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Abstract: In this paper, we obtain the exact solutions of the (1?1) dimensional complex cubic Ginzburg–Landau equation

(CCGLE) by using the Hirota bilinear method, this equation is a universal model for the evolution of the envelope of

slowly varying waves packets in nonlinear dissipative media. Different types of solutions including solitons, lump and

rogue wave solutions are gotten by taking different transformations. Besides, the physical significance of these solutions of

CCGLE can be understood better through drawing 3D, 2D and contour plots.
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1. Introduction

In many nonlinear physical systems, the diffusion of

local pulses or solitons are controlled by different types of

complex Ginzburg–Landau equations (CGLEs) including

the dispersion and nonlinear effects of the conservative and

dissipative forms[1, 2]. As universal models of mode for-

mation in nonlinear dissipative media [3], complex Ginz-

burg–Landau equations (CGLEs) describe a variety of

phenomena at the qualitative and even quantitative levels,

from nonlinear wave to second–order transitions, from

superconducting supercurrent, Bose-Einstein condensates

(BEC) to strings and plasmas in liquid crystal field theory

[4–8]. Therefore, it is very important to solve the exact

solutions of partial differential equations, especially

CGLEs [9–11]. So far, different types of solutions to one–

dimensional complex Ginzburg–Landau equations have

been analyzed such as impulse, quasi–impact, source, sink,

periodic and quasi–periodic solutions [1].

As a kind of general amplitude equations in physics

[12], complex cubic Ginzburg–Landau equations

(CCGLEs) are also used to research many practical prob-

lems. For example, chemical turbulence, Rayleigh–Bey-

nard convection [13], Taylor–Coutte flow, Poiseuille flow,

reaction–diffusion systems, nonlinear optical and

hydromechanical stability problems [14]. Specially, Its

dark solitary waves were also discovered by Nazaki and

Bekki, although they are unstable [16].

In this paper, we investigate the (1?1) dimensional

complex cubic Ginzburg–Landau equation (CCGLE)

which is used to describe dissipative systems above the

bifurcation point [17], examples of applications include

pulse generation by passive mode–locked soliton lasers

[18], signal transmission in optical communications lines,

traveling waves in binary fluid mixtures [19] and pattern

formation [20] in many other physical systems [12]. The

(1?1) dimensional complex cubic Ginzburg–Landau

equation has the following form [14, 21]

vt ¼ rv� ð1 þ ibÞjvj2vþ ð1 þ iaÞvxx; ð1Þ

where vðx; tÞ is a complex function from R2 to C repre-

senting the modulation of the oscillating field, b and r are

two real control parameters [14]. rv and ð1 þ ibÞjvj2v
describe the local dynamics of the oscillators, rv leads to

the linear instability mechanism of the oscillation and ð1 þ
ibÞjvj2v produces nonlinear amplitude saturation and fre-

quency renormalization. ð1 þ iaÞvxx is the spatial coupling

which explains diffusion and dispersion of oscillating

motion [21].

As far as we know, many different types of solutions of

the (1?1) dimensional CCGLE have been given. Such as,
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the traveling wave solutions were obtained by the first

integral and the ðG0=GÞ–expansion methods [12], the

implicit and explicit solutions were obtained by using the

methods of variable separation and plane wave solutions

[14], the singular bright solitons, the hybrid periodic soli-

tons, the dark solitons and the periodic M-shaped solitons

solutions were acquired via the Sardar sub-equation

method [15], the periodic solitons solutions were also

gotten through the energy balance method [15], the exis-

tence of time quasi–periodic solutions under periodic

boundary conditions has been discussed [22]. In addition,

by constructing the KAM theorem for dissipative systems

with unbounded pertubations and multi–normal frequen-

cies, a Contorian branches of the two dimensional invariant

torus for CCGLE also have been obtained [22]. Finally, the

kink solitons and periodic solitons solutions were attained

based on the foundation of the notions of the planar

dynamical theory for CCGLE [23].

However, there are still some solutions that are not used

by the (1?1) dimensional CCGLE, such as the Hirota

bilinear method has remarkable characteristics, which

make it suitable for determining different kinds of solutions

[24–32]. In this paper, we will attain the multiple solitons,

lump and rogue wave solutions of Eq. (1) by using the

Hirota bilinear method and setting different forms of aux-

iliary equations.

In order to gain the exact solutions of Eq. (1), we choose

following equations to convert it

v ¼ uþ iv; jvj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v2
p

; ð2Þ

where u, v are undetermined functions of independent

variables x and t.

Inserting Eq. (2) into Eq. (1) and seperating its real and

imaginary parts, we can gain

Re : ut � uxx þ avxx � ruþ u3 þ v2u� bu2v� bv3 ¼ 0:

ð3Þ

Im : vt � vxx � auxx � rvþ v3 þ u2vþ bv2uþ bu3 ¼ 0:

ð4Þ

The structure of this article is shown below. In Sect. 2, we

can obtain the multiple solitons solutions of the (1?1)

dimensional CCGLE through the Hirota bilinear method.

The lump solutions can be given in Sect. 3 and the lump–

one stripe soliton interaction solutions also can be obtained

in Sect. 4. In Sect. 5, the rogue wave solutions can be

acquired. In Sect. 6, we discuss the physical meanings of

images that we have obtained. Finally, the conclusion is

stated in Sect. 7.

2. Multiple solitons solutions

In this section, we will apply the Hirota bilinear method

to attain the multiple solitons solutions of the (1?1)

dimensional CCGLE.

Firstly, substituting

u ¼ ehi ; hi ¼ kixþ mit þ ci; i ¼ 1; 2; . . .;N; ð5Þ

where ki;mi and ci are undetermined constants, into the

linear terms of Eq. (3) and Eq. (4) and solving the

corresponding equations, we can gain the dispersion

relations as follows

mi ¼ k2
i þ r; hi ¼ kixþ ðk2

i þ rÞt þ ci; i ¼ 1; 2; . . .;N;

ð6Þ

where ki and ci are undetermined constants.

From Eq. (6), we can notice that the dispersion relations

mi only depend on the coefficients ki of x.

In order to get the multiple solitons solutions of the

(1?1) dimensional CCGLE, we substitute

u ¼ R1ð In f Þx;

v ¼ R2ð In f Þx;
ð7Þ

where R1 and R2 are undetermined constants. f as the

auxiliary functions will be determined later.

2.1. Single soliton solutions

To gain the single soliton solutions of the (1?1)

dimensional CCGLE, we take account the form of f like

following

f ¼ 1 þ eh1 ; ð8Þ

where h1 ¼ k1xþ ðk2
1 þ rÞt þ c1 and k1; c1 are undeter-

mined constants.

Inserting Eq. (8) with Eq. (7) into Eq. (3) and Eq. (4),

collecting all power coefficients of eh1 and making their

results to zero, we can get

a ¼ 0; b ¼ 0; R1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 � R2
2

q

;

k1 ¼
ffiffiffi

r

2

r

; r ¼ r; R2 ¼ R2:

ð9Þ

Substituting Eq. (9) with Eq. (8) into Eq. (7), we know
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f ¼ 1 þ e
ffiffi

r
2

p
xþ3

2
rtþc1 ;

u ¼

ffiffiffiffiffiffiffiffiffiffiffiffi

rð2�R2
2
Þ

2

q

e
ffiffi

r
2

p
xþ3

2
rtþc1

1 þ e
ffiffi

r
2

p
þ3

2
rtþc1

; v ¼
R2

ffiffi

r
2

p

e
ffiffi

r
2

p
xþ3

2
rtþc1

1 þ e
ffiffi

r
2

p
þ3

2
rtþc1

;

v ¼
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 � R2
2

p

þ R2iÞ
ffiffi

r
2

p

e
ffiffi

r
2

p
xþ3

2
rtþc1

1 þ e
ffiffi

r
2

p
xþ3

2
rtþc1

;

ð10Þ

where c1; r and R2 are arbitrary constants.

2.2. Double solitons solutions

The auxiliary function f for the double solitons solutions

is given by

f ¼ 1 þ eh1 þ eh2 þ a12e
h1þh2 ; ð11Þ

where h1 ¼ k1xþ ðk2
1 þ rÞt þ c1; h2 ¼ k2xþ ðk2

2 þ rÞt þ c2

and k1; k2; c1; c2 are undetermined constants.

Interposing Eq. (11) with Eq. (7) into Eq. (3) and

Eq. (4), collecting all coefficients of the same power and

making them to zero, we can gain

Set-1:

a ¼ 0; b ¼ 0; k1 ¼ �
ffiffiffi

r

2

r

; k2 ¼
ffiffiffi

r

2

r

;

R1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 � R2
2

q

; a12 ¼ 0; r ¼ r; R2 ¼ R2:

ð12Þ

Set-2:

a ¼ 0; b ¼ 0; k1 ¼
ffiffiffi

r

2

r

; k2 ¼ �
ffiffiffi

r

2

r

;

R1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � 2R2
2

2

r

; a12 ¼ 1; r ¼ r; R2 ¼ R2:

ð13Þ

Plugging above equations with Eq. (11) into Eq. (7), dif-

ferent double solitons solutions can be given.

Case 1: a12 ¼ 0.

f ¼ 1 þ e�
ffiffi

r
2

p
xþ3

2
rtþc1 þ e

ffiffi

r
2

p
xþ3

2
rtþc2 ;

v ¼
R2

ffiffi

r
2

p

ðe
ffiffi

r
2

p
xþ3

2
rtþc2 � e�

ffiffi

r
2

p
xþ3

2
rtþc1Þ

1 þ e�
ffiffi

r
2

p
xþ3

2
rtþc1 þ e

ffiffi

r
2

p
xþ3

2
rtþc2

;

u ¼

ffiffiffiffiffiffiffiffiffiffiffiffi

rð2�R2
2
Þ

2

q

ðe
ffiffi

r
2

p
xþ3

2
rtþc2 � e�

ffiffi

r
2

p
xþ3

2
rtþc1Þ

1 þ e�
ffiffi

r
2

p
xþ3

2
rtþc1 þ e

ffiffi

r
2

p
xþ3

2
rtþc2

;

v ¼
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 � R2
2

p

þ R2iÞ
ffiffi

r
2

p

ðe
ffiffi

r
2

p
xþ3

2
rtþc2 � e�

ffiffi

r
2

p
xþ3

2
rtþc1Þ

1 þ e�
ffiffi

r
2

p
xþ3

2
rtþc1 þ e

ffiffi

r
2

p
xþ3

2
rtþc2

;

ð14Þ

where R2; r; c1 and c2 are arbitrary constants.

Case 2: a12 6¼ 0.

f ¼ 1 þ e
ffiffi

r
2

p
xþ3

2
rtþc1 þ e�

ffiffi

r
2

p
xþ3

2
rtþc2 þ e3rtþc1þc2 ;

v ¼
R2

ffiffi

r
2

p

ðe
ffiffi

r
2

p
xþ3

2
rtþc1 � e�

ffiffi

r
2

p
xþ3

2
rtþc2Þ

1 þ e
ffiffi

r
2

p
xþ3

2
rtþc1 þ e�

ffiffi

r
2

p
xþ3

2
rtþc2 þ e3rtþc1þc2

;

u ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rð1�2R2
2
Þ

p
2

ðe
ffiffi

r
2

p
xþ3

2
rtþc1 � e�

ffiffi

r
2

p
xþ3

2
rtþc2Þ

1 þ e
ffiffi

r
2

p
xþ3

2
rtþc1 þ e�

ffiffi

r
2

p
xþ3

2
rtþc2 þ e3rtþc1þc2

;

v ¼
ð

ffiffiffiffiffiffiffiffiffiffi

1�2R2
2

2

q

þ R2iÞ
ffiffi

r
2

p

ðe
ffiffi

r
2

p
xþ3

2
rtþc1 � e�

ffiffi

r
2

p
xþ3

2
rtþc2Þ

1 þ e
ffiffi

r
2

p
xþ3

2
rtþc1 þ e�

ffiffi

r
2

p
xþ3

2
rtþc2 þ e3rtþc1þc2

:

ð15Þ

where R2; r; c1 and c2 are arbitrary constants.

2.3. Three solitons solutions

The auxiliary function f for the three solitons solutions

is given in the following form

f ¼ 1 þ eh1 þ eh2 þ eh3 þ a12e
h1þh2

þ a13e
h1þh3 þ a23e

h2þh3
ð16Þ

where h1 ¼ k1xþ ðk2
1 þ rÞt þ c1; h2 ¼ k2xþ ðk2

2 þ rÞt þ
c2; h3 ¼ k3xþ ðk2

3 þ rÞt þ c3 and k1; k2; k3; c1; c2; c3 are

undetermined constants.

Inserting Eq. (16) with Eq. (7) into Eq. (3) and Eq. (4),

combining similar terms and making their coefficients to

zero, we can know

a ¼ 0; b ¼ 0; k1 ¼ �
ffiffiffi

r

2

r

; k2 ¼
ffiffiffi

r

2

r

; k3 ¼
ffiffiffi

r

2

r

;

a12 ¼ 1; a23 ¼ 1; a13 ¼ 1; b123 ¼ 1; r ¼ r;R1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 � 9R2
2

p

3
:

ð17Þ

Substituting Eq. (17) with Eq. (16) into Eq. (7), three

solitons solutions can be obtained as follows

Multiple solitons solutions



where W1 ¼ ec2 þ ec3 ;W2 ¼ eA12 þ eA13 ;A12 ¼ c1 þ
c2;A13 ¼ c1 þ c3;A23 ¼ c2 þ c3;B123 ¼ c1 þ c2 þ c3 and

R2; r; c1; c2; c3 are arbitrary constants.

3. Lump solutions

To gain the lump solutions of the (1?1) dimensional

CCGLE, we use the following transformations

u ¼ ðIn f Þx; v ¼ ðIn gÞx; ð19Þ

where f, g as the auxiliary functions will be decided later.

Equation(19) transforms Eq. (3) and Eq. (4) into the

following bilinear forms

f 2g3ðfxt � fxxxÞ þ fg3ð�fxft þ 3fxfxx

� 2g3f 3
x þ af 3g2gxxx � 3af 3ggxgxx þ 2af 3g3

x

� rf 2g3fx þ g3f 3
x þ f 2gg2

xfx � bfg2f 2
x gx � bf 3g3

x ¼ 0:

ð20Þ

g2f 3ðgxt � gxxxÞ þ gf 3ð�gxgt þ 3gxgxx

� 2f 3g3
x � ag3f 2fxxx þ 3ag3ffxfxx þ 2ag3f 3

x

� rg2f 3gx þ f 3g3
x þ g2ff 2

x gx þ bgf 2g2
x fx þ bg3f 3

x :

ð21Þ

For lump solutions, we assume f and g have the following

bilinear forms

f ¼ n2
1 þ n2

2 þ a; g ¼ n2
1 þ n2

2 þ b; ð22Þ

where n ¼ p1xþ l1t; n2 ¼ p2xþ l2t and p1; p2; l1; l2; a; b
are undecided constants.

Inserting Eq. (22) into Eq. (20) and Eq. (21) and solving

corresponding equations, we can attain

p1 ¼ p1; l1 ¼ l1; a ¼ a; b ¼ b; p2 ¼ �p1i; l2 ¼ l1i:

ð23Þ

Interposing Eq. (23) into Eq. (22) and Eq. (19), the form of

lump solution can be given

f ¼ 4p1l1xt þ a; g ¼ 4p1l1xt þ b;

u ¼ 4p1l1t

4p1l1xt þ a
; v ¼ 4p1l1t

4p1l1xt þ b
;

v ¼ 4p1l1t

4p1l1xt þ a
þ i

4p1l1t

4p1l1xt þ b
;

ð24Þ

where p1; l1; a; b are arbitrary constants.

4. Lump-one stripe soliton interaction solutions

The auxiliary functions f and g for the lump-one stripe

soliton interaction solutions can be given as

f ¼ n2
3 þ n2

4 þ en5 þ d; g ¼ n2
3 þ n2

4 þ en5 þ �; ð25Þ

where n3 ¼ p3xþ l3t; n4 ¼ p4xþ l4t; n5 ¼ p5xþ l5t and

p3; p4; p5; l3; l4; l5; d; � are undecided constants.

Plugging Eq. (25) into Eq. (20) and Eq. (21), the values

of undetermined constants can be gotten.

Set-1:

a ¼ 1; b ¼ 1

2
; l3 ¼ i; l4 ¼ 1; r ¼ r;

d ¼ 0; � ¼ 0; p3 ¼ p3; p5 ¼
ffiffi

r
p

; l5 ¼ r; p4 ¼ p3i:

ð26Þ

Set-2:

a ¼ 1; b ¼ 1; r ¼ 0; p5 ¼ 0; d ¼ 0; � ¼ 0;

l3 ¼ l3; p3 ¼ p3; p4 ¼ p3i; l4 ¼ �l3i; l5 ¼ l5:
ð27Þ

f ¼ 1 þ e�
ffiffi

r
2

p
xþ3

2
rtþc1 þ e

ffiffi

r
2

p
xþ3

2
rtW1 þ e3rtW2

þ e2
ffiffi

r
2

p
xþ3rtþA23 þ e

ffiffi

r
2

p
xþ9

2
rtþB123 ;

v ¼
R2

ffiffi

r
2

p

ð�e�
ffiffi

r
2

p
xþ3

2
rtþc1 þ e

ffiffi

r
2

p
xþ3

2
rtW1 þ 2e2

ffiffi

r
2

p
xþ3rtþA23 þ e

ffiffi

r
2

p
xþ9

2
rtþB123Þ

1 þ e�
ffiffi

r
2

p
xþ3

2
rtþc1 þ e

ffiffi

r
2

p
xþ3

2
rtW1 þ e3rtW2 þ e2

ffiffi

r
2

p
xþ3rtþA23 þ e

ffiffi

r
2

p
xþ9

2
rtþB123

;

u ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rð2�9R2
2
Þ

p
3
ffiffi

2
p ð�e�

ffiffi

r
2

p
xþ3

2
rtþc1 þ e

ffiffi

r
2

p
xþ3

2
rtW1 þ 2e2

ffiffi

r
2

p
xþ3rtþA23 þ e

ffiffi

r
2

p
xþ9

2
rtþB123Þ

1 þ e�
ffiffi

r
2

p
xþ3

2
rtþc1 þ e

ffiffi

r
2

p
xþ3

2
rtW1 þ e3rtW2 þ e2

ffiffi

r
2

p
xþ3rtþA23 þ e

ffiffi

r
2

p
xþ9

2
rtþB123

;

v ¼
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rð2�9R2
2
Þ

p
3
ffiffi

2
p þ R2iÞð�e�

ffiffi

r
2

p
xþ3

2
rtþc1 þ e

ffiffi

r
2

p
xþ3

2
rtW1 þ 2e2

ffiffi

r
2

p
xþ3rtþA23 þ e

ffiffi

r
2

p
xþ9

2
rtþB123Þ

1 þ e�
ffiffi

r
2

p
xþ3

2
rtþc1 þ e

ffiffi

r
2

p
xþ3

2
rtW1 þ e3rtW2 þ e2

ffiffi

r
2

p
xþ3rtþA23 þ e

ffiffi

r
2

p
xþ9

2
rtþB123

;

ð18Þ
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Inserting these results into Eq. (25) and Eq. (19), we can

get following different lump-one stripe soliton interaction

solutions of the (1?1) dimensional CCGLE.

Case 1: r 6¼ 0; p5 6¼ 0:

f ¼ 4p3ixt þ e
ffiffi

r
p

xþrt; g ¼ 4p3ixt þ e
ffiffi

r
p

xþrt;

u ¼ 4p3it þ
ffiffi

r
p

e
ffiffi

r
p

xþrt

4p3ixt þ e
ffiffi

r
p

xþrt
; v ¼ 4p3it þ

ffiffi

r
p

e
ffiffi

r
p

xþrt

4p3ixt þ e
ffiffi

r
p

xþrt
;

v ¼ ð1 þ iÞð4p3it þ
ffiffi

r
p

e
ffiffi

r
p

xþrtÞ
4p3ixt þ e

ffiffi

r
p

xþrt
;

ð28Þ

where p3; r are arbitrary constants.

Case 2: r ¼ 0; p5 ¼ 0:

f ¼ 4p3l3xt þ el5t; g ¼ 4p3l3xt þ el5t;

u ¼ 4p3l3t

4p3l3xt þ el5t
; v ¼ 4p3l3t

4p3l3xt þ el5t
;

v ¼ ð1 þ iÞ4p3l3t

4p3l3xt þ el5t
;

ð29Þ

where p3; l3; l5 are arbitrary constants.

5. Rogue wave solutions

To gain rogue wave solutions, the bilinear forms of

auxiliary functions f and g can be assumed as follows

f ¼ n2
6 þ n2

7 þ coshðn8Þ þ r; g ¼ n2
6 þ n2

7 þ coshðn8Þ þ f;

ð30Þ

where n6 ¼ p6xþ l6t; n7 ¼ p7xþ l7t; n8 ¼ p8xþ l8t and

p6; p7; p8; l6; l7; l8; r; f are undecided constants.

Inserting Eq. (30) into Eq. (20) and Eq. (21), we can

understand

Set-1:

b ¼ a; p7 ¼ p6i; l7 ¼ �l6i; p6 ¼ p6; l6 ¼ l6;

r ¼ 0; f ¼ 0; r ¼ r; l8 ¼ 0; p8 ¼
ffiffi

r
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1 � aÞ
p :

ð31Þ

Set-2:

b ¼ 0; a ¼ 0; l8 ¼ 0; p8 ¼
ffiffiffi

r

2

r

; r ¼ r;

r ¼ 0; f ¼ 0; p7 ¼ p6i; l7 ¼ l6i; p6 ¼ p6; l6 ¼ l6;

ð32Þ

where p6; l6; r are arbitrary constants.

Plugging above results into Eq. (30) and Eq. (19), we can

acquire different forms of rogue wave solutions of the

(1?1) dimensional CCGLE.

Case 1: a 6¼ 0.

f ¼ 4p6l6xt þ cosh ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r

2ð1 � aÞ xÞ
r

; g

¼ 4p6l6xt þ cosh ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r

2ð1 � aÞ xÞ
r

;

u ¼
4p6l6t þ

ffiffiffiffiffiffiffiffiffiffiffi

r
2ð1�aÞ

q

cosh ð
ffiffiffiffiffiffiffiffiffiffiffi

r
2ð1�aÞ

q

xÞ

4p6l6xt þ cosh ð
ffiffiffiffiffiffiffiffiffiffiffi

r
2ð1�aÞ

q

xÞ
; v

¼
4p6l6t þ

ffiffiffiffiffiffiffiffiffiffiffi

r
2ð1�aÞ

q

cosh ð
ffiffiffiffiffiffiffiffiffiffiffi

r
2ð1�aÞ

q

xÞ

4p6l6xt þ cosh ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r
2ð1�aÞ xÞ

q ;

v ¼
ð1 þ iÞð4p6l6t þ

ffiffiffiffiffiffiffiffiffiffiffi

r
2ð1�aÞ

q

cosh ð
ffiffiffiffiffiffiffiffiffiffiffi

r
2ð1�aÞ

q

xÞÞ

4p6l6xt þ cosh ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r
2ð1�aÞ xÞ

q ;

ð33Þ

where r; p6; l6 are arbitrary constants.

Case 2: a ¼ 0.

f ¼ 4p6l6xt þ cosh ð
ffiffiffi

r

2

r

xÞ; g ¼ 4p6l6xt þ cosh ð
ffiffiffi

r

2

r

xÞ;

u ¼
4p6l6t þ

ffiffiffi

r
2Þ

q

cosh ð
ffiffi

r
2

p

xÞ

4p6l6xt þ cosh ð
ffiffi

r
2

p

xÞ
; v ¼

4p6l6t þ
ffiffi

r
2

p

cosh ð
ffiffi

r
2

p

xÞ
4p6l6xt þ cosh ð

ffiffi

r
2

p

xÞ
;

v ¼
ð1 þ iÞð4p6l6t þ

ffiffi

r
2

p

cosh ð
ffiffi

r
2

p

xÞÞ
4p6l6xt þ cosh ð

ffiffi

r
2

p

xÞ
;

ð34Þ

where r; p6; l6 are arbitrary constants.

6. Images analyses

By taking special values to r, R2 and c1, we can gain the

single soliton of Eq. (1) as shown in Fig. 1. We can know

that a list of single solitons that are symmetric about the

plane x ¼ 0 appear in the x� t plane and the solitons only

have one peak, which can be seen in Fig. 1b. When the

values of t are fixed, it is clear that the solitons with the

same shapes and amplitudes appear periodically and the

same situation doesn’t occur when the values of x are fixed,

which indicates that the single solitons propagate along the

x-axis. Besides, we can see that the single solitons here are

optical solitons from the density plot.

Similarly, as Figs. 2 and 3 showing, the double and three

solitons of Eq. (1) can be given by assigning special values

to r, R2 and cj. We can observe that the double and three

solitons also propagate periodically along the x-axis and

the shapes and amplitudes keep unchange when the values

of t are fixed. However, unlike the single solitons, the

double solitons have two peaks and the three solitons have

Multiple solitons solutions



Fig. 1 Single soliton solution vðx; tÞ with r ¼ � 1
3
; c1 ¼ 1

2
; R2 ¼ �2: ðaÞ 3 D-plot : ðbÞ 2 D-plot :ðcÞ 2 D-plot : ðdÞ density plot

Fig. 2 Double solitons solution vðx; tÞ with r ¼ � 1
3
; c1 ¼ 1

2
; c2 ¼ 1

4
þ i; R2 ¼ 2: ðaÞ 3 D-plot :ðbÞ 2 D-plot : ðcÞ 2 D-plot :

ðdÞ density plot

Fig. 3 Three solitons solution vðx; tÞ with r ¼ � 1
3
; c1 ¼ 1

4
þ i; c2 ¼ 2; c3 ¼ 1

2
;R2 ¼ 1

4
: ðaÞ3 D-plot : ðbÞ 2 D-plot : ðcÞ 2 D-plot :

ðdÞ density plot

Fig. 4 Lump solution vðx; tÞ with a ¼ 1 � 0:4i; l1 ¼ 0:2 þ 0:1i; p1 ¼ 1 � 0:5i; b ¼ �1:5 þ 0:3i: ðaÞ 3 D-plot : ðbÞ 2 D-plot : ðcÞ 2 D-plot :
ðdÞ density plot
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three peaks in the propagation process, which can be seen

in Figs. 2a and 3a. In general, each line in Fig. 2b should

contain two peaks and in Fig. 3b should contain three

peaks. However, we can see that the lines only have two

peaks in Fig. 3b and this is due to the arrangement of the

three solitons in Fig. 3a. To prove this point, we find that

each line in Fig. 3c also contains two peaks.

We can acquire the image of the lump solution as shown

in Fig. 4 by giving a, b, l1 and p1 special values. It seems

that the image of the lump solution is simliar to the single

soliton solution from Fig. 4b, but we also can notice that

the image appears in chunk at the base of the soliton. When

the values of x are fixed, it is obvious that the two lump

solitons appear symmetrically on either side of the line

t ¼ 0 and the function values gradually approache 0 as

t approache 0. Finally, we can know that there exists a

lump region between the two lump solitons.

The image of the lump-one stripe soliton interaction

solution can be given as shown in Fig. 5 by taking special

values to p3 and r. As t gradually approache t ¼ 0 from the

negative half-axis of t, solitons that propagate periodically

along the x-axis appear. While x ¼ 0, soliton is periodic

along the t-axis only if t[ 0. This result also can be drawn

from the density plot.

As Fig. 6 showing, the diagram of the rogue wave

solution can be obtained by giving a, l6, p6 and r. It is

obvious that there is a list of waves with the same ampli-

tudes in the middle of the plane and the amplitudes of the

waves increase for a short period of time, which is exactly

the characteristic of the rogue wave. In addition, we also

can find that at the amplitudes of the waves t ¼ �0:2 and

0.2 are significantly lower than those at t ¼ �10 and 10

from Fig. 6b, which also show that the amplitudes of the

waves increase sharply as they approache the line t ¼ 0.

7. Conclusion

In this article, we gain solitons solutions of the (1?1)

dimensional CCGLE via the transformations of u ¼
ð In f Þx and v ¼ ð In f Þx. On this basis, by taking different

forms of f, the single, double and three solitons solutions

can be obtained. Besides, we also attain the lump and rogue

wave solutions of the (1?1) dimensional CCGLE by

applying the transformations u ¼ ð In f Þx and v ¼ ð In gÞx
and taking different functions forms of f and g. Finally,

through 3D , 2D, density images and proper interpretation,

we can know the features and the contours differences of

different solutions. This article is different from previous

literatures that need to transform partial differential equa-

tions into ordinary differential equations. At the same time,

this article also provides ideas and ways for those equations

that can’t be completely reduced to bilinear forms but

whose solitons solutions are desired.
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