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Abstract: In the study of Saez–Ballester scalar tensor theory (Saez and Ballester in Phys Lett A 113:467, 1986), we

examine the cosmic expansion phenomenon using the Rényi holographic dark energy (RHDE) with spatially homogeneous

and anisotropic Marder type space time. Using a metric potential relationship, we find the solution to the field equations.

Using Hubble and Granda–Oliveros horizon as IR cutoffs, we have derived the equation of state parameter (EoS) (xde),

RHDE energy density (qde) and matter energy density (qm), RHDE density parameter (Xde), and Om-diagnostic. In this

study, these parameters are plotted against the redshift (z). For three different choices of n and d, the EoS parameter

exhibits quintom-like behavior for both IR cutoffs. Further, looking into the xde � x0
de plane and stability of the DE model

by using a metric perturbation method. It has been found that quintom-like behavior and freezing region explain the

Universe’s accelerating rate of growth.
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1. Introduction

General relativity(GR) describes the theory of gravitation

in terms of geometry, and is one of the most aesthetically

pleasing structures of theoretical physics. GR has been

modified several times (Capozziello and Laurentis [1],

Dimitrijevic et al. [2, 3]) to incorporate desirable physical

properties. Broadly speaking, scalar tensor theories are

generalizations of GR, in which the metric can be produced

by a scalar gravitational field and non-gravitational field

(matter). Gravitation theory with a scalar field can be

divided into two categories. In the first category, we con-

sider a scalar field whose dimension is 1
G. It was initially

suggested by Brans and Dicke (Brans and Dicke [4]). The

Scalar tensor theory in [4] is based on Mach’s principle

with assumption of cosmic scalar field and large distribu-

tion of matter in motion with interaction of inertial masses

of elementary particles. By varying the coupling function

w, we determine the strength of the coupling among the

gravitational field and the scalar field. In curving space

time, non-gravitational fields form the scalar gravitational

field /. In the second category, solving the dark matter

problem is simpler when using a scalar tensor theory of

gravity. This is done by coupling a dimensionless scalar

field with the metric. The weak field is described by this

coupling. Even though the scalar field is dimensionless,

there is an antigravity regime, which describes the weak

fields satisfactorily as proposed by Saez and Ballester [5].

The Friedmann-Roberson-Walker flat Universe could be

solved by this theory because it solves the missing matter

problem. The Scalar tensor theory of SBT is based on the

following field equations [5].

Ruv �
1

2
Rguv � w/r /;u/;v �

1

2
guv/;j/

;j

� �
¼ �8pTuv;

ð1Þ

and

2/r/;u
;u þ r/r�1/;j/

;j ¼ 0; ð2Þ

where Ruv is the Ricci tensor, R is the scalar curvature, guv
is the metric potential, w is the dimensionless constant, r is

a constant, Tuv; / describes the energy momentum tensor

and scalar field successively. Furthermore, a mathematical

equation for energy conservation

Tuv
;v ¼ 0; ð3Þ*Corresponding author, E-mail: gv.santhi@live.com
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is a aftermath of the field Eqs. (1) and (2). Scalar–tensor

theories have been studied in the context of cosmological

models for decades. Specifically, Shaikh et al. [6] have

present an analysis of the behavior of a cosmological

model in the presence of matter and a modified Ricci dark

energy for homogeneous hyper surfaces in SBT of gravity.

SBT of gravitation has been examined by Sharma et al. [7]

with cosmological models in the transit of heat flow and

perfect fluid. A model of bulk viscous string in SBT of

gravity has been investigated by Mishra and Dua [8]. In

Bianchi type-I Universe with perfect fluid content and

bilinearly varying deceleration parameter (DP), Mishra and

Chand [9] have investigated their dynamical nature. Axi-

ally symmetric domain walls cosmology has been studied

by Ahmad and Tade [10] in SBT of gravity. In SBT of

gravity, Garg et al. [11] have studied generalized ghost

pilgrim dark energy. In [12], Mishra and Dua have inves-

tigated a model of Bianchi type-I with varying DP in SBT

of gravity. In a SBT of gravitation, Naidu et al. [13] have

examined dynamical behavior of Kaluza-Klein FRW type

dark energy cosmological models. Singh and Singh [14],

Santhi and Naidu [15] and some recent studies have looked

at the stabilization of extra dimensions and the RHDE

model in scalar tensor theories.

It is evident from cosmological observations that the

Universe is expanding rapidly. It has been observed from

numerous observational studies that our cosmos is char-

acterized by both a rapid inflation at the beginning of its

history and a rapid expansion later (Miller et al. [16]; Riess

et al. [17]; Perlmutter et al. [18]; Fedeli et al. [19]). It is

believed that this is due to the presence of an unidentified

source of energy with enormous negative pressure known

as dark energy (Nojiri and Odintsov [20]; Bamba et al.

[21]). Dark energy and dark matter are two mysterious

components of our Universe (Amendola et al. [22]). The

amount of dark matter in the Universe is around 25% of its

total energy density, whose nature is unknown to us.

Another element of our Universe is dark energy. Due to

dark energy, the Universe is currently accelerating and

contributes around 70% of the Universe’s energy density.

Further investigation of its exact nature remains to be done.

In spite of its incredible success, the standard cosmology

has been insufficient for addressing certain significant

problems, especially in searching for the most suit-

able candidate for dark energy. In addressing certain sig-

nificant problems, the cosmic constant is the simplest

candidate for dark energy, but it faces two serious theo-

retical problems like fine-tuning and the coincidence

problem (Amendola [23]; Malquarti et al. [24]). To resolve

this issue, there are two possibilities: dynamical dark

energy is introduced into the right-hand side of the Einstein

field equations within the framework of GR and modified

gravity theories are introduced into left-hand side of the

Einstein equations. A family of scalar fields belong to the

first approach, including quintessence (Ratra and Peebles

[25]), phantom (Caldwell [26]), tachyon (Padmanabhan

[27]), K-essence (Armendariz-Picon et al. [28]), as well as

others were put forward to describe accelerated expansion

as dark energy candidates. Another way to understand the

expansion of the Universe is through modified theories of

gravity, that includes f(R) gravity (Capozzielo [29]),

f(R, T) (Harko et al. [30]), here, R is the scalar curvature

and T is the trace of the energy momentum tensor and

Brans–Dicke ([4]), Saez–Ballester ([5]) scalar tensor the-

ories of gravity.

The dark energy models that are included in the first

approach to a scalar field family are also included (as

described above). There has been considerable interest in

solving the dark energy puzzle with HDE, which has some

quantum gravity properties. To study the DE scenario, Li

[31] has proposed HDE. There are many properties of the

HDE that align with quantum gravity as well as with the

holographic principle (Susskind [32]; Gong et al. [33];

Nojiri and Odintsov [34]; Li et al. [35]) that states a

physical system’s degrees of freedom scale with its

bounding surface, rather than its volume. Several exami-

nations have been carried out on the HDE model, including

qde / K4; whereas the relationship between the IR cut-off

L, UV cut-off K, and the entropy S is K3 L3 �ðSÞ
3
4. Hence,

the energy density of the HDE model is given by the IR

cut-offs and the entropy. Based on Bekenstein-Hawking

entropy, HDE is defined as S ¼ A
4G ; with A ¼ 4pL2; density

is qde ¼ 3d2

8pG L
�2, where G is gravitational constant, d is a

numerical constant. In the literature, IR-cutoffs have been

discussed as conformal Universe age, Ricci scalar radius,

particle horizon, event horizon, ultraviolet, Hubble hori-

zon, Granda–Oliveros (GO) and infrared cutoff (Guo et al.

[36]; Granda and Oliveros [37]; Wei and Cai [38]; Granda

and Oliveros [39]; Drepanou et al. [40]; Luciano and

Saridakis [41]). As a result of a newly developed HDE

model, the Universe is expanding at an accelerated rate and

current observational data support the transition from the

deceleration phase ðq[ 0Þ to the acceleration phase

ðq\0Þ.
Several generalized entropy models of gravity and

cosmology have been developed due to the long-range

aspects of gravity and the unknown nature of space time.

Examples are Tsallis HDE (Tsallis and Cirto [42]; Tavayef

et al. [43]), Sharma-Mittal HDE (Jahromi et al. [44]) and

RHDE model (Moradpour et al. [46]). THDE models are

based on the Tsallis generalized entropy, which is not

stable at classical levels [42–44, 46], although SMHDE is

classically stable when the cosmos is not interacting.

RHDE is more stable as there is no interaction between
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sectors of the cosmos (Moradpour et al. [46]). The RHDE

model has been examined by Sharma and Dubey [47],

taking three different parametrizations of the dark energy

and dark matter interaction term in FLRW Universe. In

GR, Prasanthi and Aditya [48] have investigated aniso-

tropic RHDE models. Using the Rényi entropy in the flat

FLRW Universe, Golanbari et al. [49] investigated the

entropy modifying HDE model. In the D-dimensional

fractal Universe, Maity and Debnath [50] discussed HDE

models based on Sharma-Mittal, Renyi and Tsallis. RHDE

in Brans Dicke cosmology has recently been examined by

Sharma and Dubey [51]. In other modified gravity theories,

the RHDE has been discussed [52–55]. According to the

earlier study, we analyze the HDE by applying the new

entropy formalism: RHDE with the Hubble and GO hori-

zons as IR cutoffs.

We have focused our attention on the Marder type

cosmological model with Hubble, GO horizons as IR cut-

offs in the context of SBT of gravity. Our paper is struc-

tured as follows: In Sect. 2, we discuss the model’s

mathematical formalism. In Sect. 3, we study the RHDE

model with cosmological behavior. In Sect. 4, we investi-

gate stability analysis. In Sect. 5, we discuss Om diagnostic

and Kinematic tests in Sect. 6. The outcomes of our model

are discussed in the final section.

2. Model mathematical formalism

The Universe’s early and modern epochs are represented

by spatially homogeneous and isotropic FRW models that

are widely accepted in cosmology. Cosmic Background

Explorers, Wilkinson Microwave Anisotropy Probe

(WMAP), and Planks collaboration confirm the existence

of an anisotropic stage that progresses to an isotropic stage.

Given this, it might be beneficial to investigate models of

Universe with an anisotropic background when analyzing

dark energy. In spite of the present situation on large

scales, the existing cosmos appears relatively isotropic,

Ellis and Callum [56] found that the early and very late

Universes could be anisotropic. An anisotropic Universe’s

physical qualities change depending on the direction from

which they are measured. In order to obtain a realistic

picture of the Universe in its early stages, cosmological

models that are spatially homogeneous and anisotropic

play a vital role in characterizing the large-scale behavior

of the cosmos. The current Universe shows some aniso-

tropic behavior according to WMAP’s data (Komatsu

et al. [57]). Marder space-time has some characteristics for

explaining the formation of galaxies during the early stages

of the Universe evolution (Kilinc [58]). As the Marder line

element is a homogeneous and anisotropic space-time, it

helps us understand the anisotropy at the beginning of the

Universe and provides transition from anisotropy to iso-

tropy, thus motivating us to consider such a space-time.

Also, by using the transformation t !
R
p1ðtÞdt, one can

reduce the Marder space-time to the Bianchi type-I model,

which further reduces to the FRW Universe. Hence, we

classify the line element accordingly if anisotropy at later

times or at early stages of the Universe (Sharif and Kausar

[59]). Thus, Marder space-time not only facilitates us to

study about anisotropic Universe, but also the isotropic

one. Within the context of GR, such models have gained a

lot of attention. We preferred the Marder’s space-time in

Einstein’s GR and scalar tensor theories, because it is a

homogeneous and anisotropic space-time (a better metric

to explain anisotropy at the beginning of the Universe) and

provides transition from anisotropic to isotropic. We con-

sider the spatially homogeneous and anisotropic Marder

type space time form as follows (Marder [60])

ds2 ¼ p2
1ðtÞdx2 þ p2

2ðtÞdy2 þ p2
3ðtÞdz2 � p2

1ðtÞdt2; ð4Þ

where p1, p2 and p3 are functions of time t only.

In this analysis we will explore how physical parameters

influence the formulation of field equations for the Marder

type space time given by Eq. (4). Some of the authors who

have studied Marder space time with various energy

momentum tensors are Singh and Abdussattar [61], Pra-

kash [62], Roy and Chatterjee [63], Mukherjee [64], Aygün

et al. [65], Ali and Aygün [66], Aygün et al. [67] and Ali

et al. [68], Pawar and Panpatte [69], Pawar and Solanke

[70], Aygün [71], Aygün et al. [72, 73] and Aktas et al.

[74]. The investigation of the magnetized string distribu-

tion in the Marder Universe with the cosmological term in

f(R, T) theory done by Kömürcü and Aktas [75]. Wet dark

fluid model in Marder space time which is anisotropic and

homogeneous has recently been constructed by Pawar et al.

[76]. Recently, bulk viscous string cosmological model in a

modified theory of gravity has been studied by Santhi et al.,

[77]. Viscous holographic dark energy cosmological model

in Marder space-time has been investigated by Santhi et al.,

[78]. Very recently, Marder space-time with Tsallis holo-

graphic dark energy has been studied by Santhi and Naidu

[79]. Dark energy and pressureless matter are assumed to

be the distribution of matter, respectively as

Tuv ¼ T 0
uv þ Tuv; ð5Þ

where T 0
uv, Tuv, are energy momentum tensors for pressure-

less dark matter and RHDE respectively. These are given

by

Tuv ¼ qde þ pdeð ÞUuUv þ pdeguv; ð6Þ

& T 0
uv ¼ qmUuUv; ð7Þ

where qde, pde & qm are energy density, pressure of dark

energy and energy density of matter respectively and Uu ¼

Rényi holographic dark energy model 3395



ð0; 0; 0;�p1Þ is the four velocity vector. Also, xde ¼ pde
qde

is

the EoS parameter of dark energy.

Now with the help of Eq. (5), the field Eqs. (1) and (2)

for the metric in Eq. (4) can be written as

1

p2
1

€p2

p2

þ €p3

p3

þ _p2 _p3

p2p3

� _p1 _p2

p1p2

� _p1 _p3

p1p3

� �
� w/r _/2

2p2
1

¼

� 8pxdeqde;

ð8Þ

1

p2
1

€p1

p1

þ €p3

p3

� _p1
2

p2
1

� �
� w/r _/2

2p2
1

¼� 8pxdeqde; ð9Þ

1

p2
1

€p1

p1

þ €p2

p2

� _p1
2

p2
1

� �
� w/r _/2

2p2
1

¼� 8pxdeqde; ð10Þ

1

p2
1

_p1 _p2

p1p2

þ _p2 _p3

p2p3

þ _p3 _p1

p3p1

� �
þ w/r _/2

2p2
1

¼8pðqm þ qdeÞ;

ð11Þ

& €/þ _/
2 _p1

p1

þ _p2

p2

þ _p3

p3

� �
þ r _/2

2/
¼0: ð12Þ

Similarly, by using the conservation equation, the

following equation can be found:

_qm þ _qde þ 3
2 _p1

p1

þ _p2

p2

þ _p3

p3

� �
qm þ qde þ xdeqdeð Þ ¼ 0:

ð13Þ

Throughout the article, the overhead dot indicates

differentiation with respect to cosmic time (t). There are

seven unknown variables in the field Eqs. (8)–(12): p1, p2,

p3, /, qm, qde and xde. For the above equations to be

solved, we need some conditions. A relationship between

the metric potentials can be obtained by assuming a

proportionality between the expansion scalar h and shear

scalar r (Collins et al. [80]). That is

p1 ¼ ðp2p3Þn: ð14Þ

The space time is anisotropic and n 6¼ 1 maintains that.

From Eqs. (9) and (10), we get

€p2

p2

� €p3

p3

¼ 0: ð15Þ

From Eqs. (8) and (10), we obtain

€p3

p3

� €p1

p1

þ _p2 _p3

p2p3

� _p2 _p1

p2p1

� _p1 _p3

p1p3

þ _p1
2

p2
1

¼ 0: ð16Þ

From Eqs. (14) and (16), we obtain a new equation

€p2

p2

þ _p2 _p3

p2p3

¼ 0: ð17Þ

For the sake of simplicity, we apply the following

substitutions,

p2 ¼ ffiffiffiffiffiffi
la

p
and p3 ¼

ffiffiffi
l
a

r
; ð18Þ

where l & a are functions of time.

From Eqs. (15) and (18), we get

d

dt

l
a
_a

� �
¼ 0: ð19Þ

From Eqs. (17) and (18), we get

d

dt
l

_l
l
þ _a
a

� �� �
¼ 0: ð20Þ

Integrating Eq. (19), we get

l
a
_a ¼ k1; ð21Þ

where k1 is constant of integration.

From Eqs. (20) and (21), we obtain

d

dt
_lþ k1ð Þ ¼ 0: ð22Þ

Integrating Eq. (22), we get

l ¼ k3t þ k4; ð23Þ

where k3 ¼ k2 � k1 and k4 are integration constants.

Therefore, from Eqs. (14) and (23), we obtain one of the

metric potentials as

p1 ¼ k3t þ k4ð Þn: ð24Þ

Now solving Eq. (21), we get

a ¼ k5 k3t þ k4ð Þk6 ; ð25Þ

where k5 [ 1 and k6 ¼ k1

k3
are positive integration constants.

In the same manner, we get the remaining metric potentials

from the Eqs. (18), (23) and (25) as

p2 ¼ k7 k3t þ k4ð Þ
1þk6

2 and p3 ¼ k8 k3t þ k4ð Þ
1�k6

2 ; ð26Þ

where k7 ¼
ffiffiffiffiffi
k5

p
and k8 ¼

ffiffiffi
1
k5

q
are positive integration

constants. Substituting p1; p2 and p3 values in Eq. (12), we

find that

/ ¼ k10ðr þ 2Þ
2

� k9ðr þ 2Þ
4k3n k3t þ k4ð Þ2n

" # 2
rþ2

; ð27Þ

where the constants k9 and k10 are constants of integration.

Now, the metric in Eq. (4) can be rewritten as

ds2 ¼ k3t þ k4ð Þ2ndx2 þ k7 k3t þ k4ð Þ
1þk6

2

� �2

dy2

þ k8 k3t þ k4ð Þ
1�k6

2

� �2

dz2 � k3t þ k4ð Þ2ndt2:

ð28Þ

In Marder space time Volume (V), average scaling factor
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(a(t)), anisotropic parameter ðAhÞ, Hubble parameter (H),

expansion scalar ðhÞ, shear-scalar ðr2Þ and deceleration

parameter (DP) (q) is defined as

V ¼ k3t þ k4ð Þ2nþ1; ð29Þ

aðtÞ ¼ k3t þ k4ð Þ
2nþ1

3 ; ð30Þ

H ¼ k3ð2nþ 1Þ
3 k3t þ k4ð Þ ; ð31Þ

h ¼ k3ð2nþ 1Þ
k3t þ k4ð Þnþ1

; ð32Þ

r2 ¼
k2

3 4n2 þ 3k2
6 � 4nþ 1

	 

12 k3t þ k4ð Þ2nþ2

; ð33Þ

Ah ¼
4n� 1ð Þ2þ3k2

6

2ð2nþ 1Þ2
; ð34Þ

& q ¼ 2 � 2n

2nþ 1
: ð35Þ

From Eqs. (29)–(33), we observed that, the Volume and

average scaling factor increases exponentially with time.

This illustrates growth of the Universe with time. Also, the

parameters H, h an r2 are diminishing. At t ¼ �k4

k3
, volume

vanishes and the other parameters tend to infinity. The non

zero value of Ah indicates that Marder type cosmological

models are anisotropic in nature. In cosmic expansion, the

parameter q quantifies expansion of the Universe. As a

result of this, it indicates deceleration (if q is positive) or

acceleration (if q is negative), while the marginal inflation

occurs at q ¼ 0 and q ¼ �1, the current Universe shows

de-Sitter expansion. Based on the analysis of the model, it

is concluded that accelerated inflation occurs for

�1� q\0, and super exponential inflation for q\� 1.

Depending on the sign of H and q, we classify model of

Universe as: For H\0, we have contracting and deceler-

ating Universe for q[ 0 and contracting and accelerating

Universe for q\0. For H[ 0, we have expanding and

decelerating Universe at q[ 0, expanding and accelerating

Universe for q\0, expanding with zero deceleration at

q ¼ 0. For H ¼ 0, q ¼ 0 we obtain a static Universe. From

Eq. (35), we can observe that the DP is independent of time

and takes negative values for H[ 0, n[ 1 indicates the

accelerating expansion of the Universe. Berman [81],

Kumar and Singh [82], Samanta [83], Santhi et al. [84],

Bishi et al. [85], Santhi and Naidu [15, 86], Samanta and

Mishra [87] etc., authors have found time-independent

deceleration parameter in there literature.

Galaxies emit light with different wavelengths when

they move relative to us. An essentially dimensionless

quantity known as redshift describes the ratio between the

wavelength change and the wavelength emitted by the

light.

Scale factor a(t) is related to redshift z as

z ¼ a0

a
� 1: ð36Þ

In order to get the complete details of the Universe, we

have to express parameters of cosmology in terms of z. One

can write the cosmic time t in terms of redshift z as

tðzÞ ¼

��
a0

1þz

� 3
2nþ1

� k4

�

k3

:
ð37Þ

3. RHDE model with cosmological behavior

Recent investigations of gravitational cosmological inci-

dences have used an enhanced version of the DE model

using the Rényi entropy [45, 46]. It is possible to think

about a system with W outcomes having a probability ith in

order to obtain a Pi outcome and fulfil the conditionPW
i¼1 Pi ¼ 1. We define Tsallis and Rényi entropies as

SR ¼ 1

d
ln
XW
i¼1

Pi
1�d; ð38Þ

ST ¼ 1

d
ln
XW
i¼1

Pi
1�d �Pi; ð39Þ

where d � 1 � U, where U represents a real number. These

two equations together form

SR ¼ 1

d
ln 1 þ dSTð Þ: ð40Þ

It is demonstrated that SR exhibits the class of entropy

functions that are most general for homogeneous systems.

This following formula is used to determine the Bekenstein

entropy of a system in mathematical terms: ST ¼ A
4
, where

A ¼ 4pL2 and L is a change in IR cut off. Here, we have

use Rényi entropy as:

SR ¼ 1

d
ln

d
4
Aþ 1

� �
¼ 1

d
ln pdL2 þ 1
	 


: ð41Þ

The gravitational field is strong enough for the construction

of the Universe with a small amount of dark energy and

dark matter for d\1. Moreover, the gravitational field

becomes weaker for d[ 1, which requires a large quantity

of dark energy and dark matter. Assuming qdedV / TdS,

the Rényi HDE density becomes

qde ¼
3d2

8pL2
1 þ pdL2
	 
�1

: ð42Þ
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3.1. RHDE model with hubble horizon cutoff

In our analysis, we have used Hubble horizon as IR cutoff.

Choosing L ¼ H�1 and 8p ¼ 1, we obtain RHDE density

as

qde ¼
3d2H2

1 þ pdH�2
: ð43Þ

From Eqs. (31), (36) and (43), we obtain energy density of

RHDE (qde) as

qde ¼
d2k4

3ð2nþ 1Þ4

3

�
a0

1þz

� 6
2nþ1

k2
3ð2nþ 1Þ2 þ 9pd

�
a0

1þz

� 6
2nþ1

 ! :

ð44Þ

The energy density of matter (qm) is given by

qm ¼ 1

96p

�
a0

1þz

�18nþ12
2nþ1

k2
3ð2nþ 1Þ2 þ 864pd

�
a0

1þz

�18nþ18
2nþ1

�
 

12nk4
3

�
a0

1 þ z

�12nþ6
2nþ1

ð2nþ 1Þ2

þ 108pdnk2
3

�
a0

1 þ z

�12nþ12
2nþ1

þ 3k4
3

�
a0

1 þ z

�12nþ6
2nþ1

ð2nþ 1Þ2

þ 27pd

�
a0

1 þ z

�12nþ12
2nþ1

k2
3

� 3k4
3k

2
6

�
a0

1 þ z

�12nþ6
2nþ1

ð2nþ 1Þ2 � 27pdk2
3k

2
6

�
a0

1 þ z

�12nþ12
2nþ1

þ 6wk2
9k

2
3ð2nþ 1Þ2

�
a0

1 þ z

� 6
2nþ1

þ 54wk2
9pd

�
a0

1 þ z

� 12
2nþ1

� 32p

�
a0

1 þ z

�18nþ6
2nþ1

d2k4
3ð2nþ 1Þ4

!
:

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;
ð45Þ

The EoS parameter xde is given by

xde ¼
�3

8d2pk4
3ð2nþ 1Þ4

�
  

k2
3ðk2

6 � 4n� 1Þ
�

a0

1 þ z

��6�6n
2nþ1

� 2

�
a0

1 þ z

��18n�6
2nþ1

wk2
9

!
�

 � 9pd

��
a0

1þz

� 3
2nþ1

� k4

�2

k2
34

þ ðnþ 1

2
Þ2

�
k2

3

þ
9pd

��
a0

1þz

� 3
2nþ1

� k4

�
k4

2
þ 9pdk2

4

4

!�
a0

1 þ z

� 6
2nþ1

!
:

9>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>;
ð46Þ

The x0
de is given by

x0
de ¼

9

4pd2k4
3ð2nþ 1Þ5

�
  

k2
3ðk2

6 � 4n� 1Þ
  9pd

��
a0

1þz

� 3
2nþ1

� k4

�2

k2
34

þ
�
nþ 1

2

�2
!
k2

3 þ
9pdk2

4

4

þ
9pd

��
a0

1þz

� 3
2nþ1

� k4

�
k4

2

!�
a0

1 þ z

��6n�6
2nþ1

þ k2
3ðk2

6 � 4n� 1Þ
�� 9pdðn� 2Þ

��
a0

1þz

� 3
2nþ1

� k4

�2

4k2
3

� 1

4
þ n3 � 3n

4

�
k2

3 þ
9pdk2

4ðn� 2Þ
4

þ
9pd

��
a0

1þz

� 3
2nþ1

� k4

�
k4ðn� 2Þ

2

��
a0

1 þ z

��6�6n
2nþ1

� 4k2
9w

��
nþ 1

2

��� 9pd

��
a0

1þz

� 3
2nþ1

� k4

�2

k2
34

þ
�
nþ 1

2

�2�
k2

3 þ
9pd

��
a0

1þz

� 3
2nþ1

� k4

�
k4

2

þ 9pdk2
4

4

��
a0

1 þ z

��6�18n
2nþ1

þ
�� 9pdðn� 2Þ

��
a0

1þz

� 3
2nþ1

� k4

�2

k2
34

� 1

4

þ n3 � 3n

4

�
�

a0

1þz

��6�18n
2nþ1

2
k2

3

þ
9pd

��
a0

1þz

� 3
2nþ1

� k4

�
k4ðn� 2Þ

2

þ 9pdk2
4ðn� 2Þ
4

����
a0

1 þ z

� 6
2nþ1

!
:

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;
ð47Þ

Using Eqs. (31), (36) and (44), we obtain the density

parameter of RHDE as
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3.2. RHDE model with Granda–Oliveros cutoff

Here, we consider Granda–Oliveros (GO) horizon cutoff

for RHDE model L ¼ l1H
2 þ l2

_H
	 
�1

2 . This cutoff scale

has been presented by Granda and Oliveros [37, 39] for

defining the famous cosmological problem of causality and

cosmic coincidence. Using GO cutoff in Eq. (42) and

8p ¼ 1, we obtain

qde ¼ 3d2 l1H
2 þ l2

_H
	 


1 þ pd

l1H
2 þ l2

_H
	 


 !�1

: ð49Þ

From Eqs. (31) and (49), the energy density of RHDE qde is

given by

qde ¼
d2k4

3ð2nþ 1Þ2
2nl1 þ l1 � 3l2ð Þ2

3

�
a0

1þz

� 6
2nþ1�

k2
3ð2nþ 1Þ 2nl1 þ l1 � 3l2ð Þ þ 9pd a0

1þz

� � 6
2nþ1
� :

ð50Þ

The energy density of matter qm is given by

Xde ¼
d2k2

3ð2nþ 1Þ2

9pdk2
4 þ 18pd

��
a0

1þz

� 3
2nþ1

� k4

�
k4 þ

� 9pd

��
a0

1þz

� 3
2nþ1

�k4

�2

k2
3

þ 4

�
nþ 1

2

�2�
k2

3

:

ð48Þ

qm ¼ 1

96p

�
a0

1þz

�18nþ12
2nþ1 	

k2
3ð2nþ 1Þð2nl1 þ l1 � 3l2Þ þ 9pd

�
a0

1þz

� 6
2nþ1
�

 
ð4nþ 1 � k2

6Þ
�

a0

1 þ z

�12nþ6
2nþ1

3k2
3

�
k2

3ð2nþ 1Þð2nl1 þ l1 � 3l2Þ

þ 9pd

�
a0

1 þ z

� 6
2nþ1�

þ 6wk2
9

�
a0

1 þ z

� 6
2nþ1�

k2
3ð2nþ 1Þð2nl1

þ l1 � 3l2Þ þ 9pd

�
a0

1 þ z

� 6
2nþ1�

� 32pd2
	
k2

3ð2nþ 1Þð2nl1 þ l1 � 3l2Þ

2
p

�
a0

1 þ z

�18nþ6
2nþ1

!
:

9>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>;

ð51Þ

Rényi holographic dark energy model 3399



The EoS parameter xde is given by

xde ¼
�27

32

�
d2pk4

3ð2nþ 1Þ2

�
2l1nþ l1 � 3l2

�2�

�
  �

4n2l1

9
þ
�

4l1

9
� 2l2

3

�
n

þ
pd

��
a0

1þz

� 3
2nþ1

� k4

�2

k2
3

þ l1

9
� l2

3

�
k2

3

þ 2dk4p

��
a0

1 þ z

� 3
2nþ1

� k4

�
þ dk2

4p

!
�

�
k2

3

�
k2

6 � 4n� 1

��
a0

1 þ z

��6�6n
2nþ1

� 2

�
a0

1 þ z

��6�18n
2nþ1

wk2
9

��
a0

1 þ z

� 6
2nþ1

!
:

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

ð52Þ

The x0
de is given by

x0
de ¼

81

16d2k4
3ð2nþ 1Þ3

�
2l1nþ l1 � 3l2

�2

pk3

�
 �

a0

1 þ z

� 6
2nþ1
�
ðk2

6 � 4n� 1Þk3
3

��
4n2l1

9
þ
�

4l1

9
� 2l2

3

�
nþ

pd

��
a0

1þz

� 3
2nþ1

� k4

�2

k2
3

þ l1

9
� l2

3

�
k2

3 þ 2dk4p

��
a0

1 þ z

� 3
2nþ1

� k4

�

þ pdpk2
4

�
ð1 þ nÞ

�
a0

1 þ z

��6n�6
2nþ1

� 6

�
nþ 1

3

�
k3w

��
4n2l1

9
þ
�

4l1

9
� 2l2

3

�
n
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9
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3

�
k2

3

þ 2dk4p

��
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� 3
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�
þ pdpk2

4

�

k2
9

�
a0

1 þ z

��18n�6
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� 2

��
2n2l1

9
þ
�

2l1

9
� l2

3

�
n

þ
pd

��
a0

1þz

� 3
2nþ1

� k4

�2

k2
3

þ l1

18
� l2

6

�
k2

3

þ 2dk4p

��
a0

1 þ z

� 3
2nþ1

� k4

�
þ pdpk2

4

�

�
k2

3

	
k2

6 � 4n� 1

� a0

1 þ z

��6�6n
2nþ1

� 2

�
a0

1 þ z

��6�18n
2nþ1
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9

�
k3

�!
:

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;
ð53Þ

Using Eqs. (31), (36) and (50), we obtain the density

parameter of RHDE as

Xde ¼

�
d2k4

3

	
2l1nþ l1 � 3l2


2

�
a0

1þz

� 6
2nþ1
�

 
k2

3

	
a0

1þz


2

���
nþ 1

2

�2

l1 þ
9pd

��
a0

1þz

� 3
2nþ1

�k4

�2

4k2
3

� 3nl2

2
� 3l2

4

�
k2

3 þ
9pk4d

��
a0

1þz

� 3
2nþ1

�k4

�

2
þ 9pdk2

4

4

�!
:

ð54Þ

3400 M V Santhi et al.



In this section, we deal with the characteristics of the

fundamental quantities of the Universe, such as RHDE’s

energy density (qde), energy density of matter (qm), EoS

parameter (xde), and density parameter (Xde). In defining a

density parameter, one has to take into account the relation

among the critical density (qc ¼ 3H2

8p ) and the observed

density (qde) of the Marder Universe. In our model, the

physical parameters are chosen to be constants with the

following choices: k3 ¼ 6:35, k4 ¼ 9:33; H0 ¼ 0:53,

k6 ¼ 3, k9 ¼ 5, w ¼ 10:36, l1 ¼ 0:15; l2 ¼ 0:84:

n ¼ 0:410; 0:411; 0:412, d ¼ 0:021; 0:025; 0:030 , d ¼
0:0015; c0 ¼ 0:1, a0 ¼ 5000000, c2 ¼ 0:25, c1 ¼ 0:15. By

taking different values of n and d for Hubble and GO

horizon cutoffs, while keeping the other parameters as it is.

We have plotted RHDE energy density ðqdeÞ, matter

energy density ðqmÞ and density parameter (Xde) against

the redshift (z) as shown in Figs. 1, 2, 5 and 6,9 and 10

respectively. It is observed that, for various values of d and

n the graphs of qde, qm and Xde show a positive and

decreasing behavior towards redshift (z). This reflects that

our Universe is expanding at an accelerated rate.

3.3. EoS parameter (xde):

In the RHDE model, the EoS parameter xde is calculated as
pde
qde

. The EoS parameter provides the most effective expla-

nation for the expansion of the Universe (Amendola and

Tsujikawa [88]). Also, the accelerated and decelerated

phases of the cosmos can be categorized with the help of

EoS parameter. The following eras are the phases of

dominate dark energy: (i) xde ¼ 1 ) stiff fluid, (ii)

0\xde\ 1
3
) radiation dominated phase,(iii) xde [ 1 )

Ekpyrotic phase, (iv) xde ¼ 0 ) non-relativistic matter,

(v) �1\xde\ �1
3
) quintessence, (vi) xde ¼ �1 ) cos-

mological constant, (vii) xde\� 1 ) phantom. We

investigated the evolution of EoS parameter xde against

redshift (z) with different values of d and n for Hubble, GO

horizon cutoff as shown in Figs. 3 and 7 respectively. It is

observed from Figs. 3 and 7 that the EoS parameter begins

from the quintessence phase and transits to the phantom

region passing through the vacuum dominated era (phan-

tom divide line xde ¼ �1) of the Universe for all the

values of d and n. As a result, the Universe has a quintom

like nature and the path of the EoS parameter of RHDE-H

and GO models are in accordance with the results of the

Planck collaboration (2018). Planck collaboration data

(2018) by Aghanim et al. [89] gives limits for EoS

parameter as

xde ¼ �1:56þ0:60
�0:48ðPlanck þ TT þ lowEÞ

xde ¼ �1:58þ0:52
�0:41ðPlanck þ TT ;EE þ lowEÞ

xde ¼ �1:57þ0:50
�0:40ðPlanck þ TT ; TE;EE þ lowE þ lensingÞ

xde ¼ �1:04þ0:10
�0:10

ðPlanck þ TT ; TE;EE þ lowE þ lensingþ BAOÞ:

3.4. Analysis of the xde � x0
de pair

Many dark energy models have been developed over the

years to elucidate the accelerated expansion of the Cosmos.

Phase plane evaluation as proposed by Caldwell and Linder

[90] is one of the most useful tools in separating dark

energy models. The derivative of the EoS parameter xde

with respect to ln a is referred as x0
de. Besides, xde � x0

de

plane can be divided into two parts which are known as

thawing ðxde\0; x0
de [ 0Þ and freezing

ðxde\0; x0
de\0Þ regions. In freezing regions, cosmic

expansion occurs at an accelerated rate compared with

thawing regions. As shown in Figs. 4, 5, 6, 7 and 8, xde �
x0

de planes corresponding to Hubble, GO horizons with

different values of d and n. It is observed that they lie in the

freezing region ðxde\0; x0
de\0Þ for all values of d and n.

The xde � x0
de plane corresponding to Hubble, GO horizon

cutoffs with different values for d and n, fits closely with

observational data (Ade et al. [91]; Hinshaw et al. [92]):

xde ¼ �1:13þ0:24
�0:25;x

0
de\1:32ðPlanck þWPþ BAOÞ

xde ¼ �1:34þ0:18
�0:18;x

0
de

¼ 0:85 � 0:7ðWMAPþ eCAMBþ BAO þ H0Þ
xde ¼ �1:17þ0:13

�0:12;x
0
de

¼ 0:85þ0:50
�0:49ðWMAPþ eCAMBþ BAOþ H0 þ SNeÞ:

Fig. 1 RHDE Energy density qde ðkg m�1s�2Þ against redshift (z)
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4. Stability analysis

Our Analysis is based on perturbation technique to ensure

the stability of the exact or approximated background

solution. Perturbations of the fields of the gravitational

system is compared to the background evolutionary solu-

tion (Chen and Kao [93], Sharma et al. [94]). In this work

our focus will be on the stability of the background solution

under perturbations of the metric. All the three expansion

factors a1, a2 and a3 will be considered for possible per-

turbations through this method.

am ! aBm þ dam ¼ aBm

�
1 þ abm

�
: ð55Þ

For convenience, we will be focusing on the inputs dbm, in

place of dam. Hence, the volume scale factor can be

perturbed as VB ¼
Q3

m¼1 am, directional Hubble factors hm ¼
_am
am

as well as the average Hubble factor

h ¼
P3

m¼1 ¼ hm
3
¼ _V

3V. As a result, the following can be

demonstrated as

V ! VB þ VB

X
m

dbm; hm ! hBm þ
X
m

dbm; h

! hB þ
1

3

X
m

dbm: ð56Þ

The metric perturbations seem to be dbm and it obeys the

following equations at linear orders in dbmX
m

d €bm þ 2
X
m

hBmd _bm ¼ 0: ð57Þ

Fig. 2 Matter Energy density qm ðkg m�1s�2Þ against redshift (z)

Fig. 3 EoS parameter ðxdeÞ against redshift (z)

Fig. 4 xde � x0
de plane

Fig. 5 RHDE Energy density qde ðkg m�1s�2Þ against redshift (z)
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d €bm þ
_VB

VB
d _bm þ

X
m1

d _bm1
hBm ¼ 0: ð58Þ

X
d _bm ¼ 0: ð59Þ

We can easily calculate the following information from the

above three equations

d €bm þ
_VB

VB
d _bm ¼ 0: ð60Þ

where VB is the background volume scale factor. In our

case, VB is given by

VB ¼
�
tk3 þ k4

�2nþ1

: ð61Þ

According to Eqs. (60) and (61), the metric perturbation is

dbm ¼ c2 �
c1

2nk3

�
tk3 þ k4

�2n
;

ð62Þ

the constants c1 and c2 represent integration constants.

Hence, the actual fluctuations for each expansion factor

dam ¼ aBmdbm are expressed as

dam ¼ c2

�
tk3 þ k4

�2nþ1
3

� c1

2nk3

�
tk3 þ k4

�4n�1
3

: ð63Þ

Fig. 6 Matter Energy density qm ðkg m�1s�2Þ against redshift (z)

Fig. 7 EoS parameter ðxdeÞ against redshift (z)

Fig. 8 xde � x0
de plane

Fig. 9 Density parameter ðXdeÞ against redshift (z)
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dam ¼ c2

�
a0

1 þ z

�
�
c1

�
a0

1þz

�1�4n
2nþ1

2nk3

:
ð64Þ

According to Eq. (64), the dam approaches to zero as

z ! 1, i.e., dam ! 0. As a result, the solution to the

background problem is stable in the presence of the metric

perturbation.

5. Om-diagnostic

In separating the Universe into its various phases, Sahni

et al. [95] developed the Om-diagnostic, which comple-

ments the state-finder parameters, allowing for the inter-

pretation of the current matter density contrast to

Om(z) within the context of various models of the Uni-

verse. In addition, it is a geometric diagnostic that

explicitly considers the Hubble parameter (H) and redshift

(z).

Let us define the Om diagnostic function as follows:

OmðzÞ ¼ H2ðzÞ � H2
0

H2
0ðð1 þ zÞ3 � 1Þ

: ð65Þ

Here, H0 represents the current value of the Hubble

parameter. By analyzing the first derivative of the scale

factor, the Om(z) function is easier to reconstruct than

state-finder parameters. Dynamical dark energy on the

basis of the fact that they are distinct from the cosmolog-

ical constant, the slope of Om(z), with or without regard to

Fig. 10 Density parameter ðXdeÞ against redshift (z)

Fig. 11 Om(z) against redshift (z)

Fig. 12 Plot of luminosity distance ðdLÞ against redshift (z)

Fig. 13 Plot of angular diameter ðdAÞ against redshift (z)
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the matter density. It could be said that the constant

behavior of Om(z) with respect to z demonstrates that dark

energy is the cosmological constant ðKCDMÞ. According

to the positive slope of Om(z), dark energy behaves like a

phantom ðxde\� 1Þ, while the negative slope means that

dark energy behaves like a quintessence ð0[xde [ � 1Þ.
We plotted Om(z) versus redshift (z) in Fig. 11. We

observe that the slope of Om(z) is positive, so that the Om-

diagnostic indicates a phantom region.

6. Kinematical tests

One can extend phenomenological analysis to arbitrary

redshifts by using the formula in Eq. (29). For our obtained

model, we derive kinematical relations such as the look-

back time, luminosity distance, angular diameter distance,

and distance modulus.

• Look-Back time: In astronomy, the look-back time is

the point in the past when a distant object emits its

light. Based on the dynamics of the Universe, light (the

look back time Mt ¼ t0 � t) was emitted a long time

ago. The radiation travel time for a photon emitted by a

source at instant t and received at t0 is

Mt ¼
Z a0

a

da

_a
; ð66Þ

where a0 is the present scale factor of the Universe. The

scale factor a(t) corresponds to a0 for a given redshift z as

1 þ z ¼ a0

a
¼ k3t0 þ k4

k3t þ k4

� �2nþ1
3

: ð67Þ

The above equation provides

H0ðt0 � tÞ ¼ 2nþ 1

3
1 � ð1 þ zÞ

�3
2nþ1

h i
: ð68Þ

It is believed that at the present time, H0 is Hubble’s

constant, which is approximately in the range 50 to

100kms�1Mpc�1. In this regard, the Hubble constant’s

reciprocal is known as the Hubble time TH i:e:; TH ¼ H�1
0 ,

where TH is measured in s and H0 in s�1. Limit z ! 1 in

Eq. (68), the age of the Universe (extrapolated from the

Big Bang) is

t0 ¼ ð2nþ 1ÞH�1
0

3
¼ ð2nþ 1ÞTH

3
’ 2

3
TH : ð69Þ

• Luminosity Distance: In order to determine a light

source’s luminosity distance, you need to divide the

total energy flux L by the total apparent luminosity l,

d2
L ¼ L

ð4plÞ

� �
. The luminosity distance is calculated by

generalizing the inverse square law of brightness from

static Euclidean space to a curved space by using the

expression (Waga [96]):

dL ¼ c0 1 þ zð Þr1ðzÞ: ð70Þ

The radial coordinate distance of an object is r1ðzÞ, and is

as expressed

r1ðzÞ ¼
Z t0

t

dt

a
: ð71Þ

From (29), (70) and (71), we get

dL ¼ 3c
3

nþ1

0

k3ð2 � 2nÞ
k3ð2nþ 1Þ

3H0

� �2�2n
3

ð1 þ zÞ � ð1 þ zÞ
3

2nþ1

h i
:

ð72Þ

• Angular diameter distance: According to Hogg [97]

and Rudra [98], at a proper distance ðr1ðzÞÞ D relative

to t0, the angular diameter of a light source is defined as

follows:

d ¼ Dð1 þ zÞ2

dL
: ð73Þ

In order to calculate diameter distance, we need to divide

the diameter of the source by the angular diameter (in

radians), so we shall define the diameter distance dA as,

dA ¼ D

d
¼ dLð1 þ zÞ�2: ð74Þ

For our model the angular diameter distance dA is given by

dA ¼ 3c
3

nþ1

0

k3ð2 � 2nÞ
k3ð2nþ 1Þ

3H0

� �2�2n
3

ð1 þ zÞ�1 � ð1 þ zÞ
1�4n
2nþ1

h i
:

ð75Þ

• Distance Modulus: The distance modulus DM is given

by

DM ¼ 5 logðdLÞ þ 25

¼ 5 log
3c

3
nþ1

0

k3ð2 � 2nÞ
k3ð2nþ 1Þ

3H0

� �2�2n
3

 

ð1 þ zÞ � ð1 þ zÞ
3

2nþ1

h i
Þ þ 25:

ð76Þ

In Figs. 12, 13 and 14 we have plotted luminosity distance

ðdLÞ, angular diameter ðdAÞ and distance modules ðDMÞ
versus redshift (z) respectively. It is observed that the tra-

jectories of luminosity distance ðdLÞ, angular diameter ðdAÞ
and distance modules ðDMÞ are varying in positive region,

which indicates that these results are more compatible with

recent observations. Also, we observe that for different

values of n the trajectories of dL, dA & DM are decreasing

with decreases of redshift i.e., decreases as time increases

which is nearly equally to present observational data.
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In this work, we have examined the RHDE model with

SBT by using spatially homogeneous and anisotropic

Marder type space time. To the best of our knowledge, this

is the first time that RHDE with SBT in an anisotropic

background like Marder type Universe. Indeed, all previous

studies are framed in the standard homogeneous and iso-

tropic FRW Universe. In this sense, all the results obtained

in the present analysis are novel, as they account for ani-

sotropic effects in the evolution of the Universe. By

assuming the Hubble radius as an IR cutoff, we have

investigated some cosmological quantities like the RHDE

energy density (qde), matter energy density (qm), EoS

ðxdeÞ, xde � x0
de plane, RHDE density parameter (Xde),

stability analysis through perturbation, Om-diagnostic, and

kinematical tests, which are functions of the redshift (z). In

this study, these parameters are plotted against the redshift

(z) and discussed their agreement with recent findings. For

three various numbers of n and d, the EoS parameter

exhibits quintom-like behavior for both IR cut-offs. We

then look into the xde � x0
de plane and stability of the dark

energy model by using a metric perturbation method. It has

been found that quintom-like behavior and freezing region

explain the Universe’s accelerating rate of growth. Among

the main advantages over other descriptions of dark energy,

we have shown that our model correctly reproduces the

current accelerating phase of the cosmos. Now, we present

a comparative analysis of our work with the recent works

on this RHDE which is given below:

Maity and Debnath [50] have investigated Tsallis, Rényi

and Sharma-Mittal holographic and new agegraphic dark

energy models in D-dimensional fractal Universe. We

noticed that the EoS parameter of our model is consistent

and xde � x0
de plane is inconsistent with the results of

Maity and Debnath ([50]). Sharma and Dubey [51] have

investigated Rényi holographic dark energy with Hubble

horizon cutoff in the Brans Dicke cosmology. We observe

that our EoS parameter is consistent for RHDE with

Hubble horizon cutoff. Jawad et al. [52] have explored

Tsallis, Rényi and Sharma-Mittal holographic dark energy

models in Loop Quantum Cosmology with Hubble horizon

cutoff. We observe that our EoS parameter is consistent,

xde � x0
de plane have quite opposite behavior for RHDE

with Hubble horizon cutoff. Younas et al. [99] have

investigated cosmological implications of the generalized

entropy based holographic dark energy models in dynam-

ical Chern-Simons modified gravity with Hubble horizon

cutoff. We noticed that the EoS parameter is consistent and

xde � x0
de plane have opposite behavior for RHDE with

Hubble horizon cutoff. Iqbal and Jawad [100] have dis-

cussed Tsallis, Rényi and Sharma-Mittal holographic dark

energy models in DGP brane-world with Hubble horizon

cutoff. We noticed that the EoS parameter of RHDE with

Hubble horizon cutoff is consistent the results of Iqbal and

Jawad [100], whereas xde � x0
de plane of RHDE with

Hubble horizon cutoff has opposite behavior. Luciano

[101] has studied Saez–Ballester gravity in Kantowski-

Sachs Universe filled up with BHDE and dark matter by

assuming the Hubble radius as an IR cutoff and also

investigated both the cases of non-interacting and inter-

acting dark energy scenarios. We observe that BHDE qde
for the non-interacting model varies in positive regions and

is consistent with our results. The behavior of BHDE EoS

parameter for both non-interacting and interacting is con-

sistent with our results. Also, the behavior of BHDE xde �
x0

de plane for both non-interacting and interacting are

consistent with the results. The stability of both non-in-

teracting and interacting models are unstable whereas in

our case we have obtained the stable behavior.

7. Conclusion

In this work, we discuss some of the possible consequences

of RHDE model with Marder type space time with two IR

cutoffs: Hubble horizon L ¼ 1
H and GO horizon L ¼	

l1H
2 þ l2

_H

�1

2 cutoffs, in the framework of SBT of

gravitation. For this purpose, we have analyzed cosmo-

logical features associated with both the IR cutoffs

including energy density of RHDE (qde), energy density of

matter (qm), EoS parameter ðxdeÞ, xde � x0
de plane, density

parameter of RHDE (Xde), Om-diagnostic, stability anal-

ysis and kinematical tests. Briefly, we summarize our

results:

The obtained model (28) is anisotropic and expanding

with passage of time t. For both IR cutoffs

(i:e:;Hubble and GO) energy density of matter (qm) and

energy density of RHDE (qde) are positive throughout

Fig. 14 Plot of distance modulus ðDMÞ against redshift (z)
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evolution of the Universe. It is shown that in both IR

cutoffs, the path of the EoS parameter (xde) displays the

evolution from the quintessence to the phantom region of

the Universe, xde � x0
de plane lies in freezing region and

the Om-diagnostic gives phantom region. It is also

observed that both IR cutoffs have a positive density

parameter of RHDE (Xde) throughout the evolution. Using

perturbation analysis, we have examined the stability of the

DE model and found that RHDE demonstrates a greater

stability during cosmic evolution. Therefore model (28) is

stable. It is also tested kinematically with the findings of

look-back time ðMtÞ, luminosity distance ðdLÞ, angular

diameter distance ðdAÞ, and distance modulus ðDMÞ.
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