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Effect of anisotropic spin-orbit coupling on condensation
and superfluidity of a two-dimensional Fermi gases
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Abstract: We investigated the ground-state properties of a two-dimensional Fermi superfluid with an anisotropic spin-

orbit coupling (SOC) using the path-integral field theoretical method. Within the framework of mean-field theory, we

obtained the condensed fraction, including contributions from both singlet and triple pairing fields. We found that for small

interaction parameters and large anisotropic parameters, the total condensed fraction changes non-monotonically when

increasing the strength of SOC and has a global maximum. But this feature disappears when decreasing the anisotropic

parameter and increasing the interaction parameter. However, the condensed fraction always decreases with increasing

anisotropic parameters. Because of the anisotropy of the SOC, the superfluid fraction becomes a tensor. We obtained the

superfluid fraction tensor by deriving the effective action of the phase field of the order parameter. Our numerical results

show that for small interaction parameters and large anisotropic parameters, the superfluid fraction of the x component qx
has a minimum as a function of the SOC strength. And this minimum of qx disappears when decreasing the anisotropic

parameters. In the strong interaction regime, qx always decreases with increasing the strength of SOC. While for the y

component of the superfluid fraction qy, no matter how large the interaction parameters and anisotropic parameters are, it

always has a minimum as a function of the SOC strength. As a function of the anisotropic parameter, for strong SOC

strength, qx\qy with qx having a minimum. For small SOC parameters, qx [ qy with qy developing a minimum only in the

weak interaction limit.
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1. Introduction

Spin-orbit coupling (SOC) plays an essential role in real-

izing many novel phenomena such as topological super-

conductors and insulators [1–4], Floquet topological phases

[5–7], nontrivial superconductors [8, 9], and so on. The

realization of SOC in ultracold atomic systems [10–13]

using Raman couplings has attracted a lot of interest in

various physics communities. Because of advances in

ultracold atomic experimental techniques, Fermi gases with

SOC provide a unique and important playground to

investigate various novel phases and topological phase

transitions. For example, using Feshbach resonances

[14, 15], one can tune interactions between atoms from the

weakly interacting regime to the strongly interacting

regime, driving the system from weakly interacting BCS

superfluid to strongly interacting BEC regime (BCS-BEC

crossover) [16]. Furthermore, the optical lattice trapping

potential makes this system a perfect platform to mimic

solid-state systems and related phenomena [17]. In exper-

iments, the topological band structure has been observed by

combinations of optical lattice and SOC [18, 19]. Other

experimental techniques, such as spectroscopy [20–22],

dipole interactions [23, 24], reduced dimensions [25],

dynamical quench [26], open quantum systems [27], and so

on, are also used to detect various phenomena related to

Fermi pairing and superfluid [28, 29].

In ultracold atomic systems, one can create any kind of

SOC in principle, especially the Rashba [30, 31] and

Dresselhaus [32] SOC. Current experimental setup can

produce SOC with an arbitrary combination of these two

types of SOC [12, 13], therefore creating an anisotropic

SOC. Along this line, many theoretical investigations have

been performed to study effects of SOC on various
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superfluid properties [33–53]. For the balanced case with

an equal number of particles in different internal states,

SOC can produce a novel bound-state called Rashbons and

induce a crossover from weakly correlated BCS to strongly

interacting BEC regime even for very weak particle–par-

ticle interaction [43, 44]. And these new bound states have

many important implications for various thermodynamic

properties of the system. Especially, the opposite effect of

SOC on condensation and superfluidity has been discussed

in [54]. Furthermore, the combined effect of SOC and

Zeeman field can host a non-trivial topological order

[55–66]. Besides, the presence of a Zeeman field can create

a novel FFLO phase which attracts a lot of interest in

superconductors and cold atomic systems [67]. For Fermi

gases with SOC, a new type of topological FFLO state has

also been investigated extensively [47, 68–71]. Effects of

anisotropic SOC on the ground-state properties have also

been discussed in [34]. And in [60], effects of anisotropic

SOC on BKT [72] transitions and collective sound velocity

have been investigated. Furthermore, [73–75] provides an

intrinsic link between the non-monotonic behavior of the

superfluid density and the quantum geometry of the helicity

bands.

In this paper, we conducted a detailed study on the

effects of an anisotropic SOC on the condensation and

superfluidity of a two-dimensional (2D) superfluid system

within the framework of mean-field theory using the path-

integral formalism. The coupled number and gap equations

are numerically solved to obtain the chemical potentials

and gap parameters. With the obtained chemical potentials

and gap parameters, we calculated the condensed and

superfluid fractions as functions of the interaction param-

eter, SOC strength, and anisotropic parameters. For the

condensed fraction, we considered contributions from both

the singlet and triplet pairing fields. As a function of the

SOC parameters, the condensed fraction behaves non-

monotonically for specific interactions, SOC strength, and

anisotropic parameters. To obtain the superfluid fraction,

we expanded the partition function to the quadratic order of

the phase of the order parameter, from which we read off

the superfluid fraction. The superfluid fraction is a tensor

because of the anisotropic SOC considered in this paper.

Our numerical results show that different components of

the superfluid tensor behave differently as functions of the

SOC and anisotropic parameters.

2. Formalism

The system we consider here is a 2D ultracold Fermi atoms

or electrons interacting attractively with a contact interac-

tion. We also consider an anisotropic SOC which can be

written as an arbitrary combination of Rashba and

Dresselhaus types of SOC. In the path-integral formalism,

the system can be described by the finite temperature

grand-partition function Z ¼
R
d½ �ur;ur� exp �S½ �ur;ur�ð Þ

(�h ¼ kB ¼ 1 through out this paper) with the action

S½ �ur;ur� being given by S½ �ur;ur� ¼
R b
0
ds
R
d2r
P

r½ �urosur þH0 þHI � with b ¼ 1=T , r ¼"
; # denoting the two different internal states of the atoms or

z component eigen states of the spin operator for electrons

and �ur;ur being the Grassmann fields. The single-particle

Hamiltonian density is Hð �w;wÞ¼ �w n̂p þHsoc

� �
w where

the kinetic operator n̂p ¼ p̂2=ð2mÞ � l with l being the

chemical potential fixed by the total particle number, the

spinor field reads: w rð Þ ¼ u" rð Þ;u# rð Þ
� �T

and the SOC

term can be written as:

Hsoc ¼ kR rxpy � rypx
� �

þ kD rxpy þ rypx
� �

ð1Þ

where kR and kD denote the Rashba and Dresselhaus SOC

parameters, respectively, and ri¼x;y;z are the Pauli matrices.

In order to show the anisotropic character transparently, the

SOC term can be re-written as: Hsoc ¼ kyrxpy þ kxrypx
with ky ¼ kD þ kR and kx ¼ kD � kR. From this definition,

we can see that the system is isotropic when kD ¼ 0 or

kR ¼ 0 and anisotropic for equal Rashba and Dresselhaus

(ERD) SOC: kD ¼ kR. For convenience, we define the

anisotropic parameter as:

g ¼ kD
kR

ð2Þ

Without loss of generality, when g increases from 0 to 1,

the system evolves from isotropic Rashba case to

anisotropic case with ERD SOC. We denote the SOC

strength by:

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2D þ k2R

q
ð3Þ

Finally, the interaction between spin-up and spin-down

component can be simplified by a contact interaction

model:

HI ¼ �g

Z
d2ruy

" rð Þuy
# rð Þu# rð Þu" rð Þ ð4Þ

where g[ 0 is the contact interaction parameter.

Within path integral methods, the pairing order param-

eter can be conveniently introduced by using the Hubbard–

Stratonovich transformation [76] to decompose the four-

body interaction term HI by introducing a pairing field

D r; sð Þ. After integrating out the fermionic fields, we obtain

the effective action of the pairing field as Seff �D;D
� �

¼

�
R b
0
ds
R
ddr D r; sð Þj j2=g� 1=2Tr ln G�1

r;s

h i
with the

inverse Greens’ function G�1
r;s being:
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G�1
r;s ¼

os þ n̂p ĉ
p

0 D

ĉ�
p

os þ n̂p � D 0

0 � �D os � n̂p ĉ�
p

�D 0 ĉ
p

os � n̂p

2

6
6
6
6
6
4

3

7
7
7
7
7
5

ð5Þ

with ĉ
p
¼ kyp̂y þ ikxp̂x.

At mean-field level, the pairing field can be chosen as a

real constant parameter D r; sð Þ ¼ D0 which is referred to as

the gap parameter. And the effective pairing action

becomes Seff �D;D
� �

¼ �bVD2
0=g�

1=2
P

p;ixn
ln detG�1

p;ixn

h i
where G�1

p;ixn
is the Fourier trans-

formation of of Eq. (5) in the momentum-frequency

domain, V is the areal size of the system and xn ¼
2nþ 1ð Þp=b are the Fermi Matsubara frequencies. From

detG�1
p;E ¼ 0, the quasi-particle excitation spectrum can be

obtained as Ep;� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
np � cp

	
	
	
	� �2þD2

0

q
and E0

p;� ¼ �Ep;�

where np ¼ �p � l with �p ¼ p2=2m and

c
p
¼ kypy þ ikxpx. The mean-field thermodynamic poten-

tial can be obtained using X ¼ �1=b ln Z and we have:

X0 ¼ �VD2
0=gþ 1=2

P
p;d npEp;d

� �
� 1=b

P
p;d¼� ln 1þ e�bEp;d

� �
. By variation of the thermodynamic

potential with respect to the chemical potential and order

parameter, we can easily obtain the mean-field gap and

number equations:

1

g
¼� 1

V

X

p;d¼�

tanh
bEp;d

2

� �

4Ep;d
; ð6Þ

n ¼ 1

2V

X

p;d¼�
1�

np þ d cp
	
	
	
	� �
tanh

bEp;d

2

� �

Ep;d

2

4

3

5 ð7Þ

As usual, divergence of the integral over momenta in

Eq. (6) is removed by replacing contact interaction

parameter g by binding energy Eb through

V=g ¼
P

p 1= 2�p þ Eb

� �
.

For anisotropic Rashba SOC, Eqs. (6) and (7) are widely

used to study the ground state and finite temperature

properties of this novel system. It was first shown by

Gor’kov and Rashba [30, 31] that, in the presence of a

weak SOC, a 2D superconductor supports both singlet and

triplet pairing fields. In ultracold atomic systems, this non-

trivial physics was investigated in [43, 44] and a proposal

for detecting this anisotropic superfluidity was given in

[77] through measurement of the momentum distribution

and single-particle spectral function. On the other hand,

SOC significantly enhances the pairing phenomena as

demonstrated by the exact two-body solutions [43, 44] and

many-body mean-field calculations [78]. The system can

evolve from a BCS to a BEC state driven by SOC even for

very weak interactions. Various other properties have been

investigated in detail. For anisotropic SOC, however, there

are not so many publications concerning the ground-state

properties. In [60], they investigated the effect of aniso-

tropic SOC on the BKT transition and collective sound

velocity for a 2D Fermi gases. In this paper, we focus on

the effect of anisotropic SOC on condensation and super-

fluidity from a different point of view presented in [73, 74].

3. Condensed density

For Fermi pairing and condensation, according to the

concept of off-diagonal long-range-order, the condensed

density is generally defined as [79, 80]:

nc ¼ 1=V
P

p;ss0 �up;su�p;s0

 �	
	

	
	2. For the system considered

in this paper, the attractive interaction supports a singlet-

pairing field while SOC hybridizes spin degrees of freedom

and induces triplet pairing simultaneously. Within mean-

field theory, spin-singlet and -triplet pairing fields are given

by [77]:

�up;"u�p;#

 �

¼ D0

X

d

tanh bEp;d=2
� �

= 4Ep;d
� �

ð8Þ

�up;"u�p;"

 �

¼ �D0 cp= cp
	
	
	
	� �X

d

d tanh bEp;d=2
� �

= 4Ep;d
� �

;

ð9Þ

respectively. The spin-singlet contribution to the

condensed fraction was first discussed in [34], where it

was shown to behave non-monotonically with a minimum

as a function of SOC strength for weak enough interaction

parameter. In our previous investigations [54], we included

both singlet and triplet contributions to the condensed

density and obtained:

nc ¼
D2
0

4

1

V

X

p;d

tanh2
bEp;d

2

� �

E2
p;d

ð10Þ

At zero temperature, repulsive interactions between Fermi

pairs (Bosons) result in the depletion of the condensate,

which is a familiar phenomenon for interacting BEC sys-

tems. Therefore, the condensed fraction (condensed density

divided by the total density n) is always less than 1.

4. Superfluid density

Unlike the condensed density, superfluid density is a

dynamic properties of the system and a tensor in general. In

Landau’s theory of superfluidity, the normal masses of the

system can be obtained through the calculation of the total

Effect of anisotropic spin-orbit coupling on condensation and superfluidity 2679



momentum carried by excitations when the system is

subjected to a uniform flow with velocity [81] vs

P ¼
X

p;r

pf Ep;r � p � vs
� �

ð11Þ

where r is a conserved quantum number which is spin in

the absence of SOC, f xð Þ ¼ 1= ebx � 1
� �

is the Fermi/Bose

distribution function depending on the nature of the exci-

tations, and Ep;r � p � vs is the excitation spectrum for

moving systems. At zero temperature, no excitations are

created at very small vs and the superfluid density coin-

cides with the total density.

However, the situation is dramatically changed in the

presence of SOC where the Galilean transformation is

violated. As pointed out in [54], in the presence of SOC,

Eq. (11) is no longer valid. Therefore, we calculate the

superfluid density by the response of the system with

respect to a small phase field of the order parameter:

D r; sð Þ ¼ D0e
i/[82]. In [83], E. Taylor proved that this

method is equivalent to the definition of the superfluid

tensor from the current-current correlation function. Fur-

thermore, this method can simultaneously give the

compressibility.

By substituting the ansatz D r; sð Þ ¼ D0e
i/ into the par-

tition function and expanding it to the quadratic order of

the phase field /, after direct but lengthy algebraic

manipulations [84], we obtain the effective action for the

phase field as:

Seff u;A½ � ’ S0 þ
Z

dx
X

i¼x;y

qis
2m

A2
i þ ju2

 !

ð12Þ

with the emergent vector field A ¼ r/ and scalar field

u ¼ r/ denoting the spatial and temporal fluctuations of

the phase field of the order parameter, respectively. The

superfluid tensor can be expressed as qis ¼ n� qin with the

normal density qin given by:

qxn ¼
1

mV

X

p;s¼�
p2xY Ep;s

� � M2 þ smk2xnp
� �2

M4
ð13Þ

þ mk2x
2V

X

p;s¼�
tanh

bEp;s

2

n2p þ D2
0 þ sM2

� �
M4

y

sEp;sM
6

ð14Þ

qyn ¼
1

mV

X

p;s¼�
p2yY Ep;s

� � M2 þ smk2ynp
� �2

M4
ð15Þ

þ
mk2y
2V

X

p;s¼�
tanh

bEp;s

2

n2p þ D2
0 þ sM2

� �
M4

x

sEp;sM
6

ð16Þ

and the compressibility j reads:

j ¼ 1

2V

X

p;s¼�

n2p cp
	
	
	
	2þsM2

� �2
Y Ep;s

� �

E2
p;sM

4
þ D2

0

4V

X

p;s¼�
tanh

bEp;s

2

1

E3
p;s

ð17Þ

with M2 ¼ np cp
	
	
	
	, M2

x;y ¼ np cx;yp

	
	
	

	
	
	, cx;yp

	
	
	

	
	
	 ¼ kx;ypx;y and

Y xð Þ ¼ bf ðxÞ½1� f ðxÞ�.
We first self-consistently solve Eq. (6) and Eq. (7) to

obtain the chemical potential and gap parameters. Subse-

quently, we substitute these results into Eqs. (6) and (7) to

determine the condensed fraction and superfluid fraction

tensor.

5. Results and discussion

In this paper, we only consider the ground-state properties

of the system. Previous investigations show that mean-field

theory is qualitatively and quantitatively correct in the low-

temperature regime. However, at finite temperatures, fluc-

tuations of the order parameters become more and more

important. In order to obtain qualitatively correct physics

for temperatures close to the critical temperature, the most

successful method is to include contributions from the

lowest Gaussian fluctuations of the gap parameter to the

thermodynamic potential. This is beyond the scope of this

paper and will be left for future work. At the mean-field

level, the superfluid density tensor has been obtained in

previous research [60, 72, 74, 85]. We have checked that

our results coincide with all previous calculations. How-

ever, in this paper, we focus on the opposite effect of SOC

on the condensed density and superfluid density and how

the anisotropic nature of the SOC influences this opposite

effect, which has not been addressed in previous

investigations.

In Fig. 1, we present our numerical results of the con-

densed fraction as a function of the SOC parameter k=vF ,
with vF ¼ pF=m being the Fermi velocity and pF being the

Fermi momentum. It is clear that SOC enhances conden-

sation compared with cases with no SOC. However, the

condensed fraction shows non-monotonic behaviors for

some parameter space. In Fig. 1(a), the interaction

parameter is Eb ¼ 0:001EF , where EF ¼ p2F=2m is the

Fermi energy. As one can see, in this weak interaction

regime, as we increase the anisotropic parameters, the

condensed fraction decreases but has a maximum value as

a function of k=vF . This means that for large enough ani-

sotropic parameters, SOC does not necessarily enhance

condensation. However, in the strong interaction limit with

large enough Eb shown in Fig. 1(b), the condensed fraction

is always a monotonic function of SOC strength. Figure 2

represents condensed fraction as functions of anisotropic

parameters. And one can see that anisotropic parameters
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always suppress condensation. In Fig. 2(a), different lines

cross with each other, which is a direct manifestation of the

fact that for large enough anisotropic parameters, the

condensed fraction is not a monotonic function with

respect to SOC strength.

In general, as a static property, the condensed fraction

has similar behaviors as the gap parameters. However, the

superfluid fraction tensor becomes more complicated for

the superfluid Fermi systems with anisotropic SOC. It is

easily seen from Eq. 14 and Eq. 16 that SOC suppresses

superfluidity, and it creates normal density even at zero

temperature.

Figure 3 represents numerical results for the superfluid

fraction tensor qxs and qys as functions of the SOC strength

for various interaction and anisotropic parameters. We can

see from Fig. 3(a) with Eb ¼ 0:001EF that qxs decreases

with increasing SOC strength for small anisotropic

parameters in the weak interaction limit. However, for

large anisotropic parameters, qxs is a non-monotonic func-

tion of SOC strength with a global minimum. And this

minimum for large anisotropic parameters disappears for

strong interaction parameters as shown in Fig. 3(b) with

Eb ¼ 0:1EF . Nonetheless, the other component of the

superfluid tensor qys has different behaviors as shown in

Fig. 3(c) and (d). We have checked for various parameters

and found that qys always has a minimum regardless of the

value of the anisotropic and interaction parameters. It is

also clear that qx;ys ! n for k ¼ 0.

We also investigated the effect of anisotropy on the

superfluid fraction, and the results are shown in Fig. 4. As

can be seen clearly from the results, qxs and qys as functions
of anisotropic parameters are more complicated. Firstly, in

Fig. 4(a) for the weak interaction parameter Eb ¼ 0:001EF ,

qxs [ qys and only qys shows a minimum for small SOC

Fig. 1 (Color online) Condensed fraction defined by: nc=n as functions of the SOC strength parameter k=vF with vF being the Fermi velocity.

Eb ¼ 0:001EF and Eb ¼ 0:1EF in (a, b), respectively

Fig. 2 (Color online) Condensed fraction as a function of the anisotropic parameter g ¼ kD=kR. Eb ¼ 0:001EF and Eb ¼ 0:1EF in (a, b),
respectively
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parameters. For large SOC parameters, qxs\qys , and only qxs
has a minimum. Secondly, when the system enters the

strong interaction regime, as shown in Fig. 4(b) with

Eb ¼ 0:1EF , qxs [ qys but with no minimum for qys for weak
SOC. And for large SOC parameters, qxs\qys , and qxs still

shows a minimum. And we have checked for a larger value

of interaction parameters (Eb ¼ 1:0EF), the situations are

the same as shown in Fig. 4(b). qxs always has a minimum

value for large SOC parameters. Finally, we noticed that

qxs ¼ qys with g ¼ 0, and we have the isotropic Rashba SOC

case where qxs ¼ qxs . Furthermore, qxs ¼ qys ¼ 1 for the

anisotropic case with g ¼ 1. This is true since in the ERD

case, the SOC Hamiltonian density reduces to a one-

dimensional SOC term. For the balanced case with an

equal number of particles for spin-down and spin-up atoms,

this one-dimensional SOC term can be gauged out and has

no effect on the thermodynamic properties of the system.

Therefore, the superfluid fraction at zero temperature goes

to 1 as in the case without SOC.

A final remark: as shown in the numerical results of the

superfluid fraction tensor, qxs and qys have different behav-

iors. This comes from the fact that we constrain the ani-

sotropic parameter in the domain: 0\g\1. Therefore, we

never reach the regime for pure Dresselhaus limit. In the

transparent anisotropic expression for the SOC part of the

Hamiltonian density, 0\g\1 means kR [ kD and ky [ kx.

Fig. 3 (Color online) Superfluid fraction qx;ys =n as functions of the SOC strength parameter k=vF . Real black lines, dot-dashed blue lines, dashed

red lines, and dotted green lines correspond to g ¼ 0:2, g ¼ 0:3, g ¼ 0:4, and g ¼ 0:6, respectively. Eb ¼ 0:001EF in (a, c). Eb ¼ 0:1EF in (b, d)

Fig. 4 (Color online) Superfluid fraction as a function of anisotropic parameters. In both figures, thick lines and thin lines correspond to qys=n and
qxs=n, respectively. Eb ¼ 0:001EF and Eb ¼ 0:1EF in (a, b), respectively
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The other limit of pure Dresselhaus SOC can be reached by

setting g ! 1. For symmetry considerations, thermody-

namic properties should be symmetric about the two

regimes: 0\g\1 and 1\g\1.

6. Conclusions

We performed a detailed research on the effect of an ani-

sotropic SOC on the condensation and superfluid properties

of a two-dimensional Fermi gas at zero temperature. Par-

ticularly, we found that SOC not always enhances con-

densation and suppresses superfluidity. The condensed

fraction and superfluid tensor show many different

behaviors for different parameter configurations. In this

paper, we only consider the phase fluctuations of the order

parameter and neglect the magnitude fluctuations. Besides,

the inclusion of an optical lattice would give us many

degrees of freedom and lead to more interesting phenom-

ena such as the superfluid-Mott insulator transition. Fur-

thermore, if we consider an imbalanced case, there will be

a topological phase transition as we increase the Zeeman

field across a critical value. Combinations of SOC and

optical lattice provide an ideal test ground for many

interesting phenomena observed in solid-state material

systems.
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supplementary material available at https://doi.org/10.1007/
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