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Abstract: Despite the existence of structure scalars in different geometries and modified theories, their importance of

static and axially symmetric systems for f(T) gravity (where T is responsible for torsional effects) is still questionable. The

novel approach to comprehending the role of structure scalars on static axial symmetric systems in the presence of f(T)

gravity is performed in this manuscript. An extensive structure for static and axially symmetric geometry is presented. The

line element with compatible anisotropic fluid (which serves as the origin for exterior Weyl spacetime) is contemplated.

We initiate by exploring f(T) field equations with the support of non-diagonal tetrads for static axial symmetry. The

structure scalars are determined in our scenario. We attain eight distinct sorts of scalars, which are trace and trace-free

parts. The three distinct scalars YTF1
, YTF2

and YTF3
with f(T) corrections are responsible for the complexity of the system;

whereas, the inhomogeneity of the system is controlled by the three other scalars XTF1
, XTF2

and XTF3
with f(T) correc-

tions. We assemble the hydrostatic equilibrium equations in terms of f(T) gravity and construct two conformal equations

with the support of these equations. In the end, we computed a few analytical solutions in the frame of f(T) gravity. One of

them is about the dense spheroid comprising isotropic pressure, and the other is about anisotropic fluid content dealing with

inhomogeneity. In the first case, our findings indicate that joining with the Weyl exterior geometry is not possible. On the

other hand, the solution associated with anisotropic fluids has smooth joining with the Weyl exterior geometry.
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1. Introduction

The role of structure scalars in comprehending the structure

and evolution of celestial objects is the essence of our

work. The idea is based on the concept of the orthogonal

breakdown of the Riemann curvature tensor (RCrT). Her-

rera et al. [1] evaluated these structure scalars for the first

time by utilizing the technique of orthogonal breakdown of

RCrT in a scenario of general relativity (GR). The aniso-

tropic fluid equipped with dissipation is taken for the

symmetric sphere. The accomplished scalars are five in

number, they are trace and trace-free constituents of the

tensors Xxt, Yxt and Zxt. The impact of these scalars on

the physical attributes of fluid distribution has the utmost

importance. The contribution of each scalar in

understanding the features of fluid components is studied

by Herrera et al. [2] in the presence of electric charge. The

scalar Z is associated with all sorts of dissipative fluxes.

The energy density and inhomogeneities within them are

analyzed with the aid of scalar XT and XTF , respectively.

The impact of density inhomogeneity and anisotropy on the

Tolman mass is investigated by the factor YTF . The rela-

tion with Tolman mass density is proportional to the factor

YT . Herrera [3] enlarged the idea and entitled the name of

complexity factor ðCFÞ to the one of the scalar, i.e., YTF .

He assumed the static sphere as geometry endowed with

anisotropic fluid content. The idea of diminishing CF is

established and the interior solutions for this case are

evaluated in the scenario of GR. The scheme of CF for non-

static anisotropic sphere beholding dissipation is presented

by Herrera et al. [4]. They marked the homologous con-

straint as the simplest way of evolution. The role of

diminishing CF together with cases of dissipation and non-
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dissipation are explained. In the end, the stability analysis

for YTF ¼ 0 is performed. Ospino and Núñez [5] studied

the Karmarkar constraint in the form of structure scalars

attained through Herrera’s strategy. The outcome expres-

sion is the algebraic relation associated with physical

parameters. The approach to attain the static solution for

spheres of embedding class I is implemented with the aid

of the Karmarkar scalar constraint. The dynamic Kar-

markar collapse in case of dissipation to found a new class

of solutions is examined at the end.

GR is the most mathematically alluring, firmly estab-

lished, and suitably composed theory. The precise geo-

metrical explanation along with valid predictions provide

sufficient ground to nominate it as a fruitful theory.

Although it is a remarkable achievement, GR goes short in

attempts to comprehend the most latest cosmological facts.

More precisely, it is unable to forecast a late time rapid

growth and does not adequately characterize the cosmic

growth in the early universe. As a consequence, several

modified theories of gravity (MTsG) have been recom-

mended [6]. Out of many examples, one of the most

appealing, determined, and in essence of geometrization of

gravity is to universalize the affine connection. To imple-

ment the idea, one has to deal with a non-Riemannian

geometric structure [7], where the main features are

because of torsion, curvature, and the factor of non-

metricity. Limiting the preceding non-Riemann geometric

structure in a specific way, one attains distinct formalisms

of gravity. As an illustration, the diminishing torsion and

factor of non-metricity result in notable metric theories, in

which GR is treated as a particular case. On the other side,

the diminishing curvature and the factor of non-metricity

turn out into standard teleparallel gravity (TG) [8]. The

symmetric TG [9] is attained when the curvature and tor-

sion are kept zero and leave the factor of non-metricity

unchanged. In this manuscript, our focus is on the exten-

sion of TG.

The TG name refers to the standard three-parameter

theory. While the TG equivalent to GR can be accepted as

a gauge theory for the translation group which is grounded

on Weitzenböck geometry. In TG, the force similar to

Lorentz force is responsible for gravitational interactions,

where the curvature has a diminishing nature and the tor-

sion is performing the role of force [10]. In TG, the ele-

mental entity is the non-trivial tetrad field ha
x, where the

elemental entity in GR is the metric tensor. Although both

these theories have differences at fundamental points, these

theories supplied the equivalent explanation of gravita-

tional interactions [11]. This demonstrates that torsion and

curvature may be merely two distinct methods of present-

ing the gravitational field, and it additionally endorses the

idea that the energy-momentum (EM) tensor is an

ingredient in both gravitational theories, serving as the

cause of both torsion and curvature in TG and GR,

respectively. It is significant to highlight that the tetrad

framework offers numerous benefits, most notably its

absence of dependency on the equivalence principle and

the resulting validity in investigating quantum issues.

Although in the normal framework of GR, the EM density

for the gravitational field is continually portrayed as a

pseudo tensor, TG appears to offer a more suitable setting

to address the energy issue. The claimed f(T) theories, for

which T corresponds to a torsion scalar, are an extension of

TG equivalent to GR. The characteristics of f(T) theories

are appropriately addressed in [12].

The f(T) field equations correspond to second-order, and

the f(T) gravity incorporates intriguing cosmological solu-

tions that offer several explanations for the universe’s

expanding phases. In this instance of f(T) theory, Atazadeh

and Mousavi [13] set up novel vacuum solutions and

executed extra constraints on constituents of the spherically

symmetric metric. They abolished metric components to

solve the analytical design of the f(T) theory. DeBenedictis

and Ilijić [14] determined the vacuum solutions for f(T)

model in a covariant framework by employing spherical

symmetry. They performed the perturbative examination

for f ðTÞ ¼ T þ a
2

T2 model and found the perturbative

gravitational impacts in this way. Bahamonde et al. [15]

explored the perihelion shift and the photon sphere in the

background of weak f(T) gravity. They implied the per-

turbations up to an order of one to the two distinct geo-

metric structures, i.e., Minkowski and Schwarzschild. The

observations were analyzed and compared with previous

results as found in the literature. Bhatti et al. [16, 17]

investigated the notion of stability for various kinds of

f(T) theory in the context of non-static plane and cylindrical

geometrical structure in detail. They identified the

stable and unstable sections in these properties using the

concept of perturbation. They understood the value of the

adiabatic index in identifying unstable zones as a conse-

quence. Nashed [18] found the f(T) solutions for AdS static

black holes in terms of charged and uncharged. They

employed the power law model which has great signifi-

cance in analysis as per observations. The solutions have a

dependence on the modification terms along with an elec-

tric charge in the presence or absence of a cosmological

constant. They are novel solutions as they do not reduce

GR limitation.

Rotations about the reflection terms, symmetry axis, and

meridional movements are all part of a line element that

describes an axially symmetric arrangement. By accepting

that the source is stationary and omitting the non-diagonal

expressions, the structure is made less complicated. The

Weyl metrics are employed in GR to address the field
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equations for a static, axially symmetric distribution. The

Schwarzschild solution is thought by most to be the only

static, asymptotically flat, and vacuum solution comprising

a regular horizon. The physical constituents of RCrT

contain singularity for every Weyl solution except Zipoy &

Voorhees solution [19]. A rational query is: Which precise

vacuum solution most accurately reflects the change from a

spherical to a non-spherical static, axially symmetric dis-

tribution? The query does not provide a unique remedy.

Spherical symmetry is essential in the investigation of self-

gravitating bodies and consequently provides insight into

how neutron stars, white dwarfs, and black holes originate.

To obtain precise solutions, it is necessary to depart from

spherical to non-spherical geometries in the case of pow-

erful gravitational forces. It is generally accepted that

distinct spacetimes can meet the field equations for various

substantially significant EM tensors.

Nayak [20] explored the relationship between Einstein’s

equations and the inertial forces in the case of axially

symmetric geometry admitting the feature of being sta-

tionary. He utilized the Geroch formulation to explain the

Einstein equations in the form of inertial forces for vacuum

cases. The formulation proposed by Hansen and Winicour

is used to develop the relation in the case of a perfect fluid.

He concluded that the field equations are misrepresented by

the gradients of inertial forces. Dain [21] studied the geo-

metric inequalities in the case of an axially symmetric

black hole. These inequalities portrayed a significant role

in the phenomena of gravitational collapse and the angular

momentum (quasi-local) is properly defined in this way. He

inspected the recent findings in this context and provided

the main concepts of proof. In the end, he provided a

complete list of pending issues. Vollmer [22] explored the

space of the Killing vector for the class of Weyl spacetime

(Which is a sub-class of static and axially symmetric

spacetime) for the field of valence three. He exhibited the

importance of the Killing vector and found that the Killing

tensor field containing valence three is produced by Killing

vector fields in the case of axially symmetric vacuum

geometry. Hernandez-Pastora et al. [23] presented a gen-

eral way to determine the interior solutions to Einstein field

equations having axial symmetry. They deduced that the

resulting solutions of all kinds meet the energy conditions

and can be linked smoothly to exterior Weyl family solu-

tions. They found that the solutions meet the incompress-

ible fluids for delimiting the case of spherical symmetry.

Ospino et al. [24] provided a way to determine all geo-

desics in the case of axially symmetric geometric structure.

They found the Schwarzschild geodesic as a delimiting

case of Kerr metric. The universal Killing tensor along

with its related constant of motion is calculated in this

scenario. They deduced that these results are impactful in

comprehending the nature of celestial objects.

Many authors have worked on the significance of axial

symmetry in the framework of TG and extended TG.

Nashed [25] attainted the definite charged solution using

axial symmetry with structure function of form GðnÞ ¼
1� n2 � 2Amn3 � A2q2n4 in frame of TG equivalent of

GR. By utilizing coordinate transformation, a new kind of

tetrad field is acquired, and the related metric results in

Reissner–Nordström spacetime. Then he investigated the

singularities of spacetime and obtained the compatible

value of energy by taking the gravitational EM. Nashed

[26] employed a universal tetrad field comprising sixteen

indefinite functions to f(T) theory and determined an ana-

lytical solution for vacuum case along with two distinct

integrating constants. He deduced that the resulting field

has axial symmetry and diminishing torsion scalar. He

found the associated metric as a Kerr geometry and

explained that in terms of two distinct Lorentz transfor-

mations acting at the local level. Bahamonde et al. [27]

utilized one of the families of extended TG to determine

solutions of axial spacetimes. The field equations of theory

can be distributed into two components, one is symmetric

and the other is antisymmetric. Specifically, they found the

solutions related to the universality of the Taub-NUT

metric along with the Kerr metric. Until now, no structure

scalars for axial symmetry have been obtained in this

theory employing the strategy of orthogonal division of the

RCrT. The subject of the current investigation is to analyze

the structure scalars for axial symmetry in f(T) gravity.

A class of Fuchsian equations is studied by Beyer and

LeFloch [28]. They are related to the evolution of com-

pressible fluids in cosmological spacetime. They presented

a numerical technique for the singular initial value problem

employing the approach of lines. They used a variety of

numerical approaches, including Runge–Kutta and pseudo-

spectral, to approximate the Fuchsian kind of situation.

Their main idea is a thorough examination of the numerical

error, which originates from two different places. The key

suggestion is to equalize the errors that occur at the discrete

and continuous levels of approximation. They offered some

tests that adequately validated the theoretical findings. In

the end, compressible fluid flows propagating on a Kasner

spacetime are considered using this technique. In the so-

called subcritical domain, they provided numerical evi-

dence of the nonlinear stability of such flows.

Cao et al. [29] studied the evolution of an isothermal

compressible fluid on a future-expanding or future-con-

tracting cosmic background. They handled the two non-

linear hyperbolic balancing laws that make up the Euler

equations controlling such a flow in both one and two

spatial dimensions. They created a finite volume approach

that has second-order spatial accuracy and fourth-order

temporal accuracy. This approach is adequate by design,
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preserving exactly a particular group of solutions, and it

enables them to determine weak solutions incorporating

shock waves. To validate their observations, detailed

numerical experiments are conducted in both one and two

spatial dimensions. Weinberger and Hernquist [30]

described a novel technique in this investigation for mod-

eling multi-phase gas states in cosmic hydrodynamic sim-

ulations. They used the moving-mesh finite volume

approach to deal with the compressible two-fluid hydro-

dynamic equations. Next, they defined operator-split source

expressions for the interchange of mass, energy, and

momentum across the phases. Their application allows for

the handling of both settled and unsettled multi-phase flu-

ids since it can sustain volume fraction irregularities in

pressure equilibrium to machine accuracy employing a

stratified flow framework. They employed the source and

sink components from an interstellar media two-phase

design that was already in existence. Comparing it to its

successful equation of state execution from the point where

they illustrated the significance of this kind of method in

simulations of galaxy development. They remarked on how

it would be beneficial in the next, extensive simulations of

galaxy development.

Our focus is to determine the structure scalars in the

case of f(T) theory for axially symmetric anisotropic fluid

configuration. For which the approach of splitting of RCrT

is implemented. The solutions are identified without

applying any kind of numerical technique. The role of

incompressible fluid in this way has great significance. We

studied their role and discussed its significance in the frame

of f(T) gravity. All these authors made great contributions

to resolving cosmological issues by using numerical sim-

ulations in the case of compressible fluids.

2. Axially symmetric source

The axially symmetric (stationary in nature) spacetimes

feature the Weyl metrics as a subclass. By eliminating the

rotational velocity, one can turn down these metrics from

the Lewis–Papapetrou metric [19]. In GR, the Weyl exte-

rior solutions to the field equations refer to all feasible

static, axially symmetric geometric structures. They can be

portrayed as sequential expansions of adequately stated

relativistic multipole events [31]. As an outcome, a par-

ticular arrangement of these multipoles characterizes a

unique Weyl metric. For this group of spacetimes, it would

be intriguing to look at the structure scalars in the frame of

the f(T) theory. It is represented in spherical coordinates

ðt; r; h;/Þ as a line element of the form

ds2 ¼ �I2ðr; hÞdt2 þ K2ðr; hÞðdr2 þ r2dh2Þ þ L2ðr; hÞd/2:

ð1Þ

The EM tensor in our scenario has the representation of the

form

T ðmÞ
xt ¼ ðqþ pÞuxut þ pgxt þPxt; ð2Þ

where each quantity in Eq. (2) has its own significance in

the EM tensor. The quantity p is assigned to the anisotropic

pressure, gxt is a mathematical notation for metric tensor,

the anisotropic tensor is denoted by Pxt, ux is the four-

velocity and density is designated by q. In a co-moving

frame, ux ¼ ð�I; 0; 0; 0Þ, k ¼ ð0;K; 0; 0Þ and

l ¼ ð0; 0;Kr; 0Þ. These variables fulfill the constraints

Pxt ¼ 2pxykðxltÞ þ ðpyy � pzzÞðlxlt �
hxt

3
Þ

þ ðpxx � pzzÞðkxkt �
hxt

3
Þ;

hxt ¼ gxt þ uxut;

p ¼ pxx þ pyy þ pzz

3
;

which help design f(T) field equations along with structure

scalars in our situation.

3. Formalism of f(T) field equations with non-diagonal

tetrad

TG was an effort by Einstein to merge the idea of gravity and

electromagnetism. Concerning GR, the concept of TG is initi-

ated with a metric based on the manifold M. Later on, the

connection is selected in the way to define the concept of par-

allel transport. This connectionmust be the Lorentz connection

and it is supposed to contain the vanishing curvature and non-

diminishing torsion. To infer the idea, the tetrad field h x
a is

chosen, which behaves as a set of orthonormal bases at every

point ofM. The chosen connection must fulfill the concept of

absolute parallelism, i.e., the constraint of vanishing of the

covariant derivativeofh x
a . In this case, this possibility holds for

the Weitzenböck connection. The theory of TG is the one that

employs tetrads, which are the essential assembling elements

that lead to the Weitzenböck connection. Let us initiate by

revising the elemental concepts of TG [32]. The Greek indices,

x; t; ::: ¼ 0; 1; 2; 3 are employed for spacetime manifolds;

while, the Latin ones a; b ¼ 0; 1; 2; 3 are connected to tangent

space. The constituents of the tetrad field associated with an

assignedmetric with gxt can be computed by gxt ¼ fabh
a
xh

b
t,

where fab ¼ diagð�1; 1; 1; 1Þ is the Minkowski metric. The

Weitzenböck connection, which meets the requirement for

absolute parallelism, serves as the TG connection
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rth
a
x ¼ oth

a
x � �Cp

xth
a
p;

that result into

�Cp
xt ¼ h p

a oth
a
x:

In addition, the torsion tensor is specified by

Tp
xt ¼ �Cp

tx � �Cp
xt ¼ h p

a ðoth
a
x � oxh

a
tÞ:

It has an antisymmetric structure in the two indices x and

t. The action for f(T) theory is specified as

Sf ðTÞ ¼
Z

d4x LM þ f ðTÞ
2j2

� �
jhj; ð3Þ

Here, LM is representation for the matter Lagrangian and j
is symbolized for coupling constant. The mathematical

expression hxt is the dynamical entity of theory and it is

defined by jhj ¼ detðhxt Þ. The contortion tensor

distinguishes the Levi-Civita and Weitzenböck

connections from one another as

Kxt
p ¼ � 1

2
Txt
p þ Ttx

p � T xt
p

� �
;

and it assists in defining the super-potential as

S xt
p ¼ txp

2
Tbt

b �
ttp
2

Tbx
b þ 1

4
Txt
p þ Ttx

p � T xt
p

� �
:

The aforementioned values permit one to set out the f(T)

Lagrangian density, a quantity that’s nothing more than the

torsion scalar, as

T ¼ S xt
p Tp

xt:

The field equations are generated by modifying the action

Eq. (3) in relation to the tetrad as

h p
a S xt

p oxTfTT þ f

4
h t

a þ fT

h
oxðhh p

a S xt
p Þ

þ h p
a Ta

xpS tx
a fT ¼ j2

2
h p

a TtðmÞ
p :

ð4Þ

Since the sole difference between the torsion scalar T and

the Ricci scalar R is a total derivative, so in the covariant

approach we found the interaction of the nature

!xtfTT � T

2
fT � f

T

� �
gxt þ GxtfT ¼ j2T ðmÞ

xt ;

where fT � of
oT, fTT � o2f

oT2 and !xt ¼ S p
xtrpT . The

geometric form of the Einstein tensor is indicated as Gxt.

The theory’s corrections terms are following to the

reassembling of Eq. (4), which appears as

Gxt ¼
j2

fT
T ðTÞ

xt þ T ðmÞ
xt

� �
; ð5Þ

and

T ðTÞ
xt ¼ � 1

j2
!xtfTT � 1

4

�
!fTT � RfT � T

�
gxt

� 	
: ð6Þ

The f ðTÞ ¼ T constraint gives rise to TG equivalent to GR

equations. The emergence of relativistic stars in the frame of

f(T) gravity is discussed by Böhmer et al. [33] by utilizing two

sorts of tetrads, one is diagonal and the other is non-diagonal.

They build up numerous groups of static solutions in this

context. The idea of ‘‘good tetrad’’ was initially employed by

Tamanini and Bohmer in [34], which relates to a tetrad that is

free of added constraints on the functional version of f(T),

thereby making it conceivable to look into a very wide group

of f(T) cosmology. The decision to go with non-diagonal

tetrad has been suggested by researchers, and numerous

features of spherically symmetric geometry have been

discussed (for an overview, we encourage the reader to

study the existing literature, e.g., [35, 36]). The non-diagonal

tetrad matrix of the subsequent form will be utilized in the

present investigation to derive f(T) field equations [33]

ha
x ¼

I 0 0 0

0 Ksinhcos/ Kcoshcos/ � Ksinhsin/

0 Krsinhsin/ Krcoshsin/ Krsinhcos/

0 Lcosh � Lsinh 0

0
BBB@

1
CCCA:

ð7Þ

The inverse of the aforementioned matrix is as follows

h x
a ¼

1
I 0 0 0

0 sinhcos/
K

sinhsin/
Kr

cosh
L

0 coshcos/
K

coshsin/
Kr

�sinh
L

0 �sinhsin/
K

sinhcos/
Kr 0

0
BBBB@

1
CCCCA: ð8Þ

As an outcome, the f(T) field equations listed in Eq. (5)

have non-vanishing constituents if the values of tetrad from

Eqs. (7 and 8) adjoining the values of torsion, contorsion,

and super-potential tensors, we get

G00 ¼
8p
fT



q� I2

8p

�
TfT � f

2
þ fTT

2K2

�
I0

2I
þW1

�
T 0

þ 1

r2

�
Ih
2I

�W2

�
Th

	�
;

ð9Þ

G11 ¼
8p
fT



pxx þ

K2

8p

�
TfT � f

2

þ fTT

2K2r2

�
Ih
I
þW3

�
T 0
	�

;

ð10Þ

G22 ¼
8p
fT



pyy �

K2r2

8p

�
TfT � f

2

� fTT

2K2

�
W4 �

I0

I

�
T 0
	�

;

ð11Þ
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G33 ¼
8p
fT



pzz þ

L2

8p

�
TfT � f

2
� fTT

2K2

�
W5 �

I0

I

�
T 0

þ 1

r2

�
W6 �

Ih
I

�
Th

	�
;

ð12Þ

G12 ¼
8p
fT



pxy þ

fTT

16p

�
W7 �

I0

I

	
Th

�
; ð13Þ

where H ¼ sin/cosh, J ¼ sinhcos/, I0 ¼ oI
or, Ih ¼ oI

oh,

T 0 ¼ oT
or , Th ¼ oT

oh. The Gaa (where a ¼ 0; 1; 2; 3) are enlisted

in [37] and Wa (where a ¼ 1; 2; :::; 7) are f(T) gravity

components enlisted in Appendix A.

4. The conformal scalar and computation of structure

scalars

The characteristics of gravitational curvature and how it

influences spacetime have become more obvious because

of the conformal scalars. They have a variety of uses,

including characterizing the curvature of relativistic bod-

ies, studying gravitational waves, and investigating the

dynamical aspects of the cosmos. The phrases ‘‘electric’’

and ‘‘magnetic’’ are employed in the framework of the

conformal scalars to characterize specific attributes of the

gravitational tidal impacts and refrain from explicitly

stating the availability of electromagnetic fields. The var-

ious constituents of the conformal tensor are called out as

‘‘electric’’ and ‘‘magnetic’’ using analog from electro-

magnetism. Likewise in the way the electromagnetic field

tensor serves the curvature of the electromagnetic field

induced by the occurrence of currents and charges, the

conformal tensor portrays the curvature of spacetime

induced by pure gravitational techniques. Since the con-

formal tensor is traceless and symmetric, it reflects the

electromagnetic field tensor in multiple aspects. The con-

stituents of the electric conformal tensor can be easily

computed from

E.r ¼ C.xrtu
xut;

where C.xrt is symbolized for the conformal tensor. By the

built-in symmetries of spacetime, the magnetic constituent

of the conformal tensor can likewise fade away in an axial

symmetry. Since symmetry of rotation is implied by axial

symmetry, the conformal tensor constituent may become

zero as a result of this symmetry. The constituents of the

conformal tensor, i.e., electric along with magnetic,

describe the tidal influence of anisotropy in a

gravitational field. So, the electric components with

support of constraints of Eq. (2) turn out as

Ext ¼ w1ðkxlt þ lxktÞ þ w2ðkxkt �
hxt

3
Þ þ w3ðlxlt �

hxt

3
Þ;

ð14Þ

where w1, w2 and w2 are three conformal scalars in this

way and they their expressions are enlisted in Appendix B.

They can provide support to express the electric

constituents of the conformal tensors as

E11 ¼ ð2
3
w2 �

1

3
w3ÞK2 ¼ 1

6



2I00

I
� K 00

K
� L00

L
� 3I0K 0

IK

� I0L0

IL
þ
�

K 0

K

�2

þ 3K 0L0

KL

þ 1

r

�
2L0

L
� K 0

K
� I0

I

��

þ 1

6r2



�Khh

K
� Ihh

I
þ 2Lhh

L
þ 3IhKh

IK

� IhLh

IL
þ
�

Kh

K

�2

� 3KhLh

KL

�
;

ð15Þ

E22 ¼ ð2
3
w3 �

1

3
w2ÞK2r2 ¼� r2

6



I00

I
þ K 00

K
� 2L00

L
� 3I0K 0

IK
þ I0L0

IL

�
�

K 0

K

�2

þ 3K 0L0

KL

þ 1

r

�
L0

L
þ K 0

K
� 2I0

I

��
� 1

6

Khh

K
� 2Ihh

I
þ Lhh

L
þ 3IhKh

IK

þ IhLh

IL

�
�

Kh

K

�2

� 3KhLh

KL

�
;

ð16Þ

E33 ¼ �ð1
3
w2 þ

1

3
w3ÞL2 ¼� L2

6K2



I00

I
� 2K 00

K
þ L00

L
� 2I0L0

IL

þ 2

�
K 0

K

�2

þ 1

r

�
L0

L
� 2K 0

K

þ I0

I

��
� L2

6K2r2



�2Khh

K

þ Ihh
I
þ Lhh

L
� 2IhLh

IL
þ 2

�
Kh

K

�2�
;

ð17Þ

E12 ¼ w1K2r ¼ 1

2



I0h
I
� L0

h

L
þ KhL

0

KL
� I0Kh

IK

� 2
K 0Ih
IK

þ LhK
0

LK
� 1

r

�
Ih
I
� Lh

L

��
:

ð18Þ

The constituents rely on each other and fulfill the

subsequent relation
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E11 þ
1

r2
E22 þ

K2

L2
E33 ¼ 0:

The mathematical expression of RCrT can be stated in

terms of the conformal tensor and the Ricci scalar as below

R.
xtr ¼ C.

xtr þ
1

2
R.
tgxr �

1

2
Rxtd

.
r þ

1

2
Rxrd

.
t �

1

2
R.
rgxt

� 1

6
Rðd.tgxr � gxtd

.
rÞ:

ð19Þ

The framework to review these structure scalars has been

established on its own by Herrera et al. [1]. Each of these

traces and traces-free constituents within the three tensors

relates to a distinct relevance. Here, we established these

scalars in the background of f(T) gravity. We employed the

equation of the tensors Xxt and Yxt of the type that is

found in [38] to perform our evaluation contained within

the background of f(T) gravity.

Yxt ¼ Rx.tru.ur; Xxt ¼H RH

x.tru.ur ¼ 1

2
g �a
x. RH

�atru.ur;

where H is the indication for the dual tensor, i.e.,

RH

xt.r ¼ 1
2
g�a.rR �a

xt . By employing these tensors,

illustrates the way the RCrT is possibly displayed. The

Eq. (19) splits in a subsequent style considering the f(T)

field equations

Rxr
t. ¼ Cxr

t. þ
16p
fT

Tðeff Þ½x
½td

r�
.� þ

8p
fT

Tðeff Þð1
3
dx½td

r
.� � d½x½td

r�
.� Þ:

ð20Þ

We attain the splitting of RCrT with support of Eq. (2) and

Eq. (6) within Eq. (20) in this fashion

Rxr
t. ¼ Rxr

ðIÞ t. þ Rxr
ðIIÞt. þ Rxr

ðIIIÞt.;

here

Rxr
ðIÞ t. ¼

16p
fT

�
qu½xu½td

r�
.� þ Ph

½x
½t d

r�
.�

	

þ 8p
fT

�
ð�qþ 3PÞ þ ðTfT � f Þ

8p
� fTT

8p
S xq
t

dtxd
q
qrqTÞ

	
ð1
3
dx½td

r
.� � d½x½t d

r�
.� Þ;

Rxr
ðIIÞt. ¼

16p
fT

�
P½x

½t d
r�
.� þ

1

2p
ðTfT � f

2
d½x½t d

r�
.� � fTT S

½xq
½t dr�.�d

q
qrqTÞ

	
;

Rxr
ðIIIÞt. ¼ 4u½xu½tE

r�
.� � wxr

a wt.bEab:

The orthogonal division of the RCrT, the idea to explore the

structure of spacetime curvature and gravitational impacts in

the backdrop of matter contributions, relies on the conformal

scalars as one of its primary components. The conformal tensor

andother concepts that take into considerationmultiple features

of the curvature and matter-energy composition belong to the

concepts that are separated from theRCrT using the orthogonal

division strategy. Researchers develop greater awareness of the

delicate relationship between matter content and spacetime

curvature alongwith how these two factors interact to influence

the entire behavior of physical structures by including the

conformal scalars into the orthogonal division of theRCrT. The

second dual of the RCrT is referred to asXxt; while, the tensor

Yxt is known as the electric constituent. These two tensors can

be fragmented down into the subsequent components

combining the projection tensor along with the four-velocity

of fluid

Xxt ¼ XTF1
ðkxlt þ ktlxÞ þXTF2

ðkxkt �
hxt
3
Þ

þXTF3
ðlxlt �

hxt

3
Þ þ 1

3
XT hxt;

Yxt ¼ YTF1
ðkxlt

þ ktlxÞ þYTF2
ðkxkt �

hxt
3
Þ þYTF3

ðlxlt �
hxt
3
Þ þ 1

3
YT hxt:

However, subscripts like T and TF act as indicators to

differentiate between trace and trace-free individual

components. The structure scalars are capable of being

expressed in the context of the matter profile of an axially

symmetric object applying the f(T) field Equations (6)

through Eq. (2) in addition to Eqs. (14 and 19) in this way

XT ¼ 8pqþW8; XTF2
¼ �w2 � 4pðpxx � pzzÞ þW10;

ð21Þ
XTF1

¼ �w1 � 4ppxy þW9;XTF3
¼ �w3 � 4pðpyy � pzzÞ þW11;

ð22Þ

where the values for W8, W9, W10 and W11 are enlisted in

Appendix A. On similar way, the strategy is implemented

for tensor Yxt to attain

YT ¼ 4pðqþ 3pÞ þW12; YTF2
¼ w2 � 4pðpxx � pzzÞ þW14;

ð23Þ
YTF1

¼ w1 � 4ppxy þW13;YTF3
¼ w3 � 4pðpyy � pzzÞ þW15;

ð24Þ

where the values for W12, W13, W14 and W15 are enlisted

in Appendix A. The scalars of f(T) featuring the extra

curvature variables outlined prior resolve to those

encountered in TG equivalent to GR. In a nutshell,

employing the standard TG restriction, it is feasible to re-

establish the structure formation and evolution of the uni-

verse as indicated in the TG equivalent to GR framework.

5. The hydrostatic equilibrium equation

along with Weyl equations

The goal is to implement the essential equations in this part

to illustrate an axially symmetric anisotropic fluid that has

Axially symmetric relativistic structures and the Riemann curvature tensor



the characteristic of self-gravitation. Despite considering

that specific examples of these equations (i.e., the field

equations and the Bianchi identities) are not unrelated, we

will nevertheless include them due to the situation at hand,

it can be beneficial to use one subset compared to the other.

These are a number of equations that are originated by the

conservation formula

Txtðeff Þ
;t ¼ 0:

In GR, the covariant derivatives of the RCrT are associated

mathematically with the Bianchi identities. They certainly

have nothing to do with Hydro-Equal equations explicitly.

However, for insight into the association between the

composition of matter and spacetime curvature, Hydro-

Eqili ought to be examined within the context of GR. In the

state of Hydro-Eqili, the pulling force of gravity will be

compensated by the pressure gradient when a fluid (such as

a fluid star or a gas) is at rest or flowing at a constant speed.

Examining how the distribution of mass and the curvature

of spacetime correlate to the restoration of Hydro-Eqili. It

is essential to keep in mind that the Hydro-Equili equation

is unlikely to apply in a dynamic (non-static) instance, in

such a scenario complicated equations incorporating non-

gravitational forces along with time derivatives would be

necessary. The way spacetime curvature and matter

distribution are related in a static (equilibrium) situation

is demonstrated by the Hydro-Eqili equation, which uses

the covariant derivative of the usual as well as f(T) EM

tensor and turns out as

p0
xx þ

I0

I
ðqþ pxxÞ þ

K 0

K
ðpxx � pyyÞ þ

L0

L
ðpxx � pzzÞ

þ 1

r


�
Ih
I
þ 2

Kh

K
þ Lh

L

�
pxy

þ pxy;h � ðpyy � pxxÞ
�
þ Z

ðDÞ
1 ¼ 0;

ð25Þ

pyy;h þ
Ih
I
ðqþ pyyÞ �

Kh

K
ðpxx � pyyÞ �

Lh

L
ðpxx � pzzÞ

þ r


�
I0

I
þ 2

K 0

K
þ L0

L

�
pxy

þ p0
xy

�
þ 2pxy þ Z

ðDÞ
2 ¼ 0;

ð26Þ

here, Z
ðDÞ
1 and Z

ðDÞ
1 are the terms responsible for

contribution of f(T) gravity and their values are assigned

in Appendix B. The ‘‘Ellis–Bruni equations,’’ are employed

to analyze the evolution of anisotropic and inhomogeneous

cosmos, and could be associated with the ‘‘Ellis

equations.’’ Bruni and Ellis [39] devised these equations.

In a perturbed cosmological framework the growth of

shear, density gradients, and vorticity is illustrated by a set

of equations called the Ellis–Bruni equations. They

emerged from the Einstein field equations and Hydro-

Equal equations, and offer a theoretical basis for exploring

how anisotropy and inhomogeneity impact the behavior of

the cosmos at a vast scale. These mathematical models

exert a unique significance for comprehending the

dynamics of the cosmos at sizes where inhomogeneities

at the local level can have an enormous effect [40, 41].

They aid in the analysis of the effects of small-scale density

fluctuations on other observable, large-scale structures and

the cosmic microwave background. They turn out as

w1;h

r
� 1

3
ðw3 � 2w2Þ

0 þ w1

r

�
2

Kh

K
þ Lh

L

�

þ w2

�
1

r
þ L0

L
þ K 0

K

�
� w3

�
1

r
þ K 0

K

�

¼ 4p
3fT

ð3p þ 2qÞ0 þ 4p
fT

ðqþ pxxÞ
I0

I
þ 4p

rfT
pxy

Ih
I

þ 4p
3fT



ðT ðDÞ

11 þ T
ðDÞ
22 þ 2T

ðDÞ
00 Þ0 þ 3ðTðDÞ

11

þ T
ðDÞ
00 Þ I0

I
þ Ih

Ir
T
ðDÞ
12

�
;

ð27Þ

w0
1

r
þ 1

3r
ð2w3 � w2Þh þ w1

�
2

r
þ L0

L
þ 2

K 0

K

�

� w2Kh

rK
þ w3

r

�
Kh

K
þ Lh

L

�
¼ 4p

3rfT

ð2qþ 3pÞh þ
4p
fT

ðqþ pyyÞ
Ih
rI

þ 4p
3rfT



ðT ðDÞ

11 þ T
ðDÞ
22 þ 2T

ðDÞ
00 Þ;h þ 3ðT ðDÞ

11 þ T
ðDÞ
00 Þ Ih

I

þ I0

I
T
ðDÞ
12

�
þ 4p

fT
pxy

I0

I
;

ð28Þ

here, T
ðDÞ
aa (where a ¼ 0; 1; 2; 3) are corrections of theory

stated in Appendix B. The implication of Eqs. (21, 22, 23

and 24) along with Eqs. (27 and 28) turn into

8p
3fT



q0 þ T

0ðDÞ
00

�
¼ 1

r



YTF1;h þ 8ppxy;h �W13;h

þ ðYTF1
þ 8ppxy �W13ÞðlnK2LÞh

�

þ


2

3
ðY0

TF2
þ 8pðpxx � pzzÞ0 �W0

14Þ

þ ðYTF2
þ 8pðpxx � pzzÞ �W14Þ

ðlnKLrÞ0
�
�


1

3
ðY0

TF3
þ 8pðpyy � pzzÞ0 �W0

15Þ

þ 3ðYTF3
þ 8pðpyy

� pzzÞ �W15ÞðlnBrÞ0
�
;

ð29Þ
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8p
3fT



q;h þ T

ðDÞ
00;h

�

¼ � 1

3r



ðYTF2;h þ 8pðpxx � pzzÞ;h �W14;hÞ

þ 3ðYTF2
þ 8pðpxx � pzzÞ �W14ÞðlnKÞh

�

þ 1

r



2

3
ðYTF3;h þ 8pðpyy � pzzÞ;h �W15;hÞ þ ðYTF3

þ 8pðpyy � pzzÞ �W15ÞðlnKLÞ;h
�

þ


ðY0

TF1
þ 8pp0

xy þW0
13Þ þ ðYTF1

þ 8ppxy þW13ÞðlnK2Lr2Þ0
�
;

ð30Þ

where derivatives with respect to h and r are indicated by

subscript h and prime, respectively.

6. Solutions

In the situation of spherical symmetry, it has been

demonstrated that the diminishing of the scalar related to

the trace-free part of Xxt is the prerequisite and sufficient

constraint for the disappearing of the spatial derivative of

the energy density despite the lack of dissipation. This

variable was given the suffix ‘‘inhomogeneity factor’’ (IF)

for a variety of reasons. In a nutshell, the phrase ‘‘IF’’

corresponds to a set of geometrical and physical con-

stituents which is a necessary and sufficient constraint for

the homogeneity of the energy density (in the occurrence of

dissipative flux) [42]. The IF can be determined by the two

equations similar to Eqs. (29 and 30). On a similar side, the

complexity of the system can be visualized by employing

the limitations on the CF . The analysis can be initiated by

utilizing the easiest strategy for the matter content, i.e., the

energy density possesses the constant value and pressure

should be isotropic. By implying this constraint, we yield

XTF1
¼ XTF2

¼ XTF3
¼ 0. This is the indication that the

energy density has a vanishing derivative with respect to

spatial coordinate, i.e., ðr; hÞ. Alternatively, put
XTF1

¼ XTF2
¼ XTF3

¼ 0 () q0 ¼ qh ¼ 0: ð31Þ

Consequently, the demands of energy density in

homogeneous form signifies XTF1
¼ XTF2

¼ XTF3
¼ 0,

which outcomes in

YTF1
¼ �8ppxy þW9 þW13;

YTF2
¼ �8pðpxx � pzzÞ þW10 þW14;

YTF3
¼ �8pðpyy � pzzÞ þW11 þW15:

ð32Þ

The scalars YTFa
a ¼ 1; 2; 3 will be recognized as the CF

based on the aforementioned factors and following the

mathematical framework stated in the scenario of aniso-

tropic sphere [3]. They dissolve in terms of incompressible

fluids corresponding to isotropic pressure. They can addi-

tionally dissolve for inhomogeneous, anisotropic fluids if

these two components combine to negate the three CF . The

analytical solutions corresponding to these ideas will be

presented in the next section. Certain answers will be

supplied in the next section. Keep in mind that we intend to

describe how these models are set up. We have no concern

about supplying solutions that reflect any particular phys-

ically significant compact objects.

6.1. Dense spheroid comprising isotropy

In the context of GR, an examination of incompressible

fluids uncovers interesting features that differ from con-

ventional fluid dynamics. Compared to its classical

equivalent, an incompressible fluid is identified by its

incapacity to vary its density as a consequence of pressure

alterations. The behavior of incompressible fluids brings on

another aspect in the framework of curved spacetime as

defined by Einstein’s equations. Though compressible flu-

ids are the primary topic of a majority of relativistic fluid

dynamics, the inquiry into incompressible fluids sheds light

on the connection between fluid dynamics and spacetime

curvature. In astrophysical circumstances where gravity

forces have an immense effect on fluid behavior, this

scenario has applicability. More specifically, incompress-

ible fluid models aid in gaining knowledge of processes

like fluid flows around enormous compact objects or

accretion onto black holes. The behavior of incompressible

fluids is going to be analyzed within the context of

f(T) gravity. Many researchers found the analytical solu-

tions for incompressible fluids in literature [43, 44].

The three CF vanished for a fluid distribution depicted

by the incompressible isotropic spheroid as discovered and

examined in [37]. At this point, all we accomplish is a

straightforward recurrence. Therefore it generates that

solution is conformally flat from Eqs. (21, 31) and

pxx ¼ pyy ¼ pzz ¼ p, pxx ¼ 0, qeff ¼ q0= constant. The idea

of junction conditions has received a lot of interest in the

inspection of relativistic phenomena. Their significance is

revealed by examining the collapsing fluid and the physics

of the thin shell. The comprehensive examination is per-

formed for internal and external geometries of any compact

object. They are split into two halves and matched

smoothly by a hyper-surface N. For our case, we assume

that the boundary surface is specified by N as below

Axially symmetric relativistic structures and the Riemann curvature tensor



r ¼ r1 ¼ constant: ð33Þ

The conditions demand that the metric functions (i.e., I, K,

L) must be continuous with regard to r and h derivatives.

The implication of the condition by using Eq. (10, 13) with

support of Eq. (33) turn into

p¼N TK2

16p

�
fT � f

T

�
: ð34Þ

Implementing the aforementioned constraints to the

Eqs. (25 and 26) yield into

p þ q0 ¼ �
Z r

0

Z
ðDÞ
1 dr þ f1ðhÞ

I
; ð35Þ

p þ q0 ¼ �
Z h

0

Z
ðDÞ
2 dhþ f2ðrÞ

I
; ð36Þ

where f1ðhÞ and f2ðrÞ are arbitrary functions attain in result
of integration. As is the case, when the aforementioned

conditions along with Eq. (34) are incorporated into

Eqs. (35 and 36), we acquire these outcomes

Iðr1; hÞ ¼
#

p þ q0
¼ constant f1 ¼ constant: ð37Þ

Ultimately, it is feasible to restructure the line element for

configuration of isotropic incompressible and conformally

flat matter as states

ds2 ¼ 1

ðlr2 þ mþ grcoshÞ2

� ðbr2 þ aþ frcoshÞ2dt2 þ dr2 þ r2dh2 þ r2sin2hd/2

�
;

ð38Þ

where the values of metric functions along with different

parameters are as Iðr; hÞ ¼ ½IðrÞ þ rvðhÞ�Kðr; hÞ,
vðhÞ ¼ f cosh, IðrÞ ¼ br2 þ a, Lðr; hÞ ¼ Kðr; hÞrsinh,
while Kðr; hÞ ¼ 1

ðlr2þmþgrcoshÞ. Following is an estimation

of its associated physical constituents

8p
fT

½qþ T
ðDÞ
00 � ¼ 12lm� 3g2; ð39Þ

8p
fT

½p þ T
ðDÞ
11 � ¼ ð3g2 � 12lmÞ �



1� br21 þ alr2 þ mþ grcosh

lr21 þ bmr2 þ aþ frcosh

�
;

ð40Þ

where the Eq. (40) is attain after employing the Eqs. (35

and 37). In which the parameter f1 and f must satisfies

f1 ¼ q0
br2

1
þa

lr2
1
þm and f ¼ br2

1
þa

lr2
1
þm g. The values of f(T) corrections

are assigned in the Appendix B. In the scenario of f(T), the

solutions are matchable to any kind of Weyl exterior only

in the limit of the sphere and it behaves like a Sch-

warzschild solution (interior). The general idea is attained

by soothing the concept of inhomogeneity and isotropy.

6.2. Anisotropic fluid content with inhomogeneity

Anisotropic fluids are fluid contents that demonstrate

multiple pressures in multiple spatial directions. These

fluids incorporate alterations in pressure based on the ori-

entation upon which the fluid is evaluated. Contrary to

isotropic fluids, the pressure is constant in all possible

directions. This perspective is suitable for astrophysical

instances, especially when modeling specific categories of

compact objects like neutron stars. The structure-based

characteristics and gravitational behavior of neutron stars

are significantly influenced by the existence of anisotropic

pressures within them. Anisotropic fluid contents have

been included in gravitational theories using a variety of

mathematical techniques. These are helpful for researchers

in clarifying the characteristics and behavior of these

peculiar occurrences. Herrera and Barreto [45] established

the formulation in detail for the modeling of polytropic

stars incorporating anisotropic pressure in the frame of GR.

The two distinct sorts of polytropic equations are employed

which turn in a similar form to the Lane–Emden equation.

They utilized the Tolman mass to highlight the character-

istics of the build-up model. Ovalle et al. [46] enlarged the

isotropic solutions to the anisotropic in the case of the

sphere by employing the strategy of gravitational decou-

pling. They produced a new class of anisotropic solutions

from the single isotropic class of solutions. The idea of

dynamical stability for the anisotropic composition in the

form of f(R, T, Q) gravity is analyzed by Yousaf et al. [47].

In this section, the solutions for the case of anisotropic

matter and density inhomogeneity fulfilling the zero CF

constraint will be explained. The values for metric func-

tions in this case are

Iðr; hÞ ¼ f1rsinh
g1r2 þ g2

; Kðr; hÞ ¼ 1

g1r2 þ g2

;

Lðr; hÞ ¼ g1r
2 � g2

g1r2 þ g2

� G

�
rcosh

g1r2 � g2

�
:

ð41Þ

For the functions stated in Eq. (41), the f(T) field equations

in the form of physical variables furnish into
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8p
fT

½qþ T
ðDÞ
00 � ¼ 12g1g2 �

ðg1r
2 þ g2Þ2

ðg1r2 � g2Þ2
�
1þ 4g1g2r2cos2h

ðg1r2 � g2Þ2
�

Gzz

G
;

8p
fT

½p þ T
ðDÞ
11 � ¼ �12g1g2 þ

ðg1r
2 þ g2Þ2

3ðg1r2 � g2Þ2
�
1þ 4g1g2r2cos2h

ðg1r2 � g2Þ2
�

Gzz

G
;

8p
fT

½ðpxx � pzzÞ þ T
ðDÞ
11 � T

ðDÞ
33 � ¼ Gzz

4G

ðg1r2 þ g2Þ2

ðg1r2 � g2Þ2
sin2h;

8p
fT

½ðpyy � pzzÞ þ T
ðDÞ
22 � T

ðDÞ
33 � ¼ Gzz

4G

ðg1r2 þ g2Þ4

ðg1r2 � g2Þ4
cos2h;

8p
fT

½pxy þ T
ðDÞ
12 � ¼ �Gzz

2G

rðg1r2 þ g2Þ3

ðg1r2 � g2Þ3
sin2h;

where GðzÞ ¼
�

rcosh
g1r2�g2

�
. The correction terms due to

f(T) gravity are assigned in Appendix B. They are

responsible for raising the IF and anisotropy factor within

the relativistic structures.

A modified theory constructed on the torsion invariant

T is called f(T) gravity; whereas, a theory of gravity con-

structed on the Gauss–Bonnet invariant G and the Ricci

scalar R is called f(G) gravity. Furthermore, f(G) gravity

has been used to study the formation of relativistic compact

objects; while, f(T) gravity has been suggested as an

alternate hypothesis to account for the rapid expansion of

the universe. We have effectively established in our work

that f(T) gravity is a useful tool for the analysis of static

axially symmetric systems. We exhibited an incredible

mathematical depth in our thorough investigation of

structure scalars and in determining particular factors to

system complexity. The study gains great significance from

the construction of hydrostatic fluid equations and con-

formal equations as well as the finding of the analytical

solutions.

A thorough understanding of f(T) gravity and its impli-

cations in astrophysics and cosmology will require more

investigation and study. Based on the proposed approach,

the potential limitations on f(T) gravity comprise the

following:

• Findings from the research could be affected by the

hypotheses or model parameters that were used. To

gain more knowledge of the consistency of the

suggested strategy, a sensitivity analysis might be used

to determine the important parameters and their influ-

ence on the outcomes.

• Even though analytical solutions are found, the empir-

ical usefulness of research can be increased by com-

paring the findings with observational data or

experimental outcomes. A more thorough examination

would address any inconsistencies or restrictions in

matching theoretical expectations with empirical

observations.

• The work emphasizes static axially symmetric systems,

and it could be helpful if the discussion is made about

how the results can be applied to a wider range of

astrophysical or cosmological settings. Examining the

constraints observed when applying the technique to

various system configurations or sizes may provide

helpful insights into the adaptability of the

methodology.

In addition to enhancing the scientific accuracy of the

research, addressing these potential constraints in the

manuscript would promote a deeper understanding of the

limits and real-world applications of the suggested tech-

nique in f(T) gravity.

7. Conclusion

This investigation intends to establish the extended TG

version of an axially symmetric anisotropic model and

determine the structure scalars that correspond to a par-

ticular model. Due to second-order field equations,

f(T) gravity has a considerable benefit compared with

f(R) gravity, because f(R) fourth-order equations can pro-

duce pathologies. In addition to receiving attention and

enabling the reconstruction of many cosmological evolu-

tion’s, this property has contributed to a fast-growing

interest in the research community. To launch our exami-

nation, an overview of an axially symmetric geometry

correlated with a source and a handful of equations that

involve key parameters are supplied. We stated the core

structure of f(T) gravity. The f(T) field equations were then

developed using a non-diagonal tetrad in the context of an

anisotropic distribution. The RCrT was divided in an

orthogonal manner in this frame. We generated a list of

structure scalars employing the aforementioned technique

in this gravity. For a higher level of investigation, the

Hydro-Eqili equation is developed with the aid of conser-

vation law. To boost the degree of significance of structure

scalars, a few differential equations are examined. To end

up with the findings in this theory, we presented a couple of

models.

By contracting with the fluid four vectors, the RCrT is

broken down into its various tensor parts. Since these fluid

vectors are set to fulfill being orthogonal to each other, the

disintegration of RCrT into its trace and trace-free com-

ponents is recognized as orthogonal splitting. We examined

the implications of additional curvature relative to

f(T) gravity on the scalar components developed by the

orthogonal splitting since the RCrT serves to examine

curvature. These scalars, formerly referred to as structure

scalars, are vitally important for interpreting the develop-

ment and design of the cosmos. We explored into these

scalars for axial symmetry under the dark effects of

f(T) gravity. In connection to our query, we evaluated the

Axially symmetric relativistic structures and the Riemann curvature tensor



complete number of such scalars and came up with eight

scalar factors that are significant and in comparison with

spherical symmetric instance [48] where only five scalar

variables are involved. In the current study, we assessed the

significant impact of scalar variables. The Ellis perspective

likewise serves to investigate a couple of differential

equations to determine the factor underlying the inhomo-

geneity of the system. We observed that one of the afore-

mentioned components is the trace-free element that makes

up the second dual of the RCrT to the class of these

components.

• In the case of axially symmetric structure, we attained

two main sets of structure scalars in the frame of f(T)

gravity. One of them is associated with the complexity

of the system, for which the three scalars YTFa
(where

a ¼ 1; 2; 3Þ are acquired after splitting RCrT. The

outcomes of CF are similar as in the case of GR [3].

Meanwhile, the appearance of f(T) corrections terms

slows down the variations process as they exhibit a

repulsive nature. These scalars have a significant

contribution to analyzing the homogeneity along

stability of any relativistic system.

• The other set of scalars XTFa
(where a ¼ 1; 2; 3Þ

corresponds the IF of the system. They are an amalgam

of geometric and physical parameters. They indicate

that the energy density will be homogenous when IF is

vanishing.

• From two classes of the solutions, the model with

isotropy and incompressible matter is matchable to the

Weyl exterior only in the limit of the sphere. While the

model is matchable with any kind of Weyl exterior if

the matter is anisotropic and homogenous.

• All our findings easily turned into GR [49] by imposing

the limit f ðTÞ ! T .

The investigation of incompressible fluids proposes unique

characteristics that deviate from conventional fluid dynam-

ics into the structure of f(T) gravity. In contrast to its

classical corresponding, an incompressible fluid preserves

its density fixed under any sort of pressure. The TG

equivalent of GR, an alternative theory to GR, provides the

basis for f(T) gravity. The foundation of the TG equivalent

of GR is the teleparallel sort of Einstein’s theory, in which

torsion assumes the function of curvature. In this way,

analyzing incompressible fluids supplies insights into the

interplay between spacetime torsion and fluid contents.

Numerous astrophysical consequences occur due to differ-

ent scenarios, specifically those involving strong gravita-

tional fields and compact objects. Although gravitational

theories have received the majority of attention in

f(T) gravity [50, 51], the addition of incompressible fluid

models contributes an additional level of complexity to our

information on both cosmological geometry and fluid

behavior. Considering these laboratories serve as essentials

for the analysis of the f(T) theories, it will be appealing to

discover additional examples of these analytical solutions.

We intend to write on this topic in our upcoming projects.

When the density of a substance shows a recurring

variation or pattern over time and space, it is referred to as

periodic density inhomogeneity. The choice to investigate

the comparatively unknown region of inhomogeneous

exact solutions of field equations led to the investigation of

inhomogeneous cosmologies. By determining and exam-

ining precise solutions for the field equations, the frame-

work will be equipped to tackle any challenge presented by

an inhomogeneous cosmos. Inhomogeneous solutions are

particularly useful for addressing issues like the anisotropy

in cosmic microwave background radiation caused by

density inhomogeneities in the universe, singularity issues,

void evolutions, potential effects of universe expansion on

planetary orbits, and others, as stated by Krasinski [52].

The density inhomogeneities in our case are associated

with the matter distribution.

Relating to periodic density inhomogeneity might

require examining how the suggested design handles sce-

narios in which the density of matter inside the system

exhibits a periodic pattern in light of our work on static

axially symmetric systems and f(T) gravity. The charac-

teristics of the scalars in our system are influenced by the

periodic density fluctuations. The suggested framework

offers insights into how the general design of the system

and characteristics are impacted by these periodic inho-

mogeneities as can be seen in Sect. 4. In our study, we

evaluated the analytical solutions. Therefore, we might

need further methodology to describe the solutions in terms

of periodic density inhomogeneities. The only approach to

represent the behavior graphically and comprehend the

energy density inhomogeneity pattern is to apply the

numerical simulation approach. The periodic density

inhomogeneity might be predicted or observable in cos-

mological or astrophysical scenarios. The results of both

approaches may be connected, so indicating the usefulness

of our framework in various scenarios.

Appendix A

The values for Wa where a ¼ 1; 2; 3; :::; 15 are stated as

below
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W1 ¼ Hðh;/ÞJðh;/ÞðK
0

K
� 1Þ þ H2ðh;/ÞðK

0

K
þ 1

r
þ 1Þ

þ Jðh;/Þsinh
Kr

ðL � L0Þ þ K 0

K

� Hðh;/Þsinh� Jðh;/Þsinh
L

� ðK 0r þ KÞ;

W2 ¼ Hðh;/ÞJðh;/Þcot/ðK
0

K
� 1Þ � Hðh;/ÞJðh;/ÞcothðK

0r

K
þ 1� rÞ

� J2ðh;/Þtan/
Kcos/

ðL � L0Þ � KH2ðh;/Þ
Lsin/

� KrJðh;/Þcosh
L

;

W3 ¼
Hðh;/ÞJðh;/Þcot/

2
� ðK

0

K
� 1Þ

þ H2ðh;/Þcot/
2

� ðK
0

K
þ 1� rÞ þ J2ðh;/Þtan/

2cos/

ðL0 � LÞ þ H2ðh;/ÞK
Lr2sin/

þ Jðh;/ÞrKcosh
L

;

W4 ¼
Hðh;/ÞJðh;/Þ

r
ðK

0

K
� 1Þ þ H2ðh;/ÞðK

0

K
þ 1

r
� 1Þ

þ Jðh;/Þsinh
Kr

ðL � L0Þ � K 0

L
� Hðh;/Þsinhþ Jðh;/Þsinh

L
� ðK 0r þ KÞ;

W5 ¼
K 0

2L
Hðh;/Þsinh� Jðh;/Þsinh

2L
ðK 0r þ KÞ

� Hðh;/ÞJðh;/Þ
r

ðK
0

K
� 1Þ � H2ðh;/Þ

ðK
0

K
þ 1

r
� 1Þ � Jðh;/Þsinh

Kr
� ðL � L0Þ;

W6 ¼ ðK
L
þ Kr

L
Þ � Hðh;/Þcoshþ ðcot/ðK

0

K
� 1Þ

þ cothðK
0r

K
þ 1� rÞÞHðh;/ÞJðh;/Þ þ Hðh;/Þtanhsinh

K
� ðL0 � LÞ;

W7 ¼
Hðh;/ÞJðh;/Þ

r
ðK

0

K
� 1Þ þ H2ðh;/ÞðK

0

K
þ 1

r
� 1Þ

þ Jðh;/Þsinh
Kr

ðL � L0Þ � K 0

L
� Hðh;/Þsinhþ Jðh;/Þsinh

L
� ðK 0r þ kÞ;

W8 ¼ 2

�
ðTfT � f Þ � fTT S xq

t dtxd
q
qrqT

	
;

W9 ¼



TfT � f

2
gxt � fTT S xq

t gxxd
q
qrqT

�
;

W10 ¼
1

3



TfT � f

2
� fTT S xq

t dtxd
q
qrqT

�
;

W11 ¼ � 2

3



ðTfT � f Þ � fTT S xq

t dtxd
q
qrqT

�
;

W12 ¼
�
ðTfT � f Þ � fTT S xq

t dtxd
q
qrqT þ 2fTT SqrqT

þ 2fTT urS q
r rqT

	
þ
�

TfT � f

2
� fTT S xq

t dtxd
q
qrqT

	
;

W13 ¼
1

2

�
TfT � f

2
gxt � fTT S xq

t gxxd
q
qrqT

þ fTT utS
q
xrqT þ fTT uxS q

t rqT þ fTTgxtu
rS q

t rqT

	
;

W14 ¼
1

3

�
TfT � f

2
� fTT S xq

t dtxd
q
qrqT

	
hxt;

W15 ¼


1

2

�
ðTfT � f Þ � fTT S xq

t dtxd
q
qrqT þ 2fTT SqrqT þ 2fTT urSq

rrqT

	

þ
�

TfT � f

2
� fTT S xq

t dtxd
q
qrqT

��
hxt:

Appendix B

Here, the values for corrections Z
ðDÞ
1 , Z

ðDÞ
2 are given below

Z
ðDÞ
1 ¼ I0

I3K2
T
ðTÞ
00 þ

��
I0

I
þ 1

r
þ L0

L

�
1

K4

þ
�

2

K2
þ 1

�
K 0

K3

	
T
ðTÞ
11

�
�

K 0 � 1

Kr

�
T
ðTÞ
22

K3r2

� L0

L3K2
T
ðTÞ
33 þ T

11ðTÞ
;1 þþT

12ðTÞ
;2 ;

Z
ðDÞ
2 ¼ Ih

I3K2r2
T
ðTÞ
00 � Kh

K5r2
T
ðTÞ
11

��
I0

I
þ 3K 0

K

�
1

K4r2

þ
�
2

r
þ K 0

K

�
1

K4r2

	
T
ðTÞ
12

þ
��

Ih
I
þ 3Kh

K

�
1

K4r4
þ Lh

K4Lr4

	
T
ðTÞ
22

� Lh

K2r2L3
T
ðTÞ
33 þ T

22ðTÞ
;2 þþT

21ðTÞ
;1 :

The values for conformal scalars wa where a ¼ 1; 2; 3 are

as

w1 ¼
1

2K2



1

r

�
I0h
I
� L0

h

L
� KhI

0

KI
þ L0Kh

LK
� K 0Ih

KI
þ LhK

0

LK

	

þ 1

r2

�
Lh

L
� Ih

I

��
;

w2 ¼ � 1

2K2



� I00

I
þ K 00

K
þ I0K 0

IK
þ I0L0

IL
�
�

K 0

K

�2

� K 0L0

KL

þ 1

r

�
K 0

K
� L0

L

��

� 1

2K2r2



Khh

K
� Lhh

L
� IhKh

IK
þ IhLh

IL
�
�

Kh

K

�2

þ KhLh

KL

�
;

w3 ¼ � 1

2K2



K 00

K
� L00

L
� I0K 0

IK
þ I0L0

IL
�
�

K 0

K

�2

þ K 0L0

KL

þ 1

r

�
K 0

K
� I0

I

��

� 1

2K2r2



Khh

K
� Ihh

I
þ IhKh

IK
þ IhLh

IL
�
�

Kh

K

�2

� KhLh

KL

�
:

The values for f(T) correction terms T
ðDÞ
aa where a ¼ 1; 2; 3

are given below
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T
ðDÞ
00 ¼ � I2

8p

�
TfT � f

2
þ fTT

2K2

�
I0

2I
þW1

�
T 0 þ 1

r2

�
Ih
2I

�W2

�
Th

	
;

T
ðDÞ
11 ¼ K2

8p

�
TfT � f

2
þ fTT

2K2r2

�
Ih
I
þW3

�
T 0
	
;

T
ðDÞ
22 ¼ �K2r2

8p

�
TfT � f

2
� fTT

2K2

�
W4 �

I0

I

�
T 0
	
;

T
ðDÞ
33 ¼ L2

8p

�
TfT � f

2
� fTT

2K2

�
W5 �

I0

I

�
T 0 þ 1

r2

�
W6 �

Ih
I

�
Th

	
;

T
ðDÞ
12 ¼ fTT

16p

�
W7 �

I0

I

	
Th:
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