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Stability of GMGHS charged thin shell wormhole in string theory
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Abstract: The paper discusses the general dynamic equations of thin-shell wormholes in the framework of string theory

by connecting two identical copies of a charged black hole solution, called GMGHS, using cut-and-paste techniques. The

stability is analyzed under linear perturbation around the static solution and through the modified generalized Chaplygin

gas equation of state. Moreover, the presence of stability regions depends on the appropriate values of the different

parameters involved in the metric space–time and the equation of state.
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1. Introduction

The study of traversable wormholes plays a fundamental

role in the pioneering work of Morris and Thorn [1]. Tra-

versable wormholes are a solution of the Einstein equations

that join two regions of different spacetimes or of the same

spacetime through a throat [1]. The construction of

wormholes required the existence of exotic matter to vio-

late energy conditions, Morris et al. [2]. However, Visser

[3] investigated the idea of thin shell wormholes (TSWs)

by using the cut-and-paste scheme and minimizing the

existence of exotic matter by assuming that this exotic

matter is concentrated at the throat of a wormhole. Poisson

and Visser [4] studied the stability of TSWs by pasting

together two identical copies of the Schwarzschild metric.

In addition, Israel [5] introduced a set of invariant junction

conditions that connect the matter of the shell and the

extrinsic curvature of the shell in both its regions.

Moreover, several authors analyzed the stability of

TSWs by using a linear radial perturbation of a static

solution and by choosing specific equations of state. For

instance, Eiroa and Romero [6] discussed the stability and

construction of Ressiner-Nordstrom (RN) black holes

(BHs) TSWs. Eiroa [7] discussed the stability analysis of

TSWs. Bronnikov et al. [8] analyzed the stability of

wormholes in general relativity. Varela [9] discussed

Schwarzschild TSW with variable equations of state. Eiroa

and Simeone [10] studied the stability of cylindrical TSW.

Rahaman et al. [11] discussed the stability of TSW in the

context of heterotic string theory. Eiroa and Simeon [12]

studied the stability of TSW with Chaplygin gas. Eid [13]

studied the stability of TSWs in the Einstein–Hoffman–

Born–Infeld theory. Eid [14] discussed the stability of

TSW in the f(R) theory of gravity. Mehdizadeh et al. [15]

studied higher-dimensional TSWs in third-order Lovelock

gravity. Kokubu and Harada [16] studied the TSWs in the

Einstein-Gauss-Bonnet theory of gravity. Moreover, Mus-

tafa et al. [17] discussed the possibility of stable TSWs

within string clouds and quintessential fields via van der

Waals and the polytropic equation of state. Debnath et al.

[18]. studied the modified cosmic chaplygin AdS BHs.

Waseem et al. [19]. analyzed the stability constraints of

d-dimensional charged TSWs via quintessence and a cloud

of strings. Also, Bambi and Stojkovic [20] studied astro-

physical wormholes.

Recently, within the context of string theory, Garfinkle

et al. [21] investigated a new kind of charged TSW by

gluing two copies of a statically charged black hole (BH)

solution, called GMGHS (Gibbons–Maeda–Garfinkle–

Horowitz–Strominger) [22, 23]. Also, Bhadra [24] studied

gravitational lensing by a charged BH (GMGHS) in string

theory. Afterward, Alam et al. [25] discussed the stability

analysis of TSW in string theory with a perfect fluid

equation of state. Chan et al. [26] studied charged dilaton

black holes with unusual asymptotic. In addition, Ovgun

and Jusufi [27] discussed stable dyonic TSWs in low-
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energy string theory. Chernicoff et al. [28] studied TSWs in

AdS and string dioptric.

In the present work, the stability analysis of charged

(GMGHS) TSWs in string theory is supported by a modi-

fied generalized Chaplygin gas (MGCG) equation of state

(EoS) under a linear fluctuation around a static solution. In

Sect. 2, the dynamics of a charged BH GMGHS TSW in

string theory with MGCG EoS are briefly reviewed. The

stability analysis under linear perturbation around the static

solution is discussed in Sect. 3. Finally, a remarkable

conclusion is presented in Sect. 4.

2. Dynamics of charged BH GMGHS in string theory

The action of four-dimensional low energy in string theory

is described by Garfinkle et al. [21],

I ¼ r �Rþ 1

12
ClmqC

lmq þ 1

8
FlmF

lm � Glmol/ot/

� �
e�/ ffiffiffiffiffiffiffi�g

p
d4x;

ð1Þ

where R; Glm and Flm are the Ricci scalar curvature, the

metric in r model, and the electromagnetic field tensor

Flm ¼ olAt � otAl, while / is the dilaton field and Al is

the potential 4-vector. The action (1), when Clmq ¼ 0; in

the conformal Einstein frame becomes

I ¼
Z

�Rþ e�/F2 þ 2 r/ð Þ2
� � ffiffiffiffiffiffiffi�g

p
d4x ð2Þ

with glm ¼ e�/Glm, where glm is the Einstein frame metric.

The line element of the charged static BH solution

(called GMGHS) obtained from action (2) is defined by

[22]:

ds2� ¼ �H�dt
2
� þ H�1

� dr2� þ G� dh2� þ sin2h�du
2
�

� �
;

ð3Þ

and

H� r�ð Þ ¼ 1� 2m�
r�

; G� r�ð Þ ¼ r2� � r�q
2
�

m�
e�2/� and e�2/

¼ e�2/� 1� q2�
r�m�

e�2/�

� �
:

ð4Þ

where m� and q� are the black hole masses and magnetic

charges of both sides, while /� is the asymptotic constant

value of the dilaton field; where q2� ¼ 2m2
�e

2/� is the

external black hole; and also (-) denotes the interior, while

(?) denotes the exterior region, respectively. Assuming

that: m� ¼ mþ ¼ m and qþ ¼ q� ¼ q. The Schwarzschild

metric BH is recovered when the area G goes to zero

by r ¼ q2

m e�2/� .

Afterward, the cut-and-paste method develops the

geometry of TS surrounding wormhole spacetime. This

method is based on minimizing and concentrating the use

of exotic matter at the throat, which is treated as a hyper-

surface between two manifolds.

The single manifold M, bounded by hypersurface R; is
obtained by gluing together the two regions Mþ and M� at

their boundaries, M ¼ Mþ [M�; with natural identifica-

tion of the boundaries (hypersurface) R � Rþ ¼ R�: For

the time-like hypersurface R � R� ¼ r� ¼ RjR[ rh
	 


.

We set the values of R (radius of the throat) greater than the

event horizon radius rh to avoid the presence of horizons

and singularities in the line element (3).

Moreover, the time evolution RðsÞ is described by the

throat radius r� ¼ RðsÞ, with the proper time s along the

hypersurface R. Consequently, on the hypersurface R; the
induced (intrinsic) metric is defined by

ds2 ¼ �ds2 þ G R sð Þð Þ dh2 þ sin2 hdu2
� �

: ð5Þ

Furthermore, according to the Darmois-Israel

formalism, the second fundamental form (extrinsic

curvature) across the hypersurface R, Israel [5], is

defined by

K�
ij ¼ �n�l

o2vl�
onion j þ Cl

ab

ova�
oni

ovb�
on j

 !�����
R

; ð6Þ

where n�l are the 4-unit normal vector, while ni and vl� are

the coordinates on R and the coordinates in M�, and Cl
ab

corresponds to the Christoffel symbols. Consequently,

from metric (3), the extrinsic curvatures are defined by

K�
hh ¼ �G0

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H Rð Þ þ _R2

q
� K�

uu; K�
ss

¼ � 1

H2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_R2 þ H

p �H2 €R� �H _R4 þ H _R2 þ 1

2
H2

� �� 

;

ð7Þ

where a prime and dot are derivatives concerning a and s,
respectively.

Accordingly, the discontinuity of K�
ij at R related to the

surface stress-energy tensor Sij, is given by the Lanczos

equation [4],

Sij ¼
�1

8p
Kij

� �
� K½ �gij

� �
; ð8Þ

where K½ � represents the trace of Kij

� �
¼ Kþ

ij � K�
ij ,

and Sij ¼ diagð�r; ph; puÞ, with pressure p and surface

energy density r. Thus, Lanczos Eqs. (8) become
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r ¼ �1

4p
Kh
h

� �
; p ¼ ph ¼ pu ¼ 1

8p
Ks
s

� �
þ Kh

h

� �� �
: ð9Þ

Therefore, inserting (7) into (9) to obtain

r ¼ �1

4p
G0

G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_R2 þ H Rð Þ

q
; ð10Þ

p ¼ 1

8p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H þ _R2

p €Rþ 1

2
H0 þ H0 _R2H�2 H þ _R2

� �
þ G0

2G
H þ _R2
� �� 


:

ð11Þ

It is observed that the negative sign r\0 of Eq. (10)

indicates the presence of exotic matter, and rþ p� 0

means that the distribution of matter at the throat violates

the weak energy condition (r� 0,rþ p� 0) because r is

negative and violates the null energy condition, which

requires only that (rþ p� 0). Also, it may satisfy the

strong energy condition that requires that (rþ 3p� 0 and

rþ p� 0).

From this perspective, to study the stability and

dynamics of TSW, we assume an exotic EoS, such as a

modified generalized Chaplygin gas (MGCG), which is

described by [29],

p ¼ xr� b
rc

; x\0; b[ 0; ð12Þ

where 0\c	 1 is the parameter.

Also, Eq. (12) is reduced to Chaplygin gas with

x ¼ 0,c ¼ 1; and when b ¼ 0; the phantom energy, is

recovered, the generalized Chaplygin gas is recovered with

x ¼ 0.

Moreover, by plugging the Eqs. (10) and (11) into (12),

the dynamical evolution becomes.

�G0

4pG

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H þ _R2

p� �c
€Rþ 1

2
H0

� �

þ H þ _R2
� � �G0

4pG

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H þ _R2

p� �c _R2

H2
H0 þ G0

2G

� �

� 8px
�G0

4pG

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H þ _R2

p� �cþ1 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H þ _R2

p

þ 8pb
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H þ _R2

p
¼ 0:

ð13Þ

3. Stability of the charged GMGHS TSW

Furthermore, the surface energy density r and pressure p

satisfy the energy conservation equation

d

ds
ðArÞ þ p

d

ds
A ¼ U; ð14Þ

with A ¼ 4pG Rð Þ being the area at the location of the

throat and

U ¼ G0½ �2 � 2GG00
� � _R

2G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H þ _R

2

q
;

being the momentum flux, and U ¼ 0 for p ¼ �r [30].

Thus, Eq. (14) with U ¼ 0, will be written in the form:

r0 ¼ �G0

G
rþ pð Þ: ð15Þ

Moreover, plugging Eq. (12) into (15) to obtain

r0 ¼ �G0

G
rð1þ xÞ � b

rc

� 

: ð16Þ

And also, the second derivative of (16) becomes

r00 ¼ G0

G

� �2

rþ pð Þ 2þ v2
� �

� GG00

G02

� 
� �
: ð17Þ

Therefore, the solution of Eq. (16) becomes

rcþ1 ¼ b
ðxþ 1Þ 1� G�

G

� �c� �
þ G�

G

� �c

r
cþ1

�
; ð18Þ

where c ¼ ðxþ 1Þðcþ 1Þ.
Consequently, from (10), the dynamical equation

becomes

_R2 þW Rð Þ ¼ 0; ð19Þ

where WðRÞ represents the effective potential and is

defined by

WðRÞ ¼ HðRÞ � 4pG
G0

� �2

r2: ð20Þ

To study the stability analysis under linear perturbation,

one uses the Taylor series of potential WðRÞ up to the

second order around R�,

WðRÞ ¼ WðR�Þ þW0ðR�ÞðR� R�Þ þ
1

2
W

00 ðR�ÞðR� R�Þ2

þ O ðR� R�Þ3
h i

:

ð21Þ

Moreover, the first and second derivatives of Eq. (20)

become

W0 Rð Þ ¼ H0 � 32r
pG
G0

� �2

r0 þ r
G0

G
� G00

G0

� �� 

; ð22Þ

W00 Rð Þ ¼ H00 � 2
4pG
G0

� �2

r2
G

02

G2
� 3

G00

G
þ 3

G
002

G
02
� G000

G
02

� ��

þ4rr0
G0

G
� G00

G0

� �
þ rr00 þ r

02

�
:

ð23Þ

Meanwhile, rewrite Eq. (23) in terms of Eqs. (16) and

(17) to get
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W00 Rð Þ ¼ H00 � 2 4pð Þ2 r2
G2

G
02

3
G

002

G
02
� G000

G
02

� ��

þr rþ pð Þv2 þ rp
3GG00

G02

� �
þ p2

�
:

ð24Þ

where v2 represents the squared speed of sound.

In addition, the Eqs. (10) and (11) for the static solution

( €R ¼ _R ¼ 0) at R ¼ R� become.

r R�ð Þ ¼ �1

4p

G
‘

�

G�

ffiffiffiffiffiffi
H�

p
; ð25Þ

p R�ð Þ ¼ 1

8p
ffiffiffiffiffiffi
H�

p 1

2
H0

� þ G 0�

2G�
H�

� 

: ð26Þ

Moreover, the effective potential W is approximated as a

linear function about R ¼ R�. Consequently, the necessary

conditions for the presence and stability of a static solution

require WðR�Þ ¼ 0 and W0ðR�Þ ¼ 0.

Fig.1 The graph of v2 versus R corresponds to: (a) m ¼ 0:5;/� ¼ 0:01; q ¼ 0; 0:2; 0:5; 1; (b) m ¼ 0:5;/� ¼ 0:1; q ¼ 0; 0:2; 0:5; 1; (c) m ¼
1;/� ¼ 0:01; q ¼ 0; 0:2; 0:5; 1; (d) m ¼ 1;/� ¼ 0:1; q ¼ 0; 0:2; 0:5; 1; (e) m ¼ 1; q ¼ 1;/� ¼ 0:01; 0:1; 0:5; 1
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Fig. 2 The stability regions of WðRÞ against R corresponding to r� ¼
1;R� ¼ 1 and different values of: (a) m ¼ 0:5; c ¼ 1;b ¼ 1;x ¼
�0:9;/� ¼ 0:01; q ¼ 0; 0:2; 0:5; 1; (b) m ¼ 0:5; c ¼ 1;b ¼ 1;x ¼
�0:9;/� ¼ 0:1; q ¼ 0; 0:2; 0:5; 1; (c) m ¼ 0:5; c ¼ 1;b ¼ 1;x ¼
�0:9;/� ¼ 0:5; q ¼ 0; 0:2; 0:5; 1; (d) m ¼ 1; c ¼ 1;b ¼ 1;x ¼
�0:9;/� ¼ 0:01; q ¼ 0; 0:2; 0:5; 1; (e) m ¼ 1; c ¼ 1;b ¼ 1;x ¼
�0:9;/� ¼ 0:1; q ¼ 0; 0:2; 0:5; 1; (f) m ¼ 0:5; c ¼ 1;b ¼ 1;x ¼

�0:9; q ¼ 1;/� ¼ 0:01; 0:1; 0:5; 1; (g) m ¼ 0:5; c ¼ 1;b ¼ 1;/� ¼
0:01; q ¼ 1;x ¼ �0:1;�0:5;�0:9;�1:2; (h) m ¼ 0:5; c ¼ 1; q ¼
1;x ¼ �0:9;/� ¼ 0:01; b ¼ 0:1; 0.5,1; 2; (i) m ¼ 0:5; q ¼ 1;b ¼
1;x ¼ �0:9;/� ¼ 0:01; c ¼ 0:1; 0:5; 1; 2; (j) m ¼ 1; c ¼ 1;b ¼
1;x ¼ �0:9; q ¼ 1;/� ¼ 0:01; 0:1; 0:5; 1; (k) m ¼ 1; q ¼ 1; b ¼
1; c ¼ 1;/� ¼ 0:01;x ¼ �0:1;�0:5;�0:9;�1:2; (l) m ¼ 1; q ¼
1; c ¼ 1;x ¼ �0:9;/� ¼ 0:01; b ¼ 0:1; 0:5; 1; 2
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It is observed that in the case of static solutions R ¼ R�,
these conditions WðR�Þ ¼ 0 and W0ðR�Þ ¼ 0 are satisfied

by inserting Eq. (25) into the right-hand side of Eqs. (20)

and (22). Therefore, the dynamical equation in this order of

approximation becomes: _R
2
sð Þ ¼ �W Rð Þ ¼ � 1

2
W

00 ðR�Þ
ðR� R�Þ2 þ O ðR� R�Þ3

h i
.

Moreover, the stability condition of a linear perturbation

depends on the sign of W
00 ðR�Þ across the throat radius.

Therefore, the TSW is stable for W
00 ðR�Þ[ 0 and unsta-

ble for W
00 ðR�Þ\0.

Consequently, from Eq. (24), by assuming W
00 ðRÞ ¼ 0,

the speed of sound v2 becomes

Fig. 2 continued
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v2 ¼ H00

2 4pð Þ2r rþ pð Þ
� 1

r rþ pð Þ r2
G2

G02 3
G002

G02 � G000

G02

� ��

þrp
3GG00

G02

� �
þ p2

�
:

ð27Þ

Afterward, the static solution of dynamical evolution

(13) becomes

8pb
ffiffiffiffi
H

p
þ �G0

4pG

ffiffiffiffi
H

p� �c
1

2
H0 þ H

G0

2G

� �

� 8px
�G0

4pG

ffiffiffiffi
H

p� �cþ1 ffiffiffiffi
H

p

¼ 0: ð28Þ

Meanwhile, rearranging Eqs. (25) and (26) in terms of

(3) to get

rðR�Þ ¼
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R� � 2m

p

4p
ffiffiffiffiffi
R�

p� �3 2mR� � q2e�2/�

mR� � q2e�2/�

� �
; ð29Þ

pðR�Þ ¼
1

16p
ffiffiffiffiffi
R�

p� �3 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R� � 2m

p

2mþ R� � 2mð Þ 2mR� � q2e�2/�

mR� � q2e�2/�

� �� 

:

ð30Þ

Moreover, Eq. (20), as expressed in terms of (3), is

described by

W Rð Þ ¼ R� 2mð Þ
R

� 4pRð Þ2 mR� q2e�2/�

2mR� q2e�2/�

� �2

r2: ð31Þ

Afterward, rewrite Eq. (27) in terms of (3) to obtain

v2 ¼ W2

hJ
� 2m

R
� R3

4 R� 2mð Þ L
2 þ 3R

2h
L� 3 R� 2mð Þ

Rh2

� �
;

ð32Þ

where

J � 3R2 � 7mRþ 8m� 3Rð Þ
2m

q2e�2/� ; W � mR� q2e�2/�

m
;

L � m

R2
þ R� 2mð Þ

2R2

2mR� q2e�2/�

mR� q2e�2/�

� �
; h � 2mR� q2e�2/�

2mR
:

The variation of v2 versus R is plotted in Fig. 1 with

different values of the free parameters m; q; and /� .

From Eqs. (31) and (18), the variation of WðRÞ versus R
is plotted in Fig. 2, taking different values of free param-

eters m;R�;/� ; r� ;x; c; b; and q.

The graph of v2 against R is given in Fig. 1. The sta-

bility configuration increases due to decreasing the

asymptotic constant value of the dilaton field /�: Similarly,

it happens by decreasing m, and a drastic change occurs by

changing q.

Moreover, the variation of WðRÞ versus R is given in

Fig. 2. The stable regions can be slightly extended by

decreasing m and also by decreasing the dilaton field /�: It
is observed that stable regions can be extended by changing

the values of the parameters b; c; andx. Furthermore, it is

observed that the stable regions in all figures can be

extended by decreasing the values of m; q; and/�.

4. Conclusion

The dynamics of charged TSWs in the context of dilaton

gravity by connecting two identical copies of GMGHS

black hole spacetime through the cut and paste scheme are

studied. The mechanical stability of CTSW is analyzed

under linear radial perturbation around the static solution

and through the modified generalized Chaplygin gas EoS.

By plotting their stability diagrams, we found that the

existence of stability configurations depends on choosing

the suitable values of different parameters included in the

metric space–time (m; q; /�) and MGCG EoS (v2; c; b;x).
The stability configurations are affected to a great extent

by the speed-like sound parameter v2. The numerical

configurations have been plotted in Figs. 1 and 2 in the

form of parameters v2 against R, and W against R:

It is observed that the influence of charge, mass, and

speed of sound parameters enhances the stability of

regions. The stability configurations increase by decreasing

the asymptotic constant value of the dilaton field, and

similarly, they increase by decreasing charge and mass.
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