 10.5537 10.573 10.584 – 10.595 10.632 10.558 –

43S1 10.5746 10.586 10.597 – 10.611 10.643 10.575 10.579 (0.042%)

51S0 10.7408 10.851 10.800 – 10.817 – 10.741 –

53S1 10.8756 10.869 10.811 – 10.831 – 10.755 10.876 (0.004%)

61S0 10.8921 11.061 10.997 – 11.011 – 10.892 –

63S1 10.9994 11.088 10.988 – 10.1988 – 10.904 11.019 (0.177%)

13P0 9.8589 9.859 9.864 9.815 9.865 9.861 9.862 9.859 (0.001%)

13P1 9.8937 9.892 9.903 9.842 9.897 9.891 9.888 9.893 (0.007%)

11P1 9.8992 9.900 9.909 9.806 9.903 9.900 9.896 9.899 (0.002%)

13P2 9.9133 9.912 9.921 9.906 9.918 9.912 9.908 9.912 (0.013%)

23P0 10.2333 10.233 10.220 10.254 10.226 10.230 10.241 10.232 (0.013%)

23P1 10.2600 10.255 10.249 10.120 10.251 10.255 10.256 10.260 (0.00%)

21P1 10.2689 10.260 10.254 10.154 10.256 10.262 10.261 10.269 (0.001%)

23P2 10.2685 10.268 10.490 – 10.269 10.271 10.268 10.268 (0.049%)

33P0 10.5019 10.521 10.515 10.303 10.502 – 10.511 –

33P1 10.5236 10.541 10.519 – 10.524 – 10.507 –

31P1 10.5289 10.544 10.528 – 10.529 – 10.497 –

33P2 10.5498 10.550 – – 10.540 – 10.516 –

43P0 10.7335 10.781 – – 10.732 – – –

43P1 10.7532 10.802 – – 10.753 – – –

41P1 10.7674 10.812 – – 10.767 – – –

43P2 10.9750 – – – 10.975 – – –

The radial scalar power potential



Enl ¼
10d

3d2
þ 2a

d
� dvðslÞ

mqmq

�

3kvðslÞ
2mqmq

þ kvðtÞ
4mqmq

cþ 2bvðssÞ
3mqmq

þ bvðtÞ
12mqmq

� 4gvðssÞ
3mqmq

þ 3gvðslÞ
2mqmq

þ gvðtÞ
12mqmq

0
BBB@

1
CCCAd

3

� 1

6l

48ld
d3 þ 30la

d2 � 2l

2nþ 1 þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
30ld
d5 þ 20la

d6 � 2lþ lþ 1
2

� �2
q

2
64

3
75

2

ð17Þ

The wave function is given as

wðrÞ ¼ Nnlr
e

2
ffi
e

p
e
� 1ffi

e
p r d

n

drn
r

2n� effi
e

p
e�2 2

ffiffi
e

p

r

� �� �
ð18Þ

lim (r ? ?) |w(r)|= 0.

The wave function’s normalization constant is Nnl,

which can be obtained from

Z1

0

wðrÞj j2dr ¼ 1 ð19Þ

Therefore,the mass spectra become [55, 56]

M ¼ mq þ mq þ Enl ð20Þ

The total percentage error ¼ 100

s0

Xs0

i¼1

Mexp �Mtheo

Mexp











ð21Þ

The variables in this equation are as follows: s0

represents the number of available experimental data

Table 5 Bottomonia mass spectrum in GeV for the D and F-states

State Present work [59] [60] [66] [62] [63] [2] EXP [58]

13D3 10.1655 10.166 10.157 10.156 10.177 10.127 10.232 –

11D1 10.1636 10.163 10.153 10.152 10.166 10.123 10.194 –

13D2 10.1625 10.161 10.153 10.151 10.162 10.122 10.145 10.163 (0.005%)

13D1 10.1540 10.154 10.146 10.145 10.147 10.117 – –

23D2 10,4482 10,449 10.436 10.442 10.447 10.419 – –

21D2 10.4461 10.445 10.432 10.439 10.440 10.418 – –

23D2 10.4334 10.443 10.432 10.438 10.437 10.414 – –

23D1 10.4253 10.435 10.425 10.432 10.428 – – –

33D3 10.7167 10.717 – 10.680 10.652 – – –

31D2 10.7143 10.713 – 10.677 10.646 – – –

33D2 10.7114 10.711 – 10.676 10.645 – – –

33D1 10.7045 10.704 – 10.670 10.637 – – –

43D3 10.9637 10.963 – 10.886 10.817 – – –

41D2 10.9595 10.959 – 10.883 10.813 – – –

43D2 10.9574 10.957 – 10.882 10.811 – – –

43D1 10.9498 10.949 – 10.877 – – – –

13F2 10.3436 10.343 10.338 – – 10.315 – –

13F3 10.3464 10.346 10.340 – – 10.321 10.302 –

11F3 10.3475 10.347 10.339 – – 10.322 10.319 –

13F4 10.3496 10.349 10.340 – – – – –

23F2 10.6109 10.610 – – – – – –

23F3 10.6146 10.614 – – – – – –

21F3 10.6175 10.617 – – – – – –

23F4 10.6200 – – – – – – –

33F2 10.7348 – – – – – – –

33F3 10.7411 – – – – – – –

31F3 10.7426 – – – – – – –

33F4 10.7472 – – – – – – –
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points, Mexp represents the experimental data, and Mtheo

represents the theoretically obtained values [57].

3. Results and discussion

The bound states of the quarkonium systems were deter-

mined using the NU method. We employed the radial

scalar power potential and spin–spin interactions to suc-

cessfully solve the Schrödinger equation. The mass spectra

of charmonium, bottomonium, and bottom-charm mesons

were calculated. We fit the elementary particle data [58] of

charmonium, bottomonium, and bottom-charm meson

parameters by assuming a constant characteristic radius for

the heavy and heavy-light mesons. This led to simplifying

Eq. (17) into a set of non-linear equations, which were then

solved to determine the values listed in Table 1. A value of

0.6297 GeV for d was used for the computation of the

heavy and heavy-light mesons. This value was obtained by

simultaneously solving Eq. (17). The levels are denoted

using spectroscopic notation (n2s?1 LJ). The symbol s

represents the total spin of the system, L represents the

orbital quantum number, n represents the principal quan-

tum number, and J represents the total quantum number.

By applying Eq. (17) and referring to Table 1, we can

derive the mass spectra of the different quantum states

presented in Tables 2, 3, 4, 5, 6, 7. The results for the

charmonium meson in the S, P, D, and F states are con-

sistent with previous research [3, 5, 59–62] and experi-

mental data. Furthermore, the results for bottomonium

mesons in the S, P, D, and F states are consistent with

previous research [2, 59, 60, 62, 63, 65, 66] and elementary

particle data [58]. The bottom-charm meson masses for S,

P, D, and F states are consistent with other theoretically

Table 6 Bottom-charm mass spectrum in GeV for the S and P-states

State Present work [59] [5] [64] [4] EXP [58]

11S0 6.2753 6.272 6.272 6.271 6.275 6.275 (0.005%)

13S1 6.3148 6.333 6.321 6.338 6.314 –

21S0 6.8415 6.842 6.864 6.855 6.838 6.842 (0.007%)

23S1 6.8501 6.882 6.900 6.887 6.850 –

31S0 10.3302 6.882 7.306 7.250 10.330 –

33S1 10.3513 7.226 7.338 7.272 10.351 –

41S0 10.5954 7.258 7.684 – 10.595 –

43S1 10.6113 7.585 7.714 – 10.611 –

51S0 10.8174 7.609 8.025 – 10.817 –

53S1 10.8315 7.928 8.054 – 10.831 –

61S0 11.0114 7.947 8.340 – 11.011 –

63S1 10.1987 – 8.368 – 10.198 –

13P0 6.6726 – 6.686 6.706 6.672 –

13P1 6.7665 6.699 6.705 6.741 6.766 –

11P1 6.8285 6.750 6.706 6.750 6.828 –

13P2 6.7767 6.743 6.712 6.768 6.776 –

23P0 6.9144 6.761 7.165 7.122 6.914 –

23P1 7.2594 7.094 7.168 7.145 7.259 –

21P1 7.3225 7.134 7.173 7.150 7.322 –

23P2 7.2326 7.094 7.536 7.164 7.232 –

33P0 7.1334 7.157 7.555 – – –

33P1 7.4744 7.474 7.559 – – –

31P1 7.5103 7.510 7.565 – – –

33P2 7.5002 7.500 7.885 – – –

43P0 7.5244 7.524 7.908 – – –

43P1 7.8535 7.853 7.915 – – –

41P1 8.2077 7.867 8.207 – – –

43P2 8.2259 – 8.226 – – –

The radial scalar power potential



obtained masses [4, 5, 59, 62, 64, 67]. We obtained a total

percentage error of 0.324% for charmonium meson masses.

The total percentage error for bottomonium meson masses

is 0.333%. A total percentage error of 0.012% for the

bottom-charm meson masses was also obtained. Our work

prevails over other values in the literature [2–5, 59–67] and

the available experimental values.

4. Conclusions

This study utilizes the Nikiforov-Uvarov method to solve

the Schrödinger equation for quarkonium systems, specif-

ically employing the radial scalar power potential (RSPP).

The RSPP has been enhanced to incorporate spin–spin,

spin–orbit, and tensor interactions. This modification

enables the computation of the mass spectra for the S, D, F,

and P states of both heavy and heavy-light mesons. Our

analysis confirms that our theoretical predictions are con-

sistent with experimental observations for all quarkonium

systems, regardless of their spin levels. The current study

shows improved congruence between the existing theoret-

ical calculations. The charmonium meson masses yielded a

cumulative percentage error of 0.324%, while the cumu-

lative percentage error for the masses of bottomonium

mesons is 0.333%. The total percentage error in the masses

of bottom-charm mesons is 0.012%. Therefore, the current

research shows promising results for quarkonium systems,

which are consistent with experimental data and surpass

the achievements of other theoretical studies.

Appendix A

Review of Nikiforov-Uvarov (NU) method

In this section, the basic formalism of the Nikiforov-

Uvarov method is reviewed. The relevant steps needed to

Table 7 Bottom-Charm mass spectrum in GeV for the D and F-states

State Present work [59] [67] [5] [62] [64] [4]

13D3 6.9903 7.029 7.026 6.990 10.177 7.045 6.980

11D1 6.9944 7.026 7.035 6.994 10.166 7.041 7.009

13D2 6.9974 7.025 7.025 6.997 10.162 7.036 7.154

13D1 6.9985 7.021 7.030 6.998 10.147 7.028 7.078

23D2 7.3991 7.405 7.363 7.399 10.447 – –

21D2 7.4010 7.400 7.370 7.401 10.440 – –

23D2 7.4032 7.399 7.361 7.403 10.437 – –

23D1 7.4053 7.392 7.365 7.405 10.428 – –

33D3 7.7625 7.750 – 7.762 10.652 – –

31D2 7.7643 7.743 – 7.764 10.646 – –

33D2 7.7626 7.741 – 7.762 10.645 – –

33D1 8.0919 7.732 – 8.092 10.637 – –

43D3 8.0925 – – 8.093 10.817 – –

41D2 8.0939 – – 8.094 10.813 – –

43D2 8.0918 – – 8.091 10.811 – –

43D1 7.2338 – – 7.234 – – –

13F2 7.2423 7.273 – 7.242 – 7.269

13F3 7.2412 7.269 – 7.241 – 7.276

11F3 7.2443 7.268 – 7.244 – 7.266

13F4 7.6074 7.277 – 7.607 – 7.271

23F2 7.6149 7.618 – 7.615 – – –

23F3 7.6140 7.616 – 7.614 – – –

21F3 7.6172 7.615 – 7.617 – – –

23F4 7.9465 7.617 – 7.946 – – –

33F2 7.9544 – – 7.954 – – –

33F3 7.9536 – – 7.953 – – –

31F3 7.9565 – – 7.956 – – –

33F4 7.9580 – – 7.958 – – –

E P Inyang et al.



arrive at the eigenvalue and eigenfunction are highlighted.

This method was proposed by Nikiforov and Uvarov [54]

to solving Hypergeometric-type differential equations. The

solutions of Eq. (17) can be obtained by employing the trial

wave function

PðxÞ ¼ /ðxÞynðxÞ; ðA1Þ

Which reduces Eq. (15) to an hypergeometric-type

differential equation of the form;

rðxÞy00n00ðxÞ þ sðxÞy0nðxÞ þ kynðxÞ ¼ 0 ðA2Þ

The function /ðxÞ is defined as the logarithmic

derivative [68]

/0ðxÞ
/ðxÞ ¼ pðxÞ

rðxÞ ðA3Þ

where pðxÞ is a polynomial of first–degree. The second

term in Eq. (A1) is the hypergeometric function with its

polynomial solution given by Rodrigues relation as

follows;

ynðxÞ ¼
Bn

qðxÞ
dn

dxn
rnqðxÞ½ � ðA4Þ

The term Bn is the normalization constant and qðxÞ is

known as the weight function which in principle must

satisfy the condition given:

d

dx
rðxÞqðxÞ½ � ¼ sðxÞqðxÞ ðA5Þ

where sðxÞ ¼ ~sðxÞ þ 2pðxÞ:
It is imperative that we note here that the derivative of

sðxÞ should be sðxÞ � 0: The eigenfunctions and eigen-

values can be obtained using the expression defined by

pðxÞ and parameter k; defined as follows

p xð Þ ¼ r0 xð Þ � ~s xð Þ
2

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0 xð Þ � ~s xð Þ

2

� �2

�~r xð Þ þ kr xð Þ

s
; andk

¼ k� þ p0� xð Þ ðA6Þ

The value of k can be obtained by setting the

discriminant in the square root in Eq. (A6) equal to zero.

As such, the new eigenvalues equation can be given as

kþ ns0 xð Þ þ nðn� 1Þ
2

r
00
xð Þ ¼ 0; ðn ¼ 0; 1; 2; :::Þ ðA7Þ

Acknowledgements Inyang, E.P. acknowledges the Tertiary Edu-

cation Trust Fund (TETFUND) of Nigeria for funding this research

through the National Open University of Nigeria (Nigeria)-Tertiary

Education Trust Fund-Institutional Based Research Grant (TET-

FUND-IBR) scheme with grant number NOUN/DRA/TETFUN-

DAW/VOL I.

N. Ali, and Inyang, E.P. acknowledges the support from the

UniMAP Special Research Grant-International Postdoctoral with

grant number: 9004-00100.

The authors are grateful for the financial support received from the

UniMAP UniPrima Research Grant 9002-00160

Authors’ contributions E.P. Inyang and N. Ali were responsible for

formulating the problem, writing the full manuscript, and presenting

the results. R. Endut and N. Rusli carried out the numerical calcu-

lations. S.A. Aljunid composed the literature review, meticulously

reviewed it, and made necessary revisions to the manuscript. The final

manuscript was read and approved by all authors.

Funding This research was carried out under the 2017–2022 merged

TETFUND INSTITUTION BASED RESEARCH (IBR) with grant

number NOUN/DRA/TETFUNDAW/VOL I.This research was also

carried out under LRGS Grant LRGS/1/2020/UM/01/5/2 (9012–

00009) Fault-tolerant Photonic Quantum States for Quantum Key

Distribution provided by Ministry of Higher Education of Malaysia

(MOHE).This research was also carried out under the UniMAP

UniPrima Research Grant 9002–00160.

Data availability This article contains all of the materials used and

all data generated or analyzed during this investigation.

Declarations

Conflict of interest No conflicting interests are stated by the authors.

Dr. Etido P. Inyang respectfully dedicates this research to his late

father, who passed away on March 29, 2024.

References

[1] D H Perkins Introduction to High Energy (Cambridage: Physics

Cambridage University Press) (2000)

[2] C S Fischer, S Kubrak and R Williams Eur. Phys. J. 51 9 (2015)

[3] O Lakhina and E S Swanson Phys. Rev. D 74 54 (2006)

[4] A P Monteiro Rev. D 95 12 (2017)

[5] N R Soni, B R Joshi and R P Shah Phys. J. C 78 7 (2018)

[6] E Omugbe, O E Osafile, I B Okon, E P Inyang, E S William and

A Jahanshir Few-Body Syst. 63 7 (2022)

[7] S Leitao and A Stadler Rev. D 90 9 (2014)

[8] C McNeile, C T Davies and E Follana Rev. D 86 7 (2012)

[9] J J Dudek, R G Edwards, N Mathur and D G Richards Phys. Rev.
D 77 34 (2008)

[10] S Meinel Phys Rev. D 79 11 (2009)

[11] J A Obu, E P Inyang, J E Ntibi, I O Akpan, E S William and E P

Inyang Jord. J. Phys. 16 339 (2023)

[12] I O Akpan, E P Inyang, E P Inyang and E S William Rev. Mex.
Fis. 67 490 (2021)

[13] A K Rai Rev. C 78 055202 (2008)

[14] B Patel and P C Vinodkumar J. Phys. G Nucl. Part. Phys. 36 3

(2009)

[15] T Bhavsar Phys. J. C 78 227 (2018)

[16] V Kher and A K Rai Chin. Phys. C 42 083101 (2018)

[17] N R Soni, B R Joshi and R P Shah Phys. J. C 78 592 (2018)

[18] E P Inyang, E P Inyang, J E Ntibi, E E Ibekwe and E S William

Ind. J. Phys. 95 2739 (2021)

[19] A N Ikot, L F Obagboye, U S Okorie, E P Inyang, P O Amadi, I

B Okon and Abdel-Haleem Abdel-Aty Eur. Phys. J. P. 137 1370

(2022)

[20] G C Joshi and A N Mitra Hadron. J. 1 1591 (1978)

[21] E P Inyang, A N Ikot, I O Akpan, J E Ntibi, E Omugbe and E S

William Result. Phys. 39 105754 (2022)

[22] M Abu-Shady and H M Fath-Allah J. Egypt. Math. Soc. 23 156

(2019)

The radial scalar power potential



[23] E E Ibekwe, U S Okorie, J B Emah, E P Inyang and S A Ekong

Eur. Phys. J. P. 87 11 (2021)

[24] E S William, J A Obu, I O Akpan, E A Thompson and E P

Inyang Eur. J. Phys. 2 28 (2020)

[25] V Kumar, R M Singh and S B Bhardwaj Chand. Mod. Phys.
Lett. A 37 2250010 (2022)

[26] S Patel, P C Vinodkumar and S Bhatnagar Chin. Phys. C 40
053102 (2016)

[27] V Maiteu, P G Ortega, D R Enitem and F F Ferndez Eur. Phys.
J. C 78, 123 (2018)

[28] F Brau and C Sernay J. Comput. Phys. 139 127 (1998)

[29] A Bhaghyesh Adv. High. Energy. Phys. 165 9991152 (2021)

[30] M S Ali and A M Yasser Phys. Lett. 5 7 (2016)

[31] M S Ali, G S Hassan, A M Abdelmonem and S K Elshamndy J.
Radiat. Appl. Sci. 13 233 (2020)

[32] R Luz, G Petronilo, A Santana, C Costa, R Amorim and R Paiva

Adv. High. Energy. Phys. 2002 3409776 (2022)

[33] P Gupta J. Mod. Phys. 3 1536 (2012)

[34] G R Boroun and H Abdolmalki Phys. Scr. 80 065003 (2009)

[35] H Chen Phys. Lett. 18 1558 (2001)

[36] V Kumar and S B Bhardwaj Phys. 120 e2132185 (2022)

[37] R Rani Theo. Phys. 70 179 (2018)

[38] V Kumar and S B Bhardwaj Scri. 97 055301 (2022)

[39] V Kumar, S B Bhardwaj, R M Singh and F Chand Pram. 96 125

(2022)

[40] V Kumar and R M Singh Mat. Appl. Phys. 22 12 (2022)

[41] C Zhu, M Al-Dossari, S Rezapour and S Shateyi Result. Phys.
54 107037 (2023)

[42] C Zhu, M Al-Dossari, N S A El-Gawaad, S A M Alsallami and S

Shateyi Result. Phys. 54 107100 (2023)

[43] C Zhu, S A O Abdallah, S Rezapour and S Shateyi Result. Phys.
54 107046 (2023)

[44] C Zhu, S A Idris, M E M Abdalla, S Rezapour, S Shateyi and B

Gunay Result. Phys. 55 107183 (2023)

[45] Y Kai and Z Yin Mod. Phys. Lett. B 36 2150543 (2021)

[46] E S William, E P Inyang and E A Thompson Rev. Mex. Fis. 66
741 (2020)

[47] I J Nioku and P Nwaokafor Indian J. Phys 97 4317 (2023)

[48] A Royappa, V Suri and J McDonough J. Mol. Struc. 787 215

(2006)

[49] W Hua Phys. Rev. A 42 2529 (1990)

[50] V Lengyel, Y Fekete, I Haysak and A Shpenik Eur. Phys. J. C
21 355 (2001)

[51] L Cao, Y C Yang and H Chen Few-Body Syst. 53 327 (2012)

[52] T Barnes Rev. D 72 054026 (2005)

[53] E P Inyang, P C Iwuji, J E Ntibi, E Omugbe, E A Ibanga and E S

William East Eur. J. Phys. 2 51 (2022)

[54] A F Nikiforov and V B Uvarov Mat. Phys. (ed.) A Jaffe (Ger-

many: Birkhauser Verlag Basel) 317 (1988)

[55] E P Inyang, N Ali, R Endut, N Rusli, S A Aljunid, N R Ali and

M Asjad East Eur. J. Phys. 1 166(2024)

[56] E P Inyang, E O Obisung, J Amajama, D E Bassey, E S William

and I B Okon Eurasian Phys. Tech. J. 42 87 (2022)

[57] M Abu-Shady J. Nig. Soc. Phys. Sci. 6 1771 (2024)

[58] K A Olive Chinese Phys. C 40 100001 (2016)

[59] D Ebert Phys. J. C 71 13 (2011)

[60] W J Deng and H Liu Rev. D 95 20 (2017)

[61] B Q Li and K T Chao Phys. Rev. D 79 9 (2009)

[62] M Shah Rev. D 86 034015 (2012)

[63] J Segoovia and P G Ortega Rev. D 92 7 (2015)

[64] S Godfrey Phys. Rev. D 70 15 (2004)

[65] B Q Li and K T Chao Commu. Theor. Phys. 52 61 (2009)

[66] S F Radford and W W Repko Nucl. Phys. A 865 75 (2011)

[67] N Devlani, V Kher and A K Rai Eur. Phys. J. A. 50 31 (2014)

[68] E P Inyang, N Ali, R Endut and S A Aljunid Eurasian Phys.

Tech. J. 21 137 (2024)

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds

exclusive rights to this article under a publishing agreement with the

author(s) or other rightsholder(s); author self-archiving of the

accepted manuscript version of this article is solely governed by the

terms of such publishing agreement and applicable law.

E P Inyang et al.


	The radial scalar power potential and its application to quarkonium systems
	Abstract
	Introduction
	Theory
	Results and discussion
	Conclusions
	Appendix A
	Review of Nikiforov-Uvarov (NU) method
	Authors’ contributions
	Data availability
	References


