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Abstract: The objective of this article is to explore the properties of a spatially homogeneous but anisotropic Bianchi

type-I universe within the framework of f ðR;
P

; TÞ gravity. In this typical, the universe contains bulk viscosity matter, and

R is the Ricci scalar,
P

is the torsion scalar, T is the trace of the stress-energy momentum tensor, and g is an arbitrary

parameter that defines the functional form of f ðR;R; TÞ ¼ Rþ Rþ 2g T . The field equations are solved utilizing the

quadratic deceleration parameter, and a comprehensive analysis is conducted to examine and discuss the influence of

torsion on the physical and kinematic characteristics of the typical in relation to the future evolution of the universe.

Furthermore, we explore the weak energy conditions, dominant energy conditions, and strong energy conditions within our

typical. Our results indicate that the universe is undergoing acceleration, and that this phenomenon is attributed to the

existence of bulk viscosity matter.
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1. Introduction

During the last century, numerous observational studies in

cosmology, such as those conducted by Riess et al.[1],

Eisenstein et al. [2], Astier et al. [3], Naess et al. [4] and

Ade et al. [5], provided accurate evidence of the acceler-

ation of the universe. As a result, researchers began to

utilize various deceleration parameters in their investiga-

tions of the universe’s evolution during its late, current, and

advanced stages. These deceleration parameters include the

linearly varying deceleration parameter (LVDP) [6], the

periodically varied deceleration parameter (PVDP) [7, 8],

the periodic universe with the varying deceleration

parameter of the second degree (PUVDP) [9], the varying

polynomial deceleration parameter [10], to mention a few

[11, 12]. The current research focuses on examining the

evolution of the universe by employing modified versions

of Einstein’s field equations of general relativity, which can

be derived through the Einstein-Hilbert action principle. In

these modified theories, the matter Lagrangian is substi-

tuted with a customizable function, making them a com-

pelling option for addressing the mysteries of the

accelerated expansion of the universe and the dark energy

problem. In 2007, a specific modified field theory was

suggested, wherein the conventional Einstein-Hilbert

action was altered by incorporating an arbitrary function

f ðRÞ, which is combined with the matter Lagrangian den-

sity lm. This theory provides a viable gravitational alter-

native to dark energy and can explain both the early

universe and the late-time cosmic acceleration of the uni-

verse. Numerous studies have been conducted to explore
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and refine this theory [13–26]. In 2011, a new modified

theory of gravity called f ðR; TÞ-gravity was proposed by

Harko et al. [27]. The gravitational component of this

theory is dependent on the Ricci scalar and a function of

the trace of the stress energy–momentum tensor. The the-

ory’s applications include cosmology in scalar-tensor

f ðR; TÞ gravity [28], gravitational wave echoes from

compact stars in f ðR; TÞ gravity [29], and many other

important lines of research, as documented in

Refs,[30–32]. More recently, in 2023, Bakry and Ibraheem

have proposed a new modified theory of gravity called

f ðR;
P

; TÞ-gravity [33]. The field equation for f ðR;
P

; TÞ
gravity is derived by considering the metric-dependent

Lagrangian density lm and employing the Hilbert-Einstein

variational principle. Similarly, the action for f ðR;
P

;TÞ
gravity is described in accordance with the reference [33].

I ¼ 1

16p

Z

X

ffiffiffiffiffiffiffi�g
p

f ðR;
X

; TÞ þ lm

� �
d4x; ð1Þ

where g ¼ det jgiaj, lm is the matter Lagrangian density,

The equations governing f ðR;
P

; TÞ-gravity can be

derived by taking the variation of the action in Eq. (1) with

respect to the metric tensor. A detailed explanation of this

method can be found in Bakry and Ibraheem’s work [33].

Rab
of

oR
þ
X

ab

of

oR
� 1

2
gabf þ ðgabrcrc

�rarbÞ
of

oR
� of

oR

� �

¼ 8pTab þ ðTab þ PgabÞ
of

oT
: ð2Þ

In the context of this article, our assumption that

f ðR;
P

; TÞ-gravity is given by,

f ðR;
X

; TÞ ¼ Rþ
X

þ2gT ; ð3Þ

where g is an arbitrary parameter.

In this case, the field equations are given as

Rab þ
X

ab

� 1

2
gabðRþ

X
Þ ¼ 2ð4pþ gÞTab þ ggabðT

þ 2PÞ;
ð4Þ

where,

Rac ¼
b
ac

� �

; b

b
ab

� �

; c

þ k
ac

� �
b
kb

� �

� k
ab

� �
b
kc

� �

;

ð5Þ
R ¼ gacRac; ð6Þ

and the torsion tensor and torsion scalar are,

X

ac

¼ b wb
ac;b � wb

ab;c

� �
þ b2 wk

acw
b
kb � wk

abw
b
kc

� �
; ð7Þ

X
¼ gac

X
ac; ð8Þ

The comma symbol (,) and the semicolon symbol (;)

represent ordinary partial differentiation and covariant

differentiation, respectively. The contortion tensor is

defined as follows [34]:

wc
ab ¼ Cc

ab �
c
ab

� �

; ð9Þ

where the affine connection Cc
ab is defined as [34]

Cc
ab ¼ kci kia;b ¼ �kiak

c
i;b; ð10Þ

where k l
i is a tetrad vector defined in the conventional

Absolute Parallelism –space ðAPÞ.
The covariant component of k l

i is defined as,

k c
i ki a ¼ d c

a ; k
a
i kj a ¼ di j: ð11Þ

The torsion tensor is defined as [35],

Kc
ab ¼ Cc

ab � Cc
ba ¼ �K c

ba; ð12Þ

The parameterized contortion tensor wc
ab is given by

[33],

wabc ¼
1

2
ðKabc þ Kbca þ KcbaÞ: ð13Þ

By utilizing the foundational elements of the AP-space,

it is possible to define a second-order symmetric tensor and

a square line element as follows [36–38]:

gab ¼ gijkiakjb and ds2 ¼ gabdx
adxb; ð14Þ

where gij = diag (? 1, - 1, - 1, - 1).

The general linear connection is defined as [34, 39]

rc
ab ¼ c

ab

� �

þ bwc
ab: ð15Þ

The interaction between torsion and space–time

generated by the background field can be understood

through the connection (15), where b 6¼ 1 is a

dimensionless parameter. The COW experiment

conducted by Wanas et al. provided insight into the

physical interpretation of this parameter. The values of b

are determined by the results of this experiment and are

given in [39].

b ¼ n

2
a c; ð16Þ

where n ¼ 0; 1; 2; 3; :::, a and c is the natural number, the

fine structure constant, and the free parameter, respectively.

The curvature tensor is given by [34]
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B
e
abc ¼ re

ac;b �re
ab;c þrk

acre
kb �rk

abre
kc; ð17Þ

This gives,

B
e
abc ¼ Re

abcfg þ
Xe

abc

; ð18Þ

B ¼ gacBac ¼ Rfg þ
X

ð19Þ

From Eqs.(3) and (19), we can rewrite f ðR;
P

; TÞ as

follows

f ðR;
X

; TÞ ¼ f ðB;TÞ ð20Þ

where B represents the effect of the gravitational action

with torsion.

When b ¼ 0ðie:R ¼ 0Þ, the field equations presented in

(4) describe the behavior of f ðR;R; TÞ-gravity, where b\0

corresponds to a strong gravitational field, while b[ 1

represents a strong anti-gravitational field, as noted in [33].

2. Some important mathematical accounts

In this section, we will define the tetrad field k l
i for the

spatially homogeneous LRS Bianchi type-I. In the curva-

ture coordinates, the tetrad field in the coordinate

ðx0; x1; x2; x3Þ ¼ ðt; x; y; zÞ is given by,

k l
i ¼ diag 1; 1=A; 1=B; 1=Bð Þ ð21Þ

where A and B are undetermined functions of only t.

Using (11) and (21), one gets

kil ¼ diag 1; A; B; Bð Þ ð22Þ

Substituting from (22) into (14), one obtains

gab ¼ diag 1; �A2; �B2; �B2
	 


: ð23Þ

Substituting from (23) into (14), we get the line element

ds2 ¼ dt2 � A2 dx2 � B2ðdy2 þ dz2Þ: ð24Þ

The scale factor a is defined as,

a3 ¼ V ¼ AB2; ð25Þ

where V is a spatial volume.

Calculating the Christoffel symbols using the metric

(24), one gets

0

1 1

� �

¼A
dA

dt
;

0

2 2

� �

¼
0

3 3

� �

¼ B
dB

dt
;

1

0 1

� �

¼
1

1 0

� �

¼ 1

A

dA

dt
;

2

0 2

� �

¼
2

2 0

� �

¼
3

0 3

� �

¼
3

3 0

� �

¼ 1

B

dB

dt
:

ð26Þ

The non-vanishing components of the general

connection Ca
bc are given by

C1
10 ¼

1

A

dA

dt
;C2

20 ¼ C3
30 ¼

1

B

dB

dt
; ð27Þ

Also, the contortion tensor is given by,

W0
11 ¼ �A

dA

dt
; W0

22 ¼ W0
33 ¼ �B

dB

dt
;

W1
01 ¼ � 1

A

dA

dt
; W2

02 ¼ W3
03 ¼ � 1

B

dB

dt
:

ð28Þ

The non-vanishing components of the torsion tensor

Kc
ab are,

K1
10 ¼ �K1

01 ¼
1

A

dA

dt
; K2

20 ¼ �K2
02 ¼ K3

30 ¼ �K3
03

¼ 1

B

dB

dt
:

ð29Þ

It follows from Eqs. (12) and (13) that the contortion

tensor has only one independent contraction. Specifically,

we can express this contraction as follows:

Ka ¼ Kb
ab ¼ wb

ab ¼ �Kb
ba ð30Þ

where Ka is called a torsion vector.

The torsion vector is obtained as Ka is

K0 ¼ Kt ¼ � 1

A

dA

dt
þ 1

B

dB

dt

� �

ð31Þ

3. Field equations and solution

Bulk viscous fluid is a type of fluid that exhibits both

viscosity and volume elasticity. In the field of cosmology,

it is often chosen as a model for the dark energy component

of the universe. Unlike other models, such as the cosmo-

logical constant, bulk viscous fluid allows for the possi-

bility of an evolving energy density. One of the main

reasons for choosing bulk viscous fluid in cosmology is its

ability to account for the accelerated expansion of the

universe. The presence of viscosity in the fluid introduces

dissipative effects, which can act as a driving force for the

accelerated expansion. This is in contrast to other models

where the acceleration is attributed to a constant energy

density. The energy momentum tensor for bulk viscous

fluid is considered in the form [40–42]
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Tab ¼ ðqþ PÞuaub � gabP; ð32Þ

The bulk viscous pressure

P ¼ P� 3fH; ð33Þ

where the isotropic pressure P ¼ cq, 0\c\1, f is a

coefficient of bulk viscosity and ua ¼ da0 is the four

velocity vector satisfying uaua ¼ 1:

From (32), the trace of energy momentum tensor is

given as

T ¼ q� 3P: ð34Þ

Substituting from (26), (28), (32) and (33) into the field

Eqs. (4), one gets

ðb� 1Þ2

B2

dB

dt

� �2

þ 2ðb� 1Þ2

AB

dA

dt

� �
dB

dt

� �

¼ ð8pþ 3gÞq� gP; ð35Þ

2ðb� 1Þ
B

d2B

dt2

� �

� ðb� 1Þ2

B2

dB

dt

� �2

¼ ð8pþ 3gÞP� gq;

ð36Þ

ðb� 1Þ
A

d2A

dt2

� �

þ ðb� 1Þ
B

d2B

dt2

� �

� ðb� 1Þ2 _A _B

AB

dA

dt

� �
dB

dt

� �

¼ ð8pþ 3gÞP� gq: ð37Þ

Equations (35–37) consist of three equations involving

four unknowns:A; B; q; and P: Therefore, to solve these

equations, an additional equation is required. In this regard,

we employ the quadratic deceleration parameter, as

discussed in the paper [9].

qðtÞ ¼ ð8n2 � 1Þ � 12nt þ 3t2; ð38Þ

where n[ 0 is an arbitrary constant. The relation between

the deceleration parameter and the Hubble parameter is

qðtÞ ¼ dH�1

dt � 1 [43],

Thus, Eq. (38) gives

HðtÞ ¼ _a

a
¼ 1

tð2n� tÞð4n� tÞ : ð39Þ

From the above equation, we obtain

aðtÞ ¼ tð4n� tÞ
ð2n� tÞ2

 !1=8n2

; ð40Þ

Using (25) and (40), the values of A; B and their

derivatives are given by,

AðtÞ ¼ tð4n� tÞ
ð2n� tÞ2

 !1=4n2

;
dA

dt

¼ 2

ð2n� tÞ3
tð4n� tÞ
ð2n� tÞ2

 ! 1

4n2
�1

; ð41Þ

BðtÞ ¼ tð4n� tÞ
ð2n� tÞ2

 !1=16n2

;
dB

dt

¼ 1

2ð2n� tÞ3
tð4n� tÞ
ð2n� tÞ2

 ! 1

16n2
�1

; ð42Þ

d2A

dt2
¼ 8

ð2n� tÞ4
tð4n� tÞ
ð2n� tÞ2

 ! 1

4n2
�1

ð1� 4n2Þ
ð2n� tÞ2

tð4n� tÞ
ð2n� tÞ2

 !�1
0

@

1

A;

ð43Þ

d2B

dt2
¼ 1

4ð2n� tÞ4
tð4n� tÞ
ð2n� tÞ2

 ! 1

16n2
�1

ð1� 16n2Þ
ð2n� tÞ2

tð4n� tÞ
ð2n� tÞ2

 !�1
0

@

1

A:

ð44Þ

Therefore, the metric (24) takes the following form

ds2 ¼ dt2 � tð4n� tÞ
ð2n� tÞ2

 !1=2n2

dx2 � tð4n� tÞ
ð2n� tÞ2

 !1=8n2

ðdy2

þ dz2Þ:
ð45Þ

Solving the field Eqs. (35–37), we get

q ¼ 1

ð8pþ 3gÞ2 � g2
2ð4pþ gÞðb� 1Þ2

B2

dB

dt

� �2
 

;

þ 2ð8pþ 3gÞðb� 1Þ2

AB

dA

dt

� �
dB

dt

� �

þ 2gðb� 1Þ
B

d2B

dt2

� �!

ð46Þ

�P ¼ 1

ð8pþ 3gÞ2 � g2
gðb� 1Þ2

B

1

B

dB

dt

� �� �2

þ 2

A

dA

dt

� �
dB

dt

� � 

;

þð8pþ 3gÞðb� 1Þ
B

2
d2B

dt2

� �� �

þ ðb� 1Þ
B

dB

dt

� �2
!

ð47Þ

and the pressure is given by,

P ¼ cq ¼ c

ð8pþ 3gÞ2 � g2
2ð4pþ gÞðb� 1Þ2

B2

dB

dt

� �2
 

þ 2ð8pþ 3gÞðb� 1Þ2

AB

dA

dt

� �
dB

dt

� �

þ 2gðb� 1Þ
B

d2B

dt2

� �!

:

ð48Þ

Also, the bulk viscous coefficient is,
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f ¼ ðP� PÞ=3H: ð49Þ

Figure 1, indicates that the quadratic deceleration

parameter q is a positive value at t ¼ 0 (Big Bang) with

the acceleration of the universe, and that it moved to a

negative value until it reached t ¼ 1 (Big Rip), then it

reached the stage of a Big Crunch at t ¼ 2. For more

details, see Ref.[9]. From the observational results (Cunha

2009), the present value of the deceleration parameter is

q ¼ �0:73. Accordingly, we take tday ¼ 0:35 as a unit

representing the now time( where one unit = 39.4 Gyr,

tday ¼ 13:8 Gyr), with qday ¼ �0:73.Fig. 2 indicates that

the scale factor a ¼ 0 at t ¼ 0 (Big Bang) with the

acceleration of the universe, and that it became infinite at

t ¼ 1(Big Rip at tBR ¼ 39:4 Gyr); then it reached the stage

of the Big Crunch at t ¼ 2, and a ¼ 0. For more details, see

Ref.[9].

The results from using the quadratic deceleration

parameter and its agreement with astronomical observa-

tions have been studied previously; see Ref.[9]. As we

mentioned previously, the aim of this paper is to study the

behavior of the universe in different fields. In f ðR;
P

; TÞ-
gravity, we can define three different fields: neutral gravity

ðb ¼ 0Þ, strong gravity field ðb ¼ �1Þ, and strong anti-

gravity field ðb ¼ 2Þ; please refer to Ref. [33]. This theory

also includes other theories as a special case. For example,

when ðb ¼ g ¼ 0Þ, the theory refers to f ðRÞ gravity; when
ðg ¼ 0Þ, it refers to a gravitational field with torsion, see

ref.[44], and when ðb ¼ 0Þ, it gives f ðR; TÞ,see Ref [27].

Figure 3 plots the relationship between the energy

density q and t with three values of b: In the case f ðR; TÞ-
gravity ðb ¼ 0Þ and the strong gravity field ðb ¼ �1Þ, the
energy density is positive throughout the universe. But at

the strong anti-gravity field ðb ¼ 2Þ, the energy density

changes from a negative value at the Big Bang ðt ¼ 0Þ to a

positive value at the Big Rip ðt ¼ 1Þ, then it returns to a

negative value again at the Big Crunch ðt ¼ 2Þ. Figure 4

depicts the behavior of the bulk viscous pressure P with

three values of b. In the case f ðR; TÞ-gravity ðb ¼ 0Þ and

the strong gravity field ðb ¼ �1Þ, the bulk viscous pressure

density changes from a positive value at the Big Bang

ðt ¼ 0Þ to a negative value at the Big Rip ðt ¼ 1Þ, then it

returns to a positive value again at the Big Crunch

ðt ¼ 2Þ.At the strong anti-gravity field ðb ¼ 2Þ, the bulk

viscous pressure is negative throughout the universe. Fig-

ures 3, 4, 5 and 6 allow a comparison of the theories under

study with the evolution of the behavior of the universe.

Figures 7, 8 and 9 also give us an idea of the extent to

which the energy conditions are met for the typicals pre-

sented in the different fields.

Figure 5 represents the behaviour of the isotropic pres-

sure P against cosmic time t. In the case of neutral gravity

field ðb ¼ 0Þ and the strong gravity field ðb ¼ �1Þ, the
energy density is positive throughout the universe. But at

the strong anti-gravity field ðb ¼ 2Þ, the energy density

changes from a negative value at ðt ¼ 0Þ to a positive value
at ðt ¼ 1Þ, then it returns to a negative value again at

ðt ¼ 2Þ. Figure 5 represents the behaviour of the isotropic

pressure P against cosmic time t. Figure 6 plots the
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Fig. 1 q versus cosmic time
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Fig. 3 q versus cosmic time with g ¼ 1 and different values of b:
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dynamics of the bulk viscous coefficient f against cosmic

time t. In the case ðb ¼ 0Þ and ðb ¼ �1Þ, the bulk viscous

coefficient changes from a negative value at ðt ¼ 0Þ to a

positive value at ðt ¼ 1Þ, and then it enters to a negative

value again at ðt ¼ 2Þ. But at ðb ¼ 2Þ, the bulk viscous

coefficient is positive at t 2 ½0; 1½ and it is negative at

t 2�0; 2�.

0.0 0.5 1.0 1.5 2.0
500

0

500

1000

t

P

b 0
ـــــ b 1

b 2

Fig. 4 P versus cosmic time with g ¼ 1 and different values of b:
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Fig. 5 P versus cosmic time with g ¼ 1; c ¼ 1=2 and different values
of b
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of b
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0.0 0.5 1.0 1.5 2.0
500

0

500

1000

t

P

b 0
ـــــ b 1

b 2

Fig. 9 q� P versus cosmic time with g ¼ 1; c ¼ 1=2 and different
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4. The energy conditions

Energy conditions serve as boundary conditions that ensure

the positivity of the energy density, as proposed by Ashton

[45] and Hoehler [46]. However, these conditions do not

necessarily reflect physical reality. The violation of strong

energy conditions, which is evident in the observable

effects of dark energy, is the most recent illustration of this

fact. There are three key energy conditions that are par-

ticularly noteworthy:

(i) Weak energy condition

ðWECÞ : qþ P� 0; q� 0: ð50Þ

(ii) Null energy condition

ðNECÞ : qþ P� 0 ð51Þ

(iii) Strong energy condition

ðSECÞ : qþ 3P� 0 qþ P� 0: ð52Þ

(iv) Dominant Energy Condition

ðDECÞ : q� P� 0; q� 0 ð53Þ

Figures 7 and 8 depict the dynamics of ðqþ PÞ and

ðqþ 3PÞ against cosmic time t. In case f ðR; TÞ-gravity
ðb ¼ 0Þ and the strong gravity field ðb ¼ �1Þ;ðqþ PÞ and
ðqþ 3PÞ are positive throughout the universe. In the case

of the strong anti-gravity field ðb ¼ 2Þ, they are a negative

value at the Big Bang ðt ¼ 0Þ, come into a positive value at

a Big Rip ðt ¼ 1Þ, and then enter a negative value again at

the Big Crunch ðt ¼ 2Þ. Figure 9 shows the behavior of the

dynamics of ðq� PÞ against cosmic time t. In case ðb ¼ 0Þ
and ðb ¼ �1Þ; we see that ðq� PÞ is a negative value at a
ðt ¼ 0Þ, enters a positive value at ðt ¼ 1Þ, and then comes

into a negative value again at ðt ¼ 2Þ. Also, in case

ðb ¼ 2Þ, it is positive throughout the universe.

The results may be obtained from Table 1 and 2 as

follows.

The results presented in Table 1 are discussed previ-

ously when illustrating Figs.4, 5 and 6.

5. The behaviour of the function f ðR;
P

; TÞ

The values of the Ricci scalar R, the torsion scalar
P

and

the trace of the matter source T are obtained as

R ¼� 2

A
ðÞðÞ þ 4

B

d2B

dt2

� ��

;

þ 4

AB

dA

dt

� �
dB

dt

� �

þ 1

B2

dB

dt

� �2
! ð54Þ

X
¼ 2b

A

d2A

dt2

� �

þ 4 b

B

d2B

dt2

� �

� 4bðb� 2Þ
AB

dA

dt

� �
dB

dt

� ��

;

� bðb� 2Þ
B2

dB

dt

� �2
!

ð55Þ

T ¼ 1

ð8pþ 3gÞ2 � g2

2ð4pþ gÞðb� 1Þ2

B2

dB

dt

� �2

þ 2ð8pþ 3gÞðb� 1Þ2

AB

dA

dt

� �
dB

dt

� � 

;

þ 2gðb� 1Þ
B

d2B

dt2

� �

� 3gðb� 1Þ2

B

1

B

� �
dB

dt

� �2

þ 2

A

dA

dt

� �
dB

dt

� �

� 3ð8pþ 3gÞðb� 1Þ
B

2
d2B

dt2

� �� �

þ ðb� 1Þ
B

dB

dt

� �2
!

ð56Þ

Accordingly,

f ðR;
Y

; TÞ ¼ Rþ Rþ 2g T

¼

2 ðb� 1Þ
A

d2A

dt2

� �

� 4 ðb� 1Þ2

AB

dA

dt

� �
dB

dt

� �

� ðb� 1Þ2

B2

d2B

dt2

� �

þ

2g

ð8pþ 3gÞ2 � g2

2ð4pþ gÞðb� 1Þ2

B2

dB

dt

� �2

þ 2ð8pþ 3gÞðb� 1Þ2

AB

dA

dt

� �
dB

dt

� �

þ

2gðb� 1Þ
B

d2B

dt2

� �

� 3 g ðb� 1Þ2

B

1

B

dB

dt

� �� �2

þ 2

A

dA

dt

� �
dB

dt

� �

�

3 ð8pþ 3gÞðb� 1Þ
B

2
d2B

dt2

� �� �

þ ðb� 1Þ
B

dB

dt

� �2

Þ

0

B
B
B
B
B
B
B
B
B
B
@
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C
C
C
C
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Figure 10 shows the behaviour of the function

f ðR;R; TÞ ¼ Rþ Rþ 2g T . In case ðb ¼ 0Þ, they are a

positive value at ðt ¼ 0Þ, come into a negative value at

ðt ¼ 1Þ, and then enter a positive value again at ðt ¼ 2Þ. In
the case of the strong gravity field ðb ¼ �1Þ; the function

f ðR;R; TÞ is positive throughout the universe. In the case of
the anti-gravity field ðb ¼ 2Þ, the behaviour of the function
f ðR;R; TÞ is negative throughout the universe (Fig. 11)

6. Non-singularity conditions of our cosmological

typical

The modified Raychaudhuri equation, which was intro-

duced by Wanas and Bakry in 2009, represents a general-

ized form of the original Raychaudhuri equation [47]. It is

widely utilized in the study of the singularity problem in

cosmology. The modified Raychaudhuri equation takes

into account the proposed interaction between the quantum

spin of a moving elementary particle and the torsion of the

underlying gravitational field. The objective is to investi-

gate the influence of torsion on the existence of an initial

singularity in our proposed cosmological typicals. For this

purpose, a modified version of the Raychaudhuri equation

that incorporates the torsion term can be defined as follows

[48].

dh
ds

¼ 2ðx2 � r2Þ � 1

3
h2 � Za Zb Bba þ b Za Zl

jjbK
b
al;

ð58Þ

where h is the expansion scalar, x is the rotation scalar, r is

the shear scalar, and Za ¼ d xa

d s are the velocity components

and the general parameterized absolute derivatives defined

earlier as [34]

Aajjb ¼ Aa;b � Ac rc
ab; ð59Þ

where rc
a b is defined by Eq. (15). When b is equal to zero,

Eq. (57) is simplified to the original Raychaudhuri

equation.

Upon a lengthy but uncomplicated calculation, the

modified Raychaudhuri equation provided in (58) is

derived as follows:

d h
d s

¼ ð1� bÞ 1

A

d2A

dt2

� �� �

þ 2

B

d2B

dt2

� ��

� 1

A2

dA

dt

� �� �2

þ 2

B2

dB

dt

� �2
!

:

ð60Þ

The existence of the initial singularity is primarily

determined by the solution of Eq. (60), which depends on

the sign of the term on the left-hand side (dh=ds). This
conclusion can also be inferred utilizing the standard

conventions of the singularity theorems GR. In essence, the

defining feature of singular typicals is their dh=ds\0.

7. Conclusions

We have reconnoitered the LRS Bianchi Type I with an

anisotropic bulk viscosity matter cosmological typical in

the presence of bulk viscosity in the scope of f ðR;
P

;TÞ
gravity. Resorting to the choice of f ðR;

P
; TÞ, we have

presented three cosmological typicals. The exact solutions

of the modified Einstein’s field equations f ðR;
P

; TÞ have
been obtained under the choice of the quadratic decelera-

tion Parameter. The comments of the three typicals are as

follows: The typical ðb ¼ 0Þ in the scope of f ðR;
P

;TÞ
gravity leads to f ðR; TÞ gravity. The typical ðb ¼ �1Þ in

the framework of f ðR;
P

; TÞ represents the strong gravi-

tational field with torsion, while at ðb ¼ 2Þ it represents the
strong anti-gravitational field with torsion. The three typi-

cals presented here are accelerating, and the expanding

universe typical follows the quadratic deceleration

Parameter. Energy density is a positive value in the cases

ðb ¼ 0; �1Þ, and also q ! 1 when t ¼ 0; 1; 2:. In case

ðb ¼ 2Þ, energy density increases when t 2 ½0; 1 �, and it

decreases at t 2�0; 2 �.The coefficient of bulk viscosity f is
a negative value at t 2 ½0; 1 �, while it is a positive value at
t 2�0; 2 � in both cases ðb ¼ 0; �1Þ. The bulk viscous

pressure P decreases when t 2 ½0; 1 �, and it increases at

t 2�0; 2 �. Energy conditions WEC, SEC, and NEC are

satisfied for the typicals (b ¼ 0 and b ¼ �1), while DEC

Table 1 Evolution behavior of the bulk viscous pressure, the isotropic pressure and the coefficient of bulk viscosity

Typical P Interval P Interval f Interval

b ¼ 0 þ ! �� ! þ t 2 ½0; 1½
t 2�1; 2�

þ t 2 ½0; 2� �
þ

t 2 ½0; 1½
t 2�1; 2�

b ¼ �1 þ ! �
� ! þ

t 2 ½0; 1½
t 2�1; 2�

þ t 2 ½0; 2� �
þ

t 2 ½0; 1½
t 2�1; 2�

b ¼ 2 � t 2 ½0; 2� � ! þ
þ ! �

t 2 ½0; 1½
t 2�1; 2�

þ ! �
þ ! �

t 2 ½0; 1½
t 2�1; 2�

3040 A Alkaoud et al.



are violated for these typical. Also, we have observed that

all the energy conditions are violated for the typical b ¼ 2.

The function f ðR;
P

; TÞ ¼ Rþ
P

þ2gT is a positive

value in the cases ðb ¼ �1Þ, and it is a negative value in

the cases ðb ¼ 2Þ, while it decreases when t 2 ½0; 1 �, and
it increases at t 2�0; 2 �. The f ðR;

P
;TÞ-gravity is a

modified theory of gravity that incorporates both the Ricci

scalar (R) and the trace of the energy–momentum tensor

and torsion scalar in the gravitational action. This theory

offers several distinctive features compared to other grav-

itational theories:

Extension of General Relativity: The f ðR;
P

; TÞ-gravity
extends the framework of General Relativity by consider-

ing additional terms in the gravitational action. By

including the trace of the energy–momentum tensor and

torsion tensor, it accounts for the effects of matter and

torsion on the geometry of space–time. Dynamic Nature:

Unlike many other gravitational theories, the f ðR;
P

; TÞ-
gravity allows for a dynamic gravitational constant. The

gravitational coupling constant can vary with the energy

density of matter, leading to time-dependent gravitational

effects. This provides a more flexible and evolving

description of gravity. Energy–Momentum Conservation:

The f ðR;
P

; TÞ-gravity ensures energy–momentum con-

servation by incorporating the trace of the energy–mo-

mentum tensor. This feature is particularly important in

cosmological scenarios, where the conservation of energy

and momentum plays a crucial role. Explanation of Dark

Energy: The f ðR;
P

; TÞ-gravity has been proposed as a

possible explanation for the accelerated expansion of the

universe, attributed to dark energy. By modifying the

gravitational action, this theory can reproduce the observed

cosmic acceleration without the need for an additional dark

energy component. Compatibility with Observations: The

f ðR;
P

; TÞ-gravity has been tested against various cos-

mological and astrophysical observations. It has been

proved promising in explaining the cosmic expansion his-

tory, structure formation, and other phenomena. However,

further observational and experimental constraints are still

needed to fully validate or refine the theory. The

f ðR;
P

; TÞ-gravity can explain three areas: gravity, strong-

gravity and anti-gravity.
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