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Evolution of steepened wave in interstellar gas clouds
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Abstract: The present paper focuses on studying the system of partial differential equations (PDEs) that describe the one-

dimensional, spherically symmetric flow in an inviscid, self-gravitating, interstellar ideal gas cloud. The study aims to

investigate the evolution of steepened waves, also known as discontinuity waves, within this system The Lie group of

transformation, which leaves the system of partial differential equation invariant, is used to determine the particular exact

solution to the governing system of PDEs. The propagation of a one-dimensional steepened wave in a spherically

symmetric flow of gas is characterized by a particular exact solution. The evolution equation that governs the amplitude of

a steepened wave can be derived using the singular surface theory and compatibility conditions. The obtained transport

equation is integrated numerically and the effects of the exponent of the heating-cooling function, ambient density

exponent, and specific heat ratio are observed on the steepened wave graphically.
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1. Introduction

Indeed, the study of non-linear wave phenomena often

leads to quasilinear hyperbolic systems of partial differ-

ential equations (PDEs). While exact solutions to such non-

linear systems are not always achievable, approximate

analytical or numerical techniques become valuable tools

for gaining insight into the physical phenomena involved.

Exact solutions play a crucial role in the development,

analysis, and validation of numerical methods for solving

specific initial or boundary value problems. Therefore,

researchers have a significant interest in obtaining exact

solutions for systems of nonlinear PDEs. Indeed, the Lie

group of transformations is a powerful method used to

study partial differential equations (PDEs) and their solu-

tions. This approach is particularly valuable for systems of

non-linear PDEs because it allows us to find exact solutions

based on the invariance of the equations under one-pa-

rameter Lie group transformations (see [1, 2]). In various

fields of mechanics, mathematics, and theoretical physics,

the Lie group of transformations plays a vital role in the

study of continuous symmetry as it can convert

complicated problems into solvable equations. In addition,

it is quite difficult to obtain the analytical solution to the

system of quasilinear hyperbolic partial differential equa-

tions (PDEs). While performing the Lie group of trans-

formations, a solution of the basic equation subject to the

boundary condition along with a set of curves which is

known as the similarity curves, exists. Using this similarity

curve, the system of PDEs can be converted into a system

of ordinary differential equations (ODEs). Thereafter, the

system of ODEs can be solved numerically, or particular

exact solutions to the system can be obtained easily. Logan

and Perez [3] investigated a time-dependent problem in

shock hydrodynamics by using the Lie group analysis.

Towards the study of the Lie group of transformations in

various gas dynamics problems, we mention the works of

Sharma and Radha [4], Sharma and Arora [5], Arora et al.,

Chauhan et al. [6–11].

In the realm of quasilinear hyperbolic systems of PDEs,

a remarkable characteristic lies in the presence of various

types of discontinuities in their solutions, such as acceler-

ation waves, shock waves, and more. Among these, shock

waves are particularly noteworthy as they generate high

temperatures and pressures upon convergence. This unique

property of converging shocks has led to their intriguing

applications in diverse fields, including medicine and lab-

oratory-based research. The utilization of converging shock
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waves in the medical field finds significance in the treat-

ment of kidney stones. By harnessing the energy released

during the shock wave’s convergence, non-invasive pro-

cedures can be employed to break down kidney stones,

offering patients a safer and more efficient alternative to

traditional surgical methods.

Across the wave (where a wave is defined as a moving

surface), specific flow variables or their derivatives expe-

rience particular types of discontinuities that travel along

the surface. On either side of this surface of discontinuity,

the flow variables or their derivatives are linked by a

relationship referred to as the ‘‘compatibility condition.’’

The initial set of compatibility conditions, arising from the

conservation laws applied across the discontinuity surface,

is commonly known as the Rankine Hugoniot jump con-

ditions. In continuum mechanics, singular surfaces play a

crucial role in describing quasilinear hyperbolic systems by

representing the relationship among the flow variables and/

or their higher-order derivatives ahead and behind a shock.

Thomas [8] introduced these surfaces. The evolutionary

behavior of shocks in fluids, using the singular surface

theory, has been discussed by many researchers namely

McCarthy [13], Quintanilla and Straughan [14], Ruggeri

[15], Shyam et al. [16], Sharma and Radha [17], Pandey

and Sharma [18], Chadha and Jena [30], Sekhar and

Sharma [20], Bira et al. [21] and Mentrelli et al. [22].

In astrophysics and cosmology, many physical phe-

nomena, involving the collapse of self-gravitating inter-

stellar gas clouds, are of great interest due to the

description of star formation and become an interesting

topic for both astronomers and physicists. Additionally,

Muracchini and Ruggeri [23] have delved into the study of

acceleration waves, the formation of shocks, and their

stability in a gravity-involved atmosphere. An interstellar

gas cloud is a complex composition of various elements. It

primarily consists of atomic hydrogen in a significant

proportion, along with molecular hydrogen. Additionally,

there are minor percentages of carbon, oxygen, and heavy

elements, some of which exist in ionized form. It is worth

noting that the interstellar medium also contains different

types of grains and dust [24]. In the context of under-

standing the behavior of these interstellar gas clouds,

researchers have applied the non-linear discontinuity wave

propagation theory. Virgopia and Ferraioli [26] examined

the gravitational collapse in self-gravitating gaseous sys-

tems by utilizing an asymptotic wave approach. Supersonic

turbulence plays a crucial role in shaping the structure

within the interstellar gas. The gas components in the

interstellar medium exhibit highly supersonic velocity

dispersion, indicating the presence of shocks in the medium

[27].

In the present work, we obtained the particular solution

to the system of hyperbolic PDEs governing the one-

dimensional motion of a spherically symmetric flow in an

inviscid, self-gravitating, interstellar gas cloud by using the

Lie group of transformation. By using the singular surface

theory, a transport equation for the amplitude of the

steepened wave is derived. By using a particular exact

solution, the transport equation for the amplitude of the

steepened wave is integrated numerically and the behavior

of the steepened wave is analyzed. The effects of the

exponent of ambient density, exponent of heating-cooling

function, and specific heat ratio on the steepened wave are

shown graphically.

2. Basic equations

The set of partial differential equations (PDEs) that char-

acterize the one-dimensional, spherically symmetric flow

within an inviscid, self-gravitating, interstellar gas cloud is

expressed as [23, 25]

oq
ot

þ u
oq
or

þ q
ou

or
þ 2qu

r
¼ 0;

ou

ot
þ u

ou

or
þ 1

q
op

or
¼ g;

op

ot
þ u

op

or
þ qa2

ou

or
þ 2u

r

� �
¼ �ðc� 1ÞqLðp; qÞ;

og

ot
þ u

og

or
þ 2gu

r
¼ 0;

ð1Þ

where u; q; p, t, r, g and Lðp; qÞ denote the velocity, den-

sity, pressure, time, spatial coordinate which is radial in

spherically symmetric flows, gravitational force per unit

mass and energy variation per unit mass (or the cooling-

heating function), respectively. The values of parameter L

can be positive or negative, depending on whether the gas

clouds are cooling or heating, respectively. Here, a refers

to the equilibrium speed of sound in an ideal gas and is

defined as a ¼ ðcp=qÞ1=2, where c is the adiabatic index.

The ideal gas equation of state is given by p ¼ qRT, where
R is the specific gas constant, and T is the absolute tem-

perature of the gas.

The above system of PDEs (1) can be written in the

matrix form as

At þMðAÞAr þ BðAÞ ¼ 0; ð2Þ

where A ¼ ðq; u; p; gÞT and B ¼ ð2qur ;�g; 2qua
2

r þ ðc�
1ÞqLðq; pÞ; 2gur Þ

T
are the column vectors with superscript T

denoting transposition whileM is a 4� 4 matrix with non-

zero elements M11 ¼ M22 ¼ M33 ¼ M44 ¼ u,

M12 ¼ q;M23 ¼ 1=q;M32 ¼ qa2. A variable as a sub-

script denotes the partial differentiation with respect to the

indicated variable, if not mentioned.
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The matrix M of hyperbolic system admits the fol-

lowing eigenvalues

k1 ¼ uþ a; k2 ¼ u ðdouble rootÞ; k3 ¼ u� a: ð3Þ

Let Li and Ri be the left and right eigenvectors

corresponding to eigen value ki; i ¼ 1; 3 while the

repeated eigenvalues k2 are taken as k21 and k22 with two

linearly independent left eigenvectors L21; L22 and right

eigenvectors R21;R22 and defined as

L1 ¼
�
0; qa; 1; 0

�
; R1 ¼

� 1

2a2
;
1

2qa
;
1

2
; 0
�
; ð4Þ

L21 ¼
�
� a2; 0; 1; 0

�
; R21 ¼

�
� 1

a2
; 0; 0;

1

a2

�
; ð5Þ

L22 ¼
�
1; 0;� 1

a2
; a2

�
; R22 ¼

�
0; 0; 0;

1

a2

�
; ð6Þ

L3 ¼
�
0;�qa; 1; 0

�
; R3 ¼

� 1

2a2
;
�1

2qa
;
1

2
; 0
�
: ð7Þ

3. Rankine–Hugoniot conditions

The conservative forms of the system of equations (1) are

as follows:

oq
ot

þ oðquÞ
or

¼ � 2qu
r

;

oðquÞ
ot

þ oðqu2 þ pÞ
or

¼ gq� 2qu2

r
;

oðpeÞ
ot

þ oðqeþ pÞu
or

¼ � 2uðqeþ pÞ
r

oðqgÞ
ot

þ oðqguÞ
or

¼ � 4qug
r

;

ð8Þ

where total energy e is defined as

e ¼ p

ðc� 1Þqþ Lþ u2

2
: ð9Þ

The system described above (8) can be expressed in matrix

notation as follows:

F tðr; t;AÞ þ Grðr; t;AÞ ¼ Hðr; t;AÞ; ð10Þ

where A ¼ ðq; u; p; gÞtr, F ¼ ðq; qu; qe; qgÞtr,
G ¼ ðqu; ðpþ qu2Þ; uðpþ qeÞ; qugÞ,

H ¼ ð� 2qu
r ; gq� 2qu2

r ;� 2uðpþqeÞ
r ;� 4qug

r Þ with ‘‘tr‘‘

denoting the transpose. The Rankine-Hugoniot jump rela-

tion [28] is given by the following

½F k�V ¼ ½G�; k ¼ 1; 2; 3; 4: ð11Þ

In this context, we define V as the shock velocity and [X] as

the jump in X, represented by the difference between X and

its value X0. The subscript 0 is used to denote the medium’s

condition ahead of the shock, which is also referred to as

the upstream condition whereas without the subscript is

used for the medium’s condition behind the shock also

referred to as the downstream condition.

Considering equations (10) and (11), the boundary

conditions immediately behind the shock front can be

derived from the following relationships:

qðV � uÞ ¼ q0ðV � u0Þ;
pþ qðV � uÞ2 ¼ p0 þ q0ðV � u0Þ2;

hþ ðV � uÞ2

2
¼ h0 þ

ðV � u0Þ2

2
;

g ¼ g0;

ð12Þ

Here, the particle velocity relative to the shock velocity

behind the wavefront is defined by v ¼ V � u, h ¼ eþ p=q
denotes the enthalpy, where e ¼ Lþ p=ððc� 1ÞqÞ is the

internal energy.

Equations (12)1 and (12)2 imply

v ¼ q0V
q

; p ¼ p0 þ q0V
2 � q20V

2

q
: ð13Þ

Using (13) into (12)3, we get the following quadratic

equation in density q across the shock:�
� 2p0cþ q0V

2ð1� cÞ
�
q2 �

�
ð�2p0cþ q0V

2ð1� cÞÞq0

� ðcþ 1Þq20V2
�
q� ðcþ 1Þq30V2 ¼ 0:

ð14Þ

The equation Eq. (14) can be readily solved to determine

the density ?(R(t)) using the flow variables immediately

preceding the shock. Subsequently, the other flow vari-

ables, u(R(t)), p(R(t)), and g(R(t)), at the shock front can

be obtained from Eqs. (12)–(13) in the following manner:

at shock front:

q ¼ ðcþ 1Þq20V2

ðc� 1Þq0V2 þ 2cp0
; u ¼ 2

ðcþ 1Þ
q0V

2 � cp0
q0V

;

p ¼ 2q0V
2 � ðc� 1Þp0
ðcþ 1Þ ; g ¼ goðRðtÞÞ;

ð15Þ

and for the strong shock:

q ¼ ðcþ 1Þ
ðc� 1Þ q0; u ¼ 2

ðcþ 1ÞV;

p ¼ 2

ðcþ 1Þ q0V
2; g ¼ go:

ð16Þ
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4. Self-similar solution using Lie group invariance

analysis

In the context of multidimensional problems, the similarity

method utilizes a one-parameter Lie group of transforma-

tions to successively reduce one independent variable at

each step. This process results in a new equation with one

fewer independent variable than the previous step. It is

essential to ensure that the newly obtained equation

remains invariant under the Lie group of transformations

throughout each step. Once we have identified the Lie

group of transformations that maintains the invariance of

the system of PDEs, we can then construct a solution that is

also invariant under these transformations. Our specific

application of the similarity method involves the study of

the motion of converging shock waves in a self-gravitating,

interstellar ideal gas cloud. By employing this approach,

we aim to gain insights into the behavior of the gas cloud

under these conditions.

To obtain the similarity solutions for the system of

partial differential equations (PDEs) described by equation

(1), we investigate the one-parameter (�) Lie group of point

transformations (refer to [3]). This Lie group allows us to

transform the system of PDEs (1) into a system of ordinary

differential equations (ODEs) expressed in a new variable,

referred to as the similarity variable. For convenience, we

take r1 ¼ t; r2 ¼ r; u1 ¼ q; u2 ¼ u; u3 ¼ p; u4 ¼ g, and

then, the one-parameter (�) Lie group of point transfor-

mations for the system (1) is given by

r�l ¼ rl þ � nlrðr1; r2; u1; u2; u3; u4Þ þ Oð�2Þ;

u�n ¼ un þ � nnuðr1; r2; u1; u2; u3; u4Þ þ Oð�2Þ;
ð17Þ

where l ¼ 1; 2; n ¼ 1; 2; 3; 4; and � is a very small

parameter. The functions nlr and nnu are the infinitesimal

generators of the Lie group of transformations which will

be determined at a later stage.

By using pnl ¼ oun
orl
, the systems of equations (1) can be

written in the following form:

Hkðrl; un; pnl Þ ¼ 0; k ¼ 1; 2; 3; 4;

which remains invariant under the transformations (17), if

there exist constants akaðk; a ¼ 1; 2; 3; 4Þ such that

LHk ¼ akaHa; ð18Þ

which holds for all smooth surfaces un ¼ unðrlÞ. Here, the
repeated indices imply the summation convention and L

denotes the Lie derivative and can be defined in the

direction of the extended vector as

L ¼ nlr
o

orl
þ nnu

o

oun
þ nnpl

o

opnl
; ð19Þ

with n1r ¼ T ; n2r ¼ v; n1u ¼ S; n2u ¼ U; n3u ¼ P; n4u ¼ G and

nnpl ¼
onnu
orl

þ onnu
ouk

pkl �
onir
orl

pni �
onir
ouj

pni p
j
l; ð20Þ

where i ¼ 1; 2; j ¼ 1; 2; 3; 4 and nipj is the generalized

derivative transformation.

In view of Eqs. (18)–(20), the system (1) implies

nlr
oHk

orl
þ nnu

oHk

oun
þ nnpl

oHk

opnl
¼ akaHa;

k ¼ 1; 2; 3; 4; a ¼ 1; 2; 3; 4:

ð21Þ

Using Eq. (20) in (21), we get a polynomial in pnl . A system

of first-order linear partial differential equations (PDEs) is

derived in terms of infinitesimal generators T ; v; S;U;P;

and G. This is accomplished by equating all the coefficients

of pnl to zero. These first-order linear PDEs are commonly

referred to as the determining equations. The consistency

of these equations leads to the determination of the

infinitesimals T ; v; S;U;P; and G, and the process is as

follows:

T ¼ a1t þ b1; v ¼ ða22 þ 2a1Þr þ c; S ¼ ða11 þ a1Þq;

U ¼ ða22 þ a1Þu;

P ¼ ð2a22 þ a11 þ 3a1Þp;

G ¼ a22gþ d; SLq þ PLp ¼ ð2a22 þ a1ÞL;
ð22Þ

where a1; b1; c; d; a11; a22 are all arbitrary constants.

In Eq. (22), we consider a1 6¼ 0, ða22 þ 2a1Þ 6¼ 0 and

define the new variables ð~r; ~t; ~gÞ from (r, t, g) given as

~r ¼ r þ c

a22 þ 2a1
; ~t ¼ t þ b1

a1
; ~g ¼ gþ d

a22
; ð23Þ

under this condition, all the fundamental equations remain

unaltered. When the tilde sign is omitted, the set of

infinitesimal generators in Eq. (22) can be expressed as

follows:

T ¼ a1t; v ¼ ða22 þ 2a1Þr; S ¼ ða11 þ a1Þq; U ¼ ða22 þ a1Þu;

P ¼ ð2a22 þ a11 þ 3a1Þp; G ¼ a22g; SLq þ PLp ¼ ð2a22 þ a1ÞL:

ð24Þ

The invariant surface condition [3] yields:

vqr þ Tqt ¼ S; vur þ Tut ¼ U;

vpr þ Tpt ¼ P; vgr þ Tgt ¼ G;
ð25Þ

on integrating the above conditions together with Eq. (24),

the following forms of the flow variables q; u; p; g and L are

derived:
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q ¼ t
1þa11

a1 ŜðnÞ; u ¼ td�1ÛðnÞ; p ¼ t
2d�1þa11

a1 P̂ðnÞ; g ¼ tðd�2ÞĜðnÞ;

ð26Þ

where d ¼ a22þ2a1
a1

. The general form of L, allowing for the

existence of a self-similar solution, can be expressed in

terms of an arbitrary function of g as follows:

L ¼ q
ð2d�3Þ

dm lðgÞ; g ¼ pq�
2ðd�1Þþdm

dm : ð27Þ

The functions Ŝ; Û; P̂ and Ĝ depend on the similarity

variable n ¼ rt�d. Since the shock must be a similarity

curve that can be normalized to be at n ¼ 1. Thus, the

shock path R and shock velocity V are given by

R ¼ td; V ¼ dR
t
: ð28Þ

At the shock, we have the following conditions on the flow

variables q; u; p and g

qjn¼1 ¼
ð1þa11

a1
Þ
Ŝð1Þ; ujn¼1 ¼ tðd�1ÞÛð1Þ;

pjn¼1 ¼ t
ð2d�1þa11

a1
Þ
P̂ð1Þ; gjn¼1 ¼ tðd�2ÞĜð1Þ:

ð29Þ

In view of the invariance of the jump conditions, Eqs. (16)

and (25) yield the following forms of q0ðrÞ and g0ðrÞ:

q0ðrÞ ¼ qcr
m; g0ðrÞ ¼ g0cr

r: ð30Þ

together with r ¼ d�2
d ; m ¼ a11þa1

da1
, where qc and g0c are

some reference constants. In view of Eqs. (29) and (30), the

jump conditions (16) for the strong shock reduce as

follows:

Ŝð1Þ ¼ cþ 1

c� 1
qc; Ûð1Þ ¼ 2d

cþ 1
;

P̂ð1Þ ¼ 2qcd
2

cþ 1
; Ĝð1Þ ¼ g0c:

ð31Þ

In view of Eqs. (27)–(28) and (30), all the flow variables in

Eq. (26) can be written as:

q ¼ q0ðRðtÞÞS�ðnÞ; u ¼ VU�ðnÞ;

p ¼ q0ðRðtÞÞV2P�ðnÞ; g ¼ V

t
G�ðnÞ;

with L ¼ ðq0S�Þ
ð2d�3Þ

dm lðgÞ; g ¼ qcd
2P�ðqcS�Þ

ð2ðd�1ÞþdmÞ
dm ;

ð32Þ

where S� ¼ Ŝ
qc
;U� ¼ Û

d ;P
� ¼ P̂

qcd
2 ;G

� ¼ Ĝ
d :

Using Eq. (32) together with Eqs. (28) and (30) in the

system (1), we obtain the following system of ODEs in

S�;U�;P� and G� (For simplicity we suppressed asterisk

sign)

ðU � nÞS0 þ S
�
mþ U0 þ 2U

n

�
¼ 0;

� d� 1

d

�
U þ ðU � nÞU0 þ P0

S
¼ G

d
;

ðU � nÞP0 þ 2
� d� 1

d

�
þ mþ c

�
U0 þ 2U

n

�� �
P

þ ðc� 1Þðqcd3Þ�1ðqcSÞ
2d�3þdm

dm l�ðgÞ ¼ 0;

� d� 2

d

�
Gþ ðU � nÞG0 þ 2UG

n
¼ 0;

ð33Þ

where l�ðgÞ ¼ qcd
2PðqcSÞ�ð2ðd�1ÞþdmÞ=dm

and the prime

represents the differentiation with respect to similarity

variable n.

5. Particular solution

It is evident that obtaining the exact solution of the system

(33) through analytical methods is a challenging task. As a

result, any particular solution of the system holds practical

significance as it provides valuable insights into the nature

of the solutions. System (33) admits the particular solution

of the following forms:

S ¼ B1n
�f; U ¼ ðaþ 1Þn; P ¼ B2n

2�f; G ¼ B3n; l�ðgÞ ¼ gk;

ð34Þ

where a and B1 are the arbitrary constants. For the

particular solution, all the expressions for f;B2;B3 are

calculated as follows:

f ¼ mþ 3ð1þ aÞ
a

;

B2 ¼
� ð1� cÞðqcd3Þ

ð1�kÞd�kðqcB1ÞðJð1�kÞ�ð3�2kÞ=lÞ

bð2� fÞ þ 2ðd� 1Þ=dþ mþ 3cð1þ bÞ

� 1
1�k

;

B3 ¼
dB2ð2� fÞ

B1

þ dðbþ 1Þ
�
bþ 1� 1

d

�
;

ð35Þ

where J ¼ ðlþ 2dÞ=l and l ¼ dm.
From Eq. (31), we get the following

B1 ¼
cþ 1

c� 1
; a ¼ 1� c

1þ c
; B2 ¼

2

cþ 1
; B3 ¼

1

d
: ð36Þ

Using Eqs. (34) and (36) into (33)3, we get the following

value of the similarity exponent

d ¼ 3� 2k

4ð1� kÞ

� ðcþ 1Þmþ 6

mþ 3

�
: ð37Þ

Thus, in this way, from Eq. (32), we get the following

particular solution of the system (1)
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q ¼ q0ðRðtÞÞSðnÞ; u ¼ VUðnÞ; p ¼ q0ðRðtÞÞV2PðnÞ;

g ¼ V

t
GðnÞ;

L ¼ ðq0SÞ
ð2d�3Þ

dm lðgÞ; g ¼ qcd
2PðqcSÞ

ð2ðd�1ÞþdmÞ
dm :

ð38Þ

The numerical values of the similarity exponent for dif-

ferent values of the parameters c; k, and m are shown in

Table 1 as follows:

From Table 1, we can see the effects of various

parameters c; k and m on the similarity exponent d. We see

that as the value of the adiabatic index c increases, the

value of d decreases. The value of d decreases as we make

the decrements in the values of the parameters l and k. As

the value of d decreases, the shock collapses much faster.

Therefore, an increment in the value of c and a decrement

in the value of m and k make the rate of shock collapse

faster. From Eq. (27), the form of heating-cooling function

is L ¼ q
ð2d�3Þ

dm lðgÞ which shows that an increment in q gives

rise in the the value of L. From this form of L, we must

have ð2d� 3Þ=dm[ 0, and therefore, m should be negative.

Also, we made the following observations on the similarity

exponent d calculated in Eq. (37):

d ¼ 0 for k ¼ 3=2 or m ¼ �6=ðcþ 1Þ;

d ¼ 1 for k ¼ 1 or m ¼ �3with k 6¼ 3=2 and m 6¼ �6=ðcþ 1Þ;

d\0 for k 2 ð1; 3=2Þ or m 2 ð�6=ðcþ 1Þ;�3Þ;

0\d\1 for k[ 3=2;

d[ 1 for k\1:

ð39Þ

6. Evolution of steepened wave

Let
P

be the wavefront of the steepened wave and the

curve r ¼ RðtÞ denote the equation of wavefront. We

consider that all the flow variables q; u; p and g across the

steepened wave, are necessarily continuous but their first

and second-order derivatives are not continuous for r0\r1,

i.e., they have a jump for r0\r1. At r0, a steepened wave is

considered while at r1, a strong shock is considered. Let the

front be moving with speed V ¼ dR=dt originated from

r ¼ r0. If A and �A, respectively, denote the jumps in the

first and second-order space derivatives of q; u; p and g

defined on wavefront
P

, we have the following compati-

bility conditions for the steepened wave [12]

jjArjj ¼ A; jjAtjj ¼ �VA; jjArrjj ¼ �A; jjArtjj ¼ �V
� dA

dr
� �A

�
;

ð40Þ

together with the boundary condition jjAjj ¼ 0. Here,

jjXjj ¼ Xs � X denotes the jump in X across the wave frontP
, where X and Xs, respectively, denote the values just

ahead and behind of
P

.

Let

jjqrjj ¼f; jjurjj ¼ k; jjprjj ¼ r; jjgrjj ¼ g;

jjqtjj ¼ � Vf; jjutjj ¼ �Vk; jjptjj ¼ �Vr; jjgtjj ¼ �Vg:

ð41Þ

In view of Eq. (41), the system (2) on the inner boundary ofP
gives the following relations:

ðV � uÞf ¼ qk; ðV � uÞqk ¼ r;

ðV � uÞr ¼ qa2k; ðV � uÞg ¼ 0:
ð42Þ

The relations between f; k; r and g are obtained from

Eq. (42) as follows:

k ¼ af
q

¼ r
aq

; g ¼ 0: ð43Þ

On differentiating the system of equation (2) with respect

to r and taking jumps over the surface
P

, we get the

following set of equations:

Table 1 Numerical values of similarity exponent d for different

values of the parameters c; k and m

m k Computed d for c ¼ 7=5 Computed d for c ¼ 5=3

�0.2 2 0.49285714 0.488095238

�0.6 2 0.47500000 0.458333333

�0.8 2 0.46363636 0.439393939

�1.0 2 0.45000000 0.416666666

�1.2 2 0.43333333 0.388888888

�1.4 2 0.41250000 0.354166666

�1.6 2 0.38571428 0.309523809

�1.8 2 0.35000000 0.250000000

�2.0 2 0.30000000 0.166666666

�0.84 1.2 �1.38333333 �1.3055555

�0.88 1.2 �1.37547169 �1.2924528

�0.92 1.2 �1.36730769 �1.2788461

�0.84 1.4 �0.23055555 �0.2175925

�0.88 1.4 �0.22924528 �0.2154088

�0.92 1.4 �0.22788461 �0.2131410

�0.80 0.4 1.70000000 1.61111111

�0.90 0.4 1.67619047 1.57142857

�0.80 0.8 3.24545454 3.07575757

�0.80 0.9 3.19999999 3.00000000
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jjqrtjj þ 2jjurqrjj þ ujjqrrjj þ qjjurrjj þ
2

r
ujjqrjj

þ 2q
r
jjurrjj ¼ 0;

qfjjutrjj þ jjurjj2 þ ujjurrjjg þ jjprrjj þ ujjqrurjj
þ jjqrutjj � gjjqrjj � qjjgrjj ¼ 0;

jjptrjj þ
�
1þ a2q

p

�
jjurprjj þ ujjprrjj þ qa2jjurrjj

þ 2qa2

r
jjurjj þ

2uqa2

rp
jjprjj

þ ðc� 1ÞfLjjqrjj þ qLqjjqrjj þ qLpjjprjjg ¼ 0;

jjgtrjj þ jjurgrjj þ ujjgrrjj þ
2g

r
jjurjj þ

2u

r
jjgrjj ¼ 0:

ð44Þ

Using the notations in Eq. (40), we have

jjqrrjj ¼ �f; jjurrjj ¼ �k; jjprrjj ¼ �r; jjgrrjj ¼ �g;

jjqrtjj ¼ V
� df
dr

� �f
�
; jjurtjj ¼ V

� dk
dr

� �k
�
;

jjprtjj ¼ V
� dr
dr

� �r
�
; jjgrtjj ¼ V

� dg
dr

� �g
�
:

ð45Þ

Using Eqs. (41)–(43) and (45) in (44), we get the following

set of equations:

V
� df
dr

� �f
�
þ 2

�
urjjqrjj þ qrjjurjj þ jjurjj þ jjqrjj

�

þ u�fþ q�kþ 2

r

�
ufþ qk

�
¼ 0;

q
�
V
� dk
dr

� �k
�
þ k2 þ 2urkþ u�k

�

þ
�
�rþ kðu� VÞðqr þ fÞ þ uurfþ utf� gf� qg

�
¼ 0;

V
� dr
dr

� �r
�
þ
�
1þ a2q

p

��
krþ urrþ kpr

�

þ u�rþ qa2
�
�kþ 2k

r

�
þ 2uqra2

rp

þ ðc� 1Þ
�
Lfþ qLqfþ qLpr

�
¼ 0;

V
� dg
dr

� �g
�
þ
�
gkþ urgþ grk

�

þ u�gþ 2

r

�
gkþ ug

�
¼ 0:

ð46Þ

V ¼ dR=dt ¼ uþ a is positive for advancing wave. Using

V ¼ uþ a and Eq. (43) into Eq. (46) and eliminating �f; �k
and �r, we get the following Bernoulli-type transport

equation for k

2
dk
dt

þ /1k
2 þ /2k ¼ 0; ð47Þ

where

/1 ¼ 1þ a2q
p ,

/2 ¼ ut
a þ

�
3þ u

aþ
a2q
p

�
ur � g

a �
aqr
q þ�

1
qa þ a

p

�
pr þ 2a

r þ 2uqa2

rp þ ðc� 1Þ
�

L
a2 þ

qLq
a2 þ Lpq

�
:

Since the jump in gradient of flow-field vector jjU rjj is
collinear with the right eigen vector i.e. jjU rjj ¼ pðtÞR1,

where pðtÞ is the amplitude of wave. Therefore, we get

pðtÞ ¼ 2qak and then using it in Eq. (47), we obtain the

following transport equation for the wave amplitude pðtÞ:
dp
dt

þ U1p
2 þ U2

2
p ¼ 0; ð48Þ

where

U1 ¼ /1

4qa ;

U2 ¼ /2 � 2
q
dq
dt � 2

a
da
dt with

d
dt ¼ o

ot þ ðuþ aÞ o
or.

It is worth noting that the amplitude of the wave can be

described by a Bernoulli-type equation, which upon inte-

gration, yields the amplitude as follows:

pðtÞ ¼ p0H1ðtÞ
1þ p0H2ðtÞ

; ð49Þ

where H1ðtÞ ¼ exp
�
�
R t

t0

U2ðtÞ
2

dt
�
; H2ðtÞ ¼R t

t0
U1ðtÞH1ðtÞdt; and p0 ¼ p0ðt0Þ.

7. Numerical results and discussion

To analyze the behavior of the steepened wave, we use the

exact solution of the non-linear hyperbolic system (2)

obtained in Eqs. (34) and (38). By using Eqs. (34) and (38),

Eq. (48) is integrated numerically and the value of the

amplitude of jump in the spatial derivative of velocity is

depicted in Figs. 1, 2, 3 for different values of exponent k

of heating-cooling function L, ambient density exponent m
and specific heat ratio c. From Eq. (49), we may note that,

in a finite interval (1,t), H1ðtÞ is non-zero, finite, and

continuous, and H1ðtÞ ! 0 as t ! 1. We see that for

p0 [ 0 which corresponds to an expansion wave, pðtÞ ! 0

as t ! 1, consequently the steepened wave decays first

and thereafter dies out eventually. The corresponding

behavior of the steepened wave is shown in Figs. 1, 2, 3

with p0 [ 0 for the various values of m; k and c. We can see

from Figs. 1 and 2 with p0 [ 0, that the decay rate of the

steepened wave increases with the decrements in the values

of m and k. Also, from Fig. 3, with p0 [ 0, we see that the

decay rate of the steepened wave for monoatomic gases

(c ¼ 5=3) is greater than that of diatomic gases (c ¼ 7=5).

However, for p0\0 which corresponds to a compression

wave, at some finite critical time t ¼ tc [ 1 given by

jH2ðtcÞj ¼ 1=p0, amplitude p is non-zero, finite and con-

tinuous in the interval ½1; tcÞ but for t ! tc, the amplitude

p ! 1 and steepened wave culminates into shock only

when p0\� pc\0 where pc ¼ 1=jH2ð1Þj . The

Evolution of steepened wave



corresponding situation is shown in Figs. 1, 2, 3 with

p0\� pc\0 for the various values of m; k and c. From
Figs. 1, 2 with p0\� pc\0, we see that decrements in the

values of m and k, increase the decay rate of the steepened

wave and speed up the formation of shock. Diatomic gases

(c ¼ 7=5) delay the onset of a shock, while the monoa-

tomic (c ¼ 5=3) gases go quickly for the shock formation.

This situation is shown in Fig. 3 with p0\� pc\0.

8. Conclusions

In the present work, a particular exact solution to the

system of the partial differential equation describing the

one-dimensional motion of the spherically symmetric flow

of an ideal gas in an interstellar gas cloud is obtained by

using the group invariance properties of the system via the

Lie group method. The effects of the exponent of the

Fig. 1 Evaluation of amplitude p with t for spherically symmetric flow: (a) c ¼ 7=5; k ¼ 2;qc ¼ 0:1, (b) c ¼ 7=5; m ¼ �1:2;qc ¼ 0:1

Fig. 2 Evaluation of amplitude p with t for spherically symmetric flow: (a) c ¼ 5=3; k ¼ 2;qc ¼ 0:1, (b) c ¼ 5=3; m ¼ �1:2;qc ¼ 0:1

Fig. 3 Evaluation of amplitude p with t for spherically symmetric

flow: (a) c ¼ 7=5 and 5/3, k ¼ 2; m ¼ 2;qc ¼ 0:1
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heating-cooling function, ambient density exponent, and

specific heat ratio are shown on the similarity exponent. A

transport equation for the amplitude of the steepened wave

is derived by using the singular surface theory. By using a

particular exact solution, the transport equation is solved

numerically and the evolutionary behavior of the steepened

wave is analyzed. The effects of the different values of

exponent k of the heating-cooling function L, ambient

density exponent m, and specific heat ratio c are shown

graphically. We have shown that, for p0 [ 0, the steepened

waves decay and die out. It has also been shown that after a

finite time, only when p0\� pc\0, the compression

wave culminates into a shock. It has been observed that an

increase in parameters m; k and a decrease in c enhance the
decay rate of the steepened wave and delay the formation

of the shock.

The study of shock wave propagation in a mixture of

non-ideal gas and small solid particles has become crucial

because there are several applications of it such as in

environmental and industrial fields. A few applications

include nozzle flow, black hole theory, lunar ash flow, and

phenomena like nuclear blasts, volcanic explosions, dusty

crystals formation, supersonic flight in dusty air, etc. This

literature is quite vast as it is concerned with the study of

shock wave propagation in dusty gas [29, 30]. In the future,

the present work can be extended to the non-ideal gas with

solid small dust particles , and the solutions by using the

theory of self-similarity and computational methods can be

obtained.

Acknowledgements The first author, Antim Chauhan, expresses

gratitude to the ‘‘University Grant Commission (Govt of India)’’ (Sr.

No. 2121541039 with Ref No. 20/12/2015 (ii)EU-V) and the corre-

sponding author, Rajan Arora also acknowledges the financial support

provided by CSIR, New Delhi, India via sanction order number

25/0327/23/EMR-II.

Data availability The data that support the findings of this study are

available within the article.

References

[1] P J Olver (New York: Springer-Verlag) (1986)

[2] G W Bluman and S Kumei (New York: Springer) (1989)

[3] J D Logan and J D J Perez SIAM J. Appl. Math. 39 512 (1980)

[4] V D Sharma and Ch Radha Int. J. Eng. Sci. 33 535 (1995)

[5] V D Sharma and R Arora Stud. Appl. Math. 114 375 (2005)

[6] R Arora, A Tomar and V P Singh Math. Model. Anal. 17 351

(2012)

[7] A Chauhan S Yadav and R Arora Indian J Phys 1 (2023)

[8] A Chauhan, R Arora and A Tomar Phys. Fluids 30 116105

(2018)

[9] A Chauhan, R Arora and A Tomar Quart. J. Mech. Appl. Math.
73 101 (2020)

[10] A Chauhan, R Arora and A Tomar Phys. Fluids 33 116110

(2021)

[11] R Arora, M J Siddiqui and V P Singh Int. J. Non-Linear Mech.
57 1 (2013)

[12] T Y Thomas Int. J. Eng. Sci. 4 207 (1966)

[13] M F McCarthy Continuum Physics, II (New York, USA: Aca-

demic Press) (1975)

[14] R Quintanilla and B Straughan Proc. R. Soc. Lond. Ser. A Math.
Phys. Eng. Sci. 460 1169 (2004)

[15] T Ruggeri Appl. Anal. 11 103 (1980)

[16] R Shyam, L P Singh and V D Sharma Acta Astronaut. 13 95

(1986)

[17] V D Ch Radha and A Jeffrey Sharma Appl. Anal. 50 145 (1993)

[18] M Pandey and V D Sharma Wave Motion 44 346 (2007)

[19] M Chadha and J Jena J. Comput. Appl. Math. 34 729 (2015)

[20] T Raja Sekhar and V D Sharma Appl. Math. Lett. 23 327 (2010)

[21] B Bira, T Raja Shekhar and G P Raja Shekhar Comput. Math.
Appl. 75 3873 (2018)

[22] A Mentrelli, T Ruggeri, M Sugiyama and N Zhao Wave Motion
45 498 (2008)

[23] A Muracchini and T Ruggeri Astrophys. Space Sci. 153 127

(1989)

[24] F Ferraioli and N Virgopia Mem. Soc. Astron. Ital. 46 313

(1975)

[25] F Ferraioli, T Ruggeri and N Virgopia Astrophys. Space Sci. 56
303 (1978)

[26] N Virgopia and F Ferraioli Rend. Circ. Mat. Palermo 31 321

(1982)

[27] R E Pudritz and N K R Kevlahan Philos. Trans. R. Soc. A 371 1

(2013)

[28] G B Whitham (New York: Wiley-Interscience) (1974)

[29] J Yin, J Ding and X Luo Phys. Fluids 30 013304 (2018)

[30] M Chadha and J Jena Int. J. Nonlinear Mech. 65 164 (2014)

Springer Nature or its licensor (e.g. a society or other partner) holds

exclusive rights to this article under a publishing agreement with the

author(s) or other rightsholder(s); author self-archiving of the

accepted manuscript version of this article is solely governed by the

terms of such publishing agreement and applicable law.

Evolution of steepened wave


	Evolution of steepened wave in interstellar gas clouds
	Abstract
	Introduction
	Basic equations
	Rankine--Hugoniot conditions
	Self-similar solution using Lie group invariance analysis
	Particular solution
	Evolution of steepened wave
	Numerical results and discussion
	Conclusions
	Data availability
	References


