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Abstract: In this paper, we study the approximate analytical solutions for bound states of the l-wave Klein-Gordon

equation with a position-dependent mass subjected to a hyperbolic cotangent vector potential by using the concept of the

supersymmetric quantum mechanics approach. Within the framework of the proper approximation of the centrifugal term,

we obtain the bound state energy eigenvalues and the corresponding normalized wavefunctions written down in terms of

the Jacobi polynomials. Furthermore, it is found that the solutions in the case of constant mass for nonzero l-values are

identical to the ones obtained in the literature. Among these cases, Hulthén potential, Coulomb potential, and nonrela-

tivistic limit are discussed
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1. Introduction

There has been a growing interest to investigate the ana-

lytical solutions of the wave equation with certain types of

exactly solvable potentials which have become an impor-

tant area of research in different branches of physics. This

is due to the fact that the solutions of the wave equation

encompass all necessary information for the quantum

system. However, the relativistic wave equation plays an

important role in the description of physical phenomena at

high energies of a relativistic particle such as Klein-Gordon

and Dirac equations.

The exact or approximate analytical solutions of the

relativistic wave equations with various potential models

have received much attention recently. These solutions are

very essential in many aspects of modern physics, chemical

physics, molecular spectroscopy and molecular physics. In

particular, the Klein-Gordon equation is the most suitably

used wave equation for the treatment of spinless particles

in relativistic quantum mechanics.

Many authors have investigated the solutions of the

Klein-Gordon equation of the spin-zero particle having a

constant mass, subject to certain potential models by using

different methods. These methods include the path integral

approach [1–4], asymptotic iteration method [5, 6], Niki-

forov-Uvarov method [7–10], supersymmetric quantum

mechanics approach [11, 12], Laplace transform method

[13, 14], and other methods [15–19].

The position-dependent mass formalism has been used

to describe the physical properties of various microstruc-

tures, such as semiconductor heterostructure [20], quantum

liquids [21], quantum dots [22], 3He clusters [23], metal

clusters [24], compositionally graded crystals [25], and

electronic transport [26]. The ordering ambiguity of the

mass and momentum operators disappears in a relativistic

case, unlike their presence in a non-relativistic case.

Therefore, many authors have used different methods to

solve the Schrö dinger [27–30], Klein-Gordon [31–35], and

Dirac [36–38] wave equations with various kinds of Her-

mitian potentials in the framework of the position-depen-

dent mass system. In addition, relativistic quantum

problems with position-dependent mass in the context of

Klein-Gordon and Dirac equations with PT -symmetric
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non-Hermitian potentials have been discussed in several

works [39–44]. Moreover, the position-dependent effective

mass Klein-Gordon equation for each potential model can

be transformed into the constant mass Schrödinger-like

equation with energy-dependent potential, which is easier

to solve.

In this paper, our aim is to study the approximate ana-

lytical solution of any l-wave bounded states for the Klein-

Gordon equation of the spinless particle with position-de-

pendent mass distribution function in the presence of a

hyperbolic cotangent vector potential by using the

approach of supersymmetric quantum mechanics (SUS-

YQM). These solutions are presented for the arbitrary

angular momentum by using the usual approximation

scheme of the centrifugal potential term to acquire small

values of the screening parameter [45]. The SUSYQM

approach is very easy to implement and the results are

sufficiently accurate for practical purposes.

2. Review of SUSYQM approach

The introduction of the SUSYQM approach [46] generated

renewed interest in solvable problems of relativistic and

nonrelativistic quantum mechanics. This approach has been

used to determine the bound states solutions of stationary

standard one-dimensional Schrödinger [47] or Schrö-

dinger-like equations [35] for certain kinds of potentials in

the context of a system with constant mass or position-

dependent mass. Moreover, the description of SUSYQM

approach can start with the one-dimensional stationary

Schrödinger equation [46] for a particle with mass m0

subject to a potential U(x) which we write in a reduced

form as

Hun xð Þ ¼ � d2

dx2
þ tðxÞ

� �
un xð Þ ¼ Enun xð Þ for x 2 a; bð Þ;

ð1Þ

where tðxÞ and the bound-states eigenvalues En are linked

to the physical potential U(x) and the energy levels En by

tðxÞ ¼ 2m0

�h2
UðxÞ and En ¼

2m0

�h2
En: ð2Þ

For the purposes of the SUSYQM approach, the potential

U(x) is assumed to be hermitian and independent of the

energy [46].

The SUSYQM approach is based on the definition of

two new Hamiltonians, denoted H �ð Þ a1ð Þ and H þð Þ a1ð Þ and

called supersymmetric partner Hamiltonians, by means of a

function Wðx; a1Þ; called superpotential, as

H �ð Þ a1ð Þ ¼ Aþ a1ð ÞA a1ð Þ ¼ � d2

dx2
þ t �ð Þðx; a1Þ; ð3Þ

H þð Þ a1ð Þ ¼ A a1ð ÞAþ a1ð Þ ¼ � d2

dx2
þ t þð Þðx; a1Þ; ð4Þ

where A a1ð Þ and Aþ a1ð Þ are first-order differential

operators defined by

A a1ð Þ ¼ d

dx
þWðx; a1Þ; ð5Þ

Aþ a1ð Þ ¼ � d

dx
þWðx; a1Þ; ð6Þ

and a1 is a set of parameters (often only one parameter).

From (3), (4), (5) and (6), the potentials t �ð Þðx; a1Þ;
called also partner potentials, are then given by

t �ð Þðx; a1Þ ¼ W2ðx; a1Þ �
dWðx; a1Þ

dx
: ð7Þ

The goal is now to obtain Wðx; a1Þ in such a way as to

satisfy the equality

H �ð Þ a1ð Þ ¼ H � E0; ð8Þ

or equivalently

t �ð Þðx; a1Þ ¼ W2ðx; a1Þ �
dWðx; a1Þ

dx
¼ tðxÞ � E0; ð9Þ

where E0 is the ground-state eigenvalue of H.

Thus, the superpotential Wðx; a1Þ satisfies a Riccati

nonlinear equation, which is often difficult to solve. In

practice, we have just to propose a suitable function and

proceed by identifying the similar terms between the two

sides. This lets us fix Wðx; a1Þ, i.e., the parameters a1; and

E0 in terms of the constituents of tðxÞ:
Moreover, if we denote by E �ð Þ

n a1ð Þ and u �ð Þ
n x; a1ð Þ,

respectively, the eigenvalues and eigenfunctions of

H �ð Þ a1ð Þ; then, by virtue of Eq. (8), it is clear that they are

linked to those of the Hamiltonian H by

un xð Þ ¼ u �ð Þ
n x; a1ð Þ; ð10Þ

and

En ¼ E �ð Þ
n a1ð Þ þ E0: ð11Þ

In other words, the bound states of H are deduced from

those of H �ð Þ a1ð Þ by a simple substitution of the

parameters a1 by their expressions obtained from (9).

Furthermore, it is clear that the ground-state eigenvalue of

the partner H �ð Þ a1ð Þ is zero

E
�ð Þ

0 a1ð Þ ¼ 0; ð12Þ

and form the Schrödinger equation for this state, one easily
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deduce that the corresponding unnormalized eigenfunction,

u �ð Þ
0 x; a1ð Þ is given by

u �ð Þ
0 x; a1ð Þ� exp �

Z x

Wðy; a1Þdy

� �
: ð13Þ

Thus, the goal is then to solve the Schrödinger equation for

H �ð Þ a1ð Þ:However, for certain potentials, called

supersymmetric potentials, it is not necessary thanks to

Gendenshtein’s property of shape invariance between the

corresponding partner potentials [48]. Indeed, it is proved

that if tðxÞ is supersymmetric, then equivalently its

corresponding partner potentials satisfy the so-called

shape invariance relation [48], given by

t þð Þðx; a1Þ ¼ t �ð Þðx; a2Þ þ R a1ð Þ; ð14Þ

where the set of parameters a2 are function of a1, namely,

a2 ¼ f a1ð Þ, and the remainder R a1ð Þ is independent of x, so

that the eigenvalues E �ð Þ
n a1ð Þ are simply given by

E �ð Þ
n a1ð Þ ¼

Xn
k¼1

R akð Þ for n ¼ 1; 2; . . .nmax; ð15Þ

where

ak ¼ f k�1 a1ð Þ � f � f � . . . � f|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
k�1ð Þ times

a1ð Þ;
ð16Þ

and nmax is the maximum number of accepted eigenvalues,

that are corresponding to normalized eigenfunctions

u �ð Þ
n x; a1ð Þ, i.e.,

Zb

a

u �ð Þ
n x; a1ð Þ

�� ��2dx\1: ð17Þ

The eigenfunctions of the excited sates of the Hamiltonian

partner H �ð Þ a1ð Þ, namely u �ð Þ
n x; a1ð Þ for 1� n� nmax; can

be evaluated in two different ways. The first consists in

using the recurrence relation [49]

u �ð Þ
n x; a1ð Þ ¼

Yn
i¼1

Aþ aið Þ
" #

u0 x; anþ1ð Þ for 1� n� nmax;

ð18Þ

or equivalently [50]

u �ð Þ
n x; a1ð Þ ¼ Aþ a1ð Þu �ð Þ

n�1 x; a2ð Þ for 1� n� nmax; ð19Þ

which make it possible to express step by step all the

eigenfunctions of the excited states. However, in this way,

it is often difficult to obtain a general formula allowing to

express all the eigenfunctions as a function of the quantum

number n.

The second way, which is widely used in the literature,

consists in substituting into Eq. (1) the eigenvalues En by

their expressions obtained by the supersymmetry and then

solving the resulting equation by the standard approach.

This method is more manageable.

3. Klein Gordon equation with position-dependent

mass

The time-independent Klein-Gordon equation for a spinless

particle subjected to a mixture of central potentials, vector

and scalar, V rð Þ and S rð Þ, can be written as an equation for

a particle whose mass M rð Þ depends on the position, sub-

ject only to the vector potential V rð Þ.
Indeed, let

�r2 þ b2c4M2 rð Þ � b2 E � V rð Þð Þ2
h i

W rð Þ ¼ 0; ð20Þ

with

c2M rð Þ ¼ m0c
2 þ S rð Þ

� �
; ð21Þ

where r2 is the Laplacian operator, W rð Þ � W r; h;uð Þ is

the wavefunction and E, the corresponding relativistic

energy, and b ¼ 1=�hc; �h ¼ h=2p, h is the constant of

Planck, c is the speed of light. Since, the potentials are

radial functions, the wavefunction W rð Þ is written as

W rð Þ ¼ u rð Þ
r

Ylm h;uð Þ; ð22Þ

where u rð Þ is a radial function, and Ylm h;uð Þ for l 2 N and

�l�m� l are the spherical harmonic functions. Thus, by

using the method of separation of variables, we obtain the

second-order differential equation for the radial function

u rð Þ in the following form

� d2

dr2
þ l lþ 1ð Þ

r2
þ b2c4M2 rð Þ � b2 E � V rð Þð Þ2

� 	
�

u rð Þ ¼ 0:

ð23Þ

Obviously, Eq. (23) is not an eigenvalues equation of the

Schrödinger type. It is often written in several works of the

literature in the form

� d2

dr2
þ l lþ 1ð Þ

r2
þ b2 c4M2 rð Þ þ V2 rð Þ þ 2EV rð Þ

� �� 	
�

u rð Þ ¼ eEu rð Þ;
ð24Þ

with eE ¼ b2E2. However, even in this form, this equation

is no longer an eigenvalue equation of the Schrödinger type

since the energy E exists both in the eigenvalue eE and in
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the effective potential through the term 2b2EV rð Þ: Hence,

this equation cannot be treated by the approach of SUS-

YQM without some ambiguity.

In order to overcome this drawback and use the SUS-

YQM approach unambiguously, we propose the following

trick. Instead of solving Eq. (23), we solve the auxiliary

Schrödinger-like eigenvalues equation given by

� d2

dr2
þ VE rð Þ

� 	
w rð Þ ¼ Ew rð Þ; ð25Þ

where the effective potential VE rð Þ, which reads

VE rð Þ ¼ l lþ 1ð Þ
r2

þ b2 c4M2 rð Þ � E � V rð Þð Þ2

 �

; ð26Þ

is explicitly dependent on the energy E, considered as a

real parameter.

Then, Eq. (25) can now be solved for bound states by

SUSYQM approach without ambiguity if VE rð Þ is super-

symmetric. Hence, when the eigenvalues, denoted by Enl �
Enl Eð Þ (where the indices n and l denote the radial and

angular quantum numbers, respectively) are obtained, the

energy levels Enl of Eq. (23) are deduced by the real

solutions of the equation

Enl Eð Þ ¼ 0: ð27Þ

The corresponding radial wavefunctions unl rð Þ may be

obtained from the eigenfunctions wnl r;Eð Þ by

unl rð Þ ¼ wnl r;Eð ÞjEnl Eð Þ¼0: ð28Þ

The procedure to follow to do this is to replace E by Enl in

Eq. ( 23) and then solve the differential equation by the

standard method, for the radial wavefunctions unl rð Þ:

4. Bound state solutions by means of SUSYQM

approach for an appropriate model

The goal is to solve Eq. (25) for bound states by means of

SUSYQM for an interesting model characterized by a

position-dependent mass and a vector potential, as a central

hyperbolic functions, defined by

M rð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

0 þ
k
c

� �2

sinh2 ar

s
; ð29Þ

and

V rð Þ ¼ �gc coth ar; ð30Þ

where m0; a, k and g are real positive parameters with

m0½ 	 ¼ M, a½ 	 ¼ L�1and k½ 	 ¼ g½ 	 ¼ MLT�1:

Note that the speed of light c is explicitly included in the

expressions of M(r) and V(r) only by convenience of cal-

culations, so that k and g have the same dimension.

However, in concrete examples, they can be considered as

order 0 and order 1, compared to c�1, respectively, i.e.,

k ¼ k0 þ O c�1
� �

and g ¼ g0c
�1 þ O c�2

� �
: ð31Þ

Furthermore, because of the centrifugal term in the

effective potential, Eq. (25) cannot be solved exactly for

states with l 6¼ 0. In order to get analytical solutions for any

l-states, we use the usual approximation scheme of the

centrifugal potential term [45], which we write in the

following form

1

r2

 a2

sinh2 ar
; ð32Þ

which is satisfied for ar\\1. Substituting Eqs. (29), (30)

and (32) into (26), the E-dependent effective potential

takes the following form

VE rð Þ ¼ K1

sinh2 ar
� 2K2 coth ar þ K3; ð33Þ

which is a shifted hyperbolic Eckart-type potential, where

the parameters K1, K2 and K3 are given by

K1 �K1 lð Þ ¼ a2l lþ 1ð Þ þ b2c2 k2 � g2
� �

; ð34Þ

K2 �K2 Eð Þ ¼ b2cgE; ð35Þ

and

K3 � K3 Eð Þ ¼ b2 m2
0c

4 � g2c2 � E2
� �

: ð36Þ

Substituting (33) into Eq. (25), we obtain the following

Schrödinger-like eigenvalues equation as

HEwnl rð Þ ¼ � d2

dr2
þ K1

sinh2 ar
� 2K2 coth ar þ K3

� �
wnl rð Þ

¼ Enlwnl rð Þ;
ð37Þ

where the eigenvalues and eigenfunctions are depending on

the parameter E, i.e., Enl � Enl Eð Þ and wnl rð Þ � wnl E; rð Þ:

4.1. Bound states eigenvalues Enl

In order to solve the differential equation (37) for the

bound states eigenvalues Enl by means of SUSYQM

approach, we chose the superpotential WE r; a1ð Þ as

WE r; a1ð Þ ¼ �a1 coth ar þ K2

a1

: ð38Þ

Following the recipe in Sect. 2, the partner Hamiltonians

read

H
�ð Þ
E a1ð Þ ¼ � d2

dr2
þ V

�ð Þ
E r; a1ð Þ; ð39Þ

and we denote by E
�ð Þ
nl a1ð Þ � E

�ð Þ
nl E; a1ð Þ and
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w �ð Þ
nl r; a1ð Þ � w �ð Þ

nl r;E; a1ð Þ, respectively, their eigenvalues

and eigenfunctions. The partner potentials are given by

V
�ð Þ

E r; a1ð Þ ¼ a1 a1 � að Þ
sinh2 ar

� 2K2 coth ar þ a2
1 þ

K2
2

a2
1

; ð40Þ

V
þð Þ

E r; a1ð Þ ¼ a1 a1 þ að Þ
sinh2 ar

� 2K2 coth ar þ a2
1 þ

K2
2

a2
1

: ð41Þ

Moreover, substituting (38) into (13), it is easy to express

the unnormalized ground-state eigenfunction of H
�ð Þ
E a1ð Þ

in the form

w �ð Þ
0l r; a1ð Þ� sinh arð Þ

a1
a e

�K2
a1
r
; ð42Þ

which corresponds to a null eigenvalue

E
�ð Þ

0l a1ð Þ � 0: ð43Þ

To ensure that this function is normalizable on the interval

r 2 0;1	 ½, in the sense of (17), it must satisfy the boundary

conditions

lim
r!0

w �ð Þ
0l r; a1ð Þ ¼ lim

r!1
w �ð Þ

0l r; a1ð Þ ¼ 0; ð44Þ

which yield the following constraints on the parameters a1

and K2; given by

a1 [ 0; ð45Þ

and

K2 ¼ b2cgE[ a2
1: ð46Þ

From (40) and (41), we see that the shape invariance

between V
þð Þ
E r; a1ð Þ and V

�ð Þ
E r; a1ð Þ is satisfied, namely

V
þð Þ

E r; a1ð Þ ¼ V
�ð Þ
E r; a2ð Þ þ R a1ð Þ; ð47Þ

with

a2 ¼ a1 þ a; ð48Þ

and the reminder R a1ð Þ � R E; a1ð Þ is given by

R a1ð Þ ¼ a2
1 þ

K2
2

a2
1

� �
� a1 þ að Þ2þ K2

2

a1 þ að Þ2

 !
: ð49Þ

Consequently, by virtue of (15) and (16), the eigenvalues

E
�ð Þ
nl a1ð Þ; of the partner Hamiltonian H �ð Þ a1ð Þ; are given by

E
�ð Þ
nl a1ð Þ ¼ a2

1 þ
K2

2

a2
1

� �

� a1 þ nað Þ2þ K2
2

a1 þ nað Þ2

 !
for n ¼ 1; 2; . . .; nmax;

ð50Þ

where nmax is given by the constraint

a1 þ nað Þ2\K2 ¼) nmax ¼ 1

a

ffiffiffiffiffiffi
K2

p
� a1


 �� 	
: ð51Þ

In order to obtain the eigenvalues Enl, we have first to fix

the ground state eigenvalue E0l and the parameter a1 by

means of Eq. (9), which reads

a1 a1 � að Þ
sinh ar

� 2K2 coth ar þ a2
1 þ

K2
2

a2
1

¼ K1

sinh2 ar
� 2K2 coth ar þ K3 � E0l:

ð52Þ

By identifying identical terms and taking into account the

constraint (45), we easily find

E0l ¼ K3 � a2
1 þ

K2
2

a2
1

� �
; ð53Þ

and

a1 � a1 lð Þ ¼ am0l; ð54Þ

where

m0l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lþ 1

2

� �2

þ k2 � g2

�h2a2

s
þ 1

2
; ð55Þ

with the new constraint on the parameters k and g; given by

lþ 1

2

� �2

þ k2 � g2

�h2a2
� 0 ¼) g2 � k2 þ �h2a2

4
: ð56Þ

Using now (11) with (50), (53) and (55) leads

Enl Eð Þ ¼ b2 m2
0c

4 � g2c2 � E2
� �

� a2m2
n þ

b4c2g2E2

a2m2
n

� �
;

ð57Þ

with

mnl ¼ m0l þ n: ð58Þ

4.2. Energy levels Enl

Solving the equation Enl Eð Þ ¼ 0 leads, after a straightfor-

ward calculation, to

E2
nl ¼ m2

0c
4 �h2a2m2

nl

�h2a2m2
nl þ g2

� �h2a2m2
nl

m2
0c

2

 !
: ð59Þ

Now, knowing that under the constraint (46), the parameter

E must be positive, we deduce that the energy levels Enl

must also be positive quantities and then we have

Enl ¼ m0c
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h2a2m2

nl

�h2a2m2
nl þ g2

� �h2a2m2
nl

m2
0c

2

s
for n ¼ 0; 1; . . .; nmax;

ð60Þ

Supersymmetric approach to approximate analytical solutions 2097



where nmax is the number of bound states, which will be

given later from the condition of normalization of the

corresponding wavefunctions unl rð Þ.

4.3. Radial wavefunctions unl rð Þ

As stated before, the radial wavefunctions unl rð Þ can in

principle be derived using Eq. (28) if the eigenfunctions

wnl E; rð Þ are explicitly dependent of the eigenvalues Enl;

but unfortunately it is not. For that, we will obtain the

unl rð Þ straightforwardly by solving Eq. (37) after taking

Enl ¼ 0 and replacing E by Enl:

Thus, after some algebraic manipulations and taking

into account the notation (54), the equation to solve reads

d2

dr2
� a2m0l m0l � 1ð Þ

sinh2 ar
þ 2gEnl

c�h2
coth ar � a2m2

nl �
g2E2

nl

c2�h4a2m2
nl

" #
unl rð Þ ¼ 0:

ð61Þ

To solve this equation with the standard method, we first

make the following point transformation

z ¼ 1 � e�2ar 2 0; 1	 ½ and unl rð Þ ¼ unl zð Þ; ð62Þ

and with straightforward manipulations and with simple

manipulations, it turns out that the new function unl zð Þ
satisfies the following hypergeometric differential equation

z 1 � zð Þu00nl zð Þ � zu0nl zð Þ � 1

z 1 � zð Þ
1

4

gEnl

�h2ca2mnl
� mnl

� �2

z2

"

� gEnl

a2c�h2
þ m0l m0l � 1ð Þ

� �
zþ m0l m0l � 1ð Þ



unl zð Þ ¼ 0:

ð63Þ

Setting now

unl zð Þ ¼ zm 1 � zð Þlvnl zð Þ; ð64Þ

and searching for m and l such that

Re m[ 0 and Re l[ 0; ð65Þ

and vnl zð Þ satisfies Gauss hypergeometric differential

equation. Thus, by inserting (64) into (63), we obtain

straightforwardly the following differential equation

z 1 � zð Þv00nl zð Þ þ 2m� 2 mþ lð Þ þ 1ð Þzð Þv0nl zð Þ

þ Pz2 þ Qzþ R

z 1 � zð Þ vnl zð Þ ¼ 0;
ð66Þ

with

P ¼ mþ lð Þ2� gEnl

2a2c�h2
� 1

4
m2
nl þ

g2E2
nl

c2�h4a4m2
nl

 !
; ð67Þ

Q ¼ m� 2m mþ lð Þ þ gEnl

a2c�h2
þ m0l m0l � 1ð Þ; ð68Þ

R ¼ m2 � m� m0l m0l � 1ð Þ: ð69Þ

Choosing m and l such that R � 0 and Pþ Q � 0, Eq. ( 66)

reduces to the canonical Gauss hypergeometric equation,

given by

z 1 � zð Þv00nl zð Þ þ 2m0l � 2 m0l þ lnlð Þ þ 1ð Þzð Þv0nl zð Þ
� m0l þ lnl � nnlð Þ m0l þ lnl þ nnlð Þvnl zð Þ ¼ 0;

ð70Þ

where

m ¼ m0l; ð71Þ

l � lnl ¼
1

2

gEnl

c�h2a2mnl
� mnl

� �
; ð72Þ

and

nnl ¼
1

2

gEnl

c�h2a2mnl
þ mnl

� �
: ð73Þ

Taking into account (65), it is easy to show that the

constraint lnl [ 0 induces a restriction on the number of

allowed bound states, namely

0� n� nmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g m0c� gð Þ

p
�ha

� m0l

( )
; ð74Þ

with kf g stands for the largest integer inferior to k.

Moreover, the parameter g must be strictly positive.

Consequently vnl zð Þ is none other than the hypergeo-

metric Gauss function

vnl zð Þ� 2F1 m0l þ lnl � nnl; m0l þ lnl þ nnl; 2m0l; zð Þ; ð75Þ

From Eqs. (71), (72) and (73) it follows that

m0l þ lnl � nnl ¼ �n; ð76Þ

and therefore vnl zð Þ is a polynomial of degree n as it should

be.

Taking into account Eqs. (62), (64) and the relation (76),

the radial wavefunctions unl rð Þ are then given by

unl rð Þ ¼ Nnle
�2alnlr 1 � e�2ar

� �m0l

�2F1 �n; nþ 2 m0l þ lnlð Þ; 2m0l; 1 � e�2ar
� �

;
ð77Þ

where Nnl are normalization constants an n satisfying (74).

For the purpose of evaluating the normalization con-

stants Nnl directly, it is best to write the Gauss hypergeo-

metric polynomials in terms of Jacobi polynomials. So, by

using the following relationship (see formula (8.962.1) in

Ref. [51])
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2F1 �n; nþ aþ bþ 1; bþ 1;
1 þ x

2

� �

¼ �1ð Þnn!C bþ 1ð Þ
C nþ bþ 1ð Þ P a;bð Þ

n xð Þ;
ð78Þ

Equation (77) becomes

unl rð Þ ¼ Nnl
�1ð Þnn!C 2m0lð Þ
C nþ 2m0lð Þ e�2alnlr 1 � e�2ar

� �m0l�

P 2lnl;2m0l�1ð Þ
n 1 � 2e�2ar

� �
:

ð79Þ

The normalization condition reads

Zþ1

0

unl rð Þj j2dr ¼ 1; ð80Þ

and by using the change of variable as x ¼ 1 � 2e�2ar,

leads to

N�2
nl ¼ a�1

2aþbþ2

n!C 2m0lð Þ
C nþ 2m0lð Þ

� 
2Z 1

�1

1 � xð Þ2lnl�1
1 þ xð Þ2m0l

� P 2lnl;2m0l�1ð Þ
n xð Þ

h i2

dx:

ð81Þ

The integral in (81) is forwardly evaluated by setting

1 þ x ¼ 2 � 1 � xð Þ; ð82Þ

and making use of the following two integrals (see formula

(7.391.5) in [51])

Z1

�1

1 � xð Þa�1
1 þ xð Þb P a;bð Þ

n xð Þ
h i2

dx

¼ 2aþbC nþ aþ 1ð ÞC nþ bþ 1ð Þ
n!aC nþ aþ bþ 1ð Þ ;

ð83Þ

where Re að Þ[ 0 and Re bð Þ[ � 1, and (see formula

(7.391.1) in [51])

Z1

�1

1 � xð Þa 1 þ xð Þb P a;bð Þ
n xð Þ

h i2

dx

¼ 2aþbþ1C nþ aþ 1ð ÞC nþ bþ 1ð Þ
n! 2nþ aþ bþ 1ð ÞC nþ aþ bþ 1ð Þ ;

ð84Þ

which are valid for Re að Þ[ � 1 and Re bð Þ[ � 1. The

final result is

Nnl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4alnl nþ lnl þ m0lð ÞC nþ 2m0lð ÞC nþ 2lnl þ 2m0lð Þ

n! nþ m0lð ÞC nþ 2lnl þ 1ð ÞC2 2m0lð Þ

s
:

ð85Þ

5. Special cases

The aim of this section is to deduce in special cases the

relativistic bound states for a spinless particle of constant

mass and zero scalar potential for two models of vector

potentials, namely the Hulthén and Coulomb potentials.

Also, we show how to obtain their counter parts in the non-

relativistic limit.

5.1. Vector potential as Hulthén potential and constant

mass

For Hulthén potential [52]

V Hð Þ rð Þ ¼ � �gde�dr

1 � e�dr
; ð86Þ

we have just to replace in Eq. (26) V rð Þ by V Hð Þ rð Þ: But

since the Hulthén potential may be written

V Hð Þ rð Þ ¼ � �gde�dr

1 � e�dr
¼ � �gd

2
coth

d
2
r þ �gd

2
; ð87Þ

the approximate bound states corresponding to Hulthén

potential in (86) with constant mass may be obtained

straightforwardly by making the following substitutions

Enl �! E
Hð Þ
nl � �gd

2
; a �! d

2
; g �! �gd

2c
and k ¼ 0; ð88Þ

in (60), (74), (77) and (85). After laborious algebraic

manipulations, and by defining new parameters mnl and lnl
as

mnl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lþ 1

2

� �2

� �g2

�h2c2

s
þ 1

2
þ n; ð89Þ

and

lnl ¼
1

2

2�gm0

�h2d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

m2
nl þ

g2

�h2c2

� �h2d2

4m2
0c

2

vuut � mnl

0
@

1
A; ð90Þ

we get

E
Hð Þ
nl ¼ �gd

2
þ m0c

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2
nl

m2
nl þ

g2

�h2c2

� �h2d2

4m2
0c

2
m2
nl

vuut ; ð91Þ

and

u
Hð Þ
nl rð Þ ¼ N

Hð Þ
nl e�lnldr 1 � e�dr

� �m0l�

2F1 �n; nþ 2 m0l þ lnlð Þ; 2m0l; 1 � e�dr
� �

;
ð92Þ

with
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N
Hð Þ
nl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2dlnl nþ lnl þ m0lð ÞC nþ 2m0lð ÞC nþ 2lnl þ 2m0lð Þ

n! nþ m0lð ÞC nþ 2lnl þ 1ð ÞC2 2m0lð Þ

s
;

ð93Þ

for n ¼ 1; 2; . . .; n
Hð Þ

max; and

n Hð Þ
max ¼

ffiffiffiffiffiffiffiffiffiffiffi
2�gm0

d�h2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � �gd

2m0c2

s
� m0l

( )
; ð94Þ

where kf g stands for the largest integer inferior to k.

By adjusting the notations of mnl and lnl to those of the

literature, it is easy to see that our results are in perfect

agreement with, for example, those of the references

[16, 35].

5.1.1. Nonrelativistic limit

In order to obtain the approximate bound states energy

levels for Hulthén potential in the non-relativistic limit,

denoted here by E
HNRð Þ
nl ; it suffices to subtract the rest

energy m0c
2 from E

Hð Þ
nl and then take the limit c ! 1, i.e.,

E
HNRð Þ
nl ¼ �gd

2
þ lim

c�!1
m0c

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2
nl

m2
nl þ

g2

�h2c2

� �h2d2m2
nl

4m2
0c

2

vuut � 1

0
@

1
A:

ð95Þ

Let us write the right hand side of Eq. (95) up to first order

in x ¼ g2

�h2c2 : Since

m2
nl �
c�!1

nþ lþ 1ð Þ2� nþ lþ 1

lþ 1
2

g2

�h2c2
; ð96Þ

it comes that

m2
nl

m2
nl þ

g2

�h2c2

�
c�!1

1 � 1

nþ lþ 1ð Þ2

g2

�h2c2
; ð97Þ

and

�h2d2m2
nl

4m2
0c

2
�

c�!1

�h4d2 nþ lþ 1ð Þ2

4g2m2
0

g2

�h2c2
: ð98Þ

Substituting (97) and (98) into (95) leads straightforwardly

to the approximate nonrelativistic eigenvalues of Hulthén

potential, given by

E
HNRð Þ
nl ¼ � �h2

2m0

gm0

�h2 nþ lþ 1ð Þ
� d nþ lþ 1ð Þ

2

� �2

: ð99Þ

By putting g ¼ Ze2, we see that this result coincides

exactly with what is obtained in the literature [53, 54].

Moreover, we obtain the radial wavefunctions as

u
HNRð Þ
nl rð Þ ¼ N

HNRð Þ
nl e�lNRnl dr 1 � e�dr

� �mNRnl �
2F1 �n; nþ 2 mNR0l þ lNRnl

� �
; 2mNR0l ; 1 � e�dr

� �
;

ð100Þ

with

N
HNRð Þ
nl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2dlNRnl nþ lNRnl þ mNR0l

� �
C nþ 2mNR0l

� �
C nþ 2lNRnl þ 2mNR0l

� �
n! nþ mNR0l

� �
C nþ 2lNRnl þ 1
� �

C2 2mNR0l

� �
s

;

ð101Þ

where

mNRnl ¼ lim
c�!1

mnl ¼ nþ lþ 1; ð102Þ

and

lNRnl ¼ lim
c�!1

lnl ¼
1

2

2�gm0

�h2d nþ lþ 1ð Þ
� nþ lþ 1ð Þ

� �
:

ð103Þ

The number of the energy levels, n
HNRð Þ

max ; is given by

n HNRð Þ
max ¼ lim

c�!1
n Hð Þ

max ¼ 1

�h

ffiffiffiffiffiffiffiffiffiffiffi
2�gm0

d

r
� lþ 1ð Þ

( )
: ð104Þ

Also, these results are in perfect agreement with those of

Refs. [53, 54].

5.2. Vector potential as Coulomb potential

and constant mass

Since Coulomb potential is obtained from Hulthén poten-

tial in the limit d �! 0, i.e.,

V Cð Þ xð Þ ¼ lim
d�!0

V Hð Þ rð Þ ¼ � �g
r
; ð105Þ

their approximate eigenstates are obtained by the same

limit on those of Hulthén potential.

Thus,

E
Cð Þ
nl ¼ lim

d�!0

�gd
2
þ m0c

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2
nl

m2
nl þ

g2

�h2c2

� �h2d2

4m2
0c

2
m2
nl

vuut
0
@

1
A

¼ m0c
2 1 þ g2

�h2c2m2
nl

� ��1
2

:

ð106Þ

where n ¼ 0; 1; 2; . . .1; since

n Cð Þ
max ¼ lim

d�!0
n Hð Þ

max ¼ 1: ð107Þ

Moreover, the corresponding radial wavefunctions are

given by formula
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u
Cð Þ
nl rð Þ ¼ lim

d!0
N

Hð Þ
nl e�lnldr 1 � e�dr

� �m0l�

2F1 �n; nþ 2 m0l þ lnlð Þ; 2m0l; 1 � e�dr
� �

:
ð108Þ

We have

lim
d!0

1 � e�dr
� �m0l � drð Þm0l ; ð109Þ

and using (90) and (106), it is easy to find

lim
d!0

lnld ¼ �gm0

�h2

1

m2
nl þ

g2

�h2c2

¼ �gE Cð Þ
nl

�h2c2mnl
; ð110Þ

and consequently

lim
d!0

e�lnldr ¼ e
�

�gE
Cð Þ
nl

�h2c2mnl
r
: ð111Þ

Moreover, by virtue of (109) and (110), we can write

lim
d!0

2F1 �n; nþ 2 m0l þ lnlð Þ; 2m0l; 1 � e�dr
� �

� lim
d!0

2F1 �n;
2�gE Cð Þ

nl

�h2c2mnld
; 2m0l; dr

 !

¼ 1F1 �n; 2m0l;
2�gE Cð Þ

nl

�h2c2mnl
r

 !
;

ð112Þ

where we used the known asymptotic formula [55]

lim
d!0

2F1 �n;
k
d
; c; dr

� �
¼ 1F1 �n; c; krð Þ: ð113Þ

Substituting (109), (110) and (112) into (108), the

approximate radial wavefunctions of the relativistic

Coulomb potential read

u
Cð Þ
nl rð Þ ¼ N

Cð Þ
nl r

m0l exp � �gE Cð Þ
nl

�h2c2mnl
r

 !
1F1 �n; 2m0l;

2�gE Cð Þ
nl

�h2c2mnl
r

 !
;

ð114Þ

and the normalization constant N
Cð Þ
nl is given by

N
Cð Þ
nl ¼ lim

d!0
dm0lN

Hð Þ
nl : ð115Þ

The details of the calculations are as follows. We first need

to get the behavior of each factor in N
Hð Þ
nl and then calculate

the limit.

We have by virtue of (110)

lim
d!0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2dlnl nþ lnl þ m0lð Þ

p
�

ffiffiffiffiffiffiffiffiffiffiffi
2dl2

nl

q
� 2�gE Cð Þ

nl

�h2c2mnl

 !
1ffiffiffi
d

p :

ð116Þ

For the other factors, i.e., the Gamma functions containing

the parameter d, we first write their behaviors as

lim
d!0

C nþ 2lnl þ 2m0lð Þ�C
A

d
þ m0l

� �
; ð117Þ

lim
d!0

C nþ 2lnl þ 1ð Þ�C
A

d
þ 1 � m0l

� �
; ð118Þ

with

A ¼ 2�gE Cð Þ
nl

�h2c2mnl
; ð119Þ

Using Stirling’s famous formula

C Xð Þ�
ffiffiffiffiffiffi
2p

p
XX�1

2e�X ; ð120Þ

which is valid for large X, it is easy to obtain

lim
d!0

C
A

d
þ f

� �
�

ffiffiffiffiffiffi
2p

p A

d

� �A
dþf�1

2

e�
A
d; ð121Þ

for parameters A and f independent of d: Thus, we deduce

that

lim
d!0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C nþ 2lnl þ 2m0lð Þ
C nþ 2lnl þ 1ð Þ

s

¼ lim
d!0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
A
d þ m0l

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A
d þ 1 � m0l

q � 2�gE Cð Þ
nl

�h2c2mnl

1

d

 !m0l�1
2

:

ð122Þ

Substituting (116) and (122) into (93) and taking the limit

d ! 0 leads

lim
d!0

N
Hð Þ
nl � 1

C 2m0lð Þ
2�gE Cð Þ

nl

�h2c2mnl

 !m0lþ1
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C nþ 2m0lð Þ
n! nþ m0lð Þ

s
d�m0l ;

ð123Þ

and by virtue of (115), we obtain the normalization

constant of the relativistic Coulomb potential as

N
Cð Þ
nl ¼ 1

C 2m0lð Þ
2�gE Cð Þ

nl

�h2c2mnl

 !m0lþ1
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C nþ 2m0lð Þ
n! nþ m0lð Þ

s
: ð124Þ

These results are identical to those in [35, 56].

5.3. Nonrelativistic limit

As for the Hulthén potential, the nonrelativistic limit in the

case of Coulomb potential may be obtained by subtracting

the rest energy m0c
2 from the energy levels E

Cð Þ
nl and then
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taking the limit c �! 1; in all the relativistic quantities.

We got results identical to those in Refs [35, 56]. Indeed,

we have

E
CNRð Þ
nl ¼ lim

c�!1
m0c

2 1 þ g2

�h2c2m2
nl

� ��1
2

�1

 !
: ð125Þ

Taking into account the result in (102), we easily obtain

E
CNRð Þ
nl ¼ � m0�g2

2�h2 nþ lþ 1ð Þ2
for n ¼ 0; 1; 2; . . .: ð126Þ

In the same way, we obtain the corresponding

nonrelativistic radial wavefunctions in the form

uNRnl rð Þ ¼ N
CNRð Þ
nl rlþ1e

� �gm0

�h2 nþlþ1ð Þ
r�

1F1 �n; 2lþ 2;
2�gm0

�h2 nþ lþ 1ð Þ
r

� �
;

ð127Þ

with

N
CNRð Þ
nl ¼ 1

C 2lþ 2ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C nþ 2lþ 2ð Þ
n! nþ lþ 1ð Þ

s
2�gm0

�h2 nþ lþ 1ð Þ

� �lþ3
2

:

ð128Þ

Note that all the quantities evaluated above are approxi-

mate. If we set l ¼ 0; we recover their exact values cor-

responding to the s- wave states.

6. Conclusions

In this paper, we investigated the approximate bound state

solutions of the l-wave Klein-Gordon equation for a spin-

less particle with position-dependent mass, subjected to a

Hermitian vector potential within the framework of SUS-

YQM approach by approximating the centrifugal term in

the effective potential.

We have considered a model with a vector potential of

hyperbolic cotangent type and the position-dependent mass

is chosen such that the effective potential is of the hyper-

bolic Eckart type, but explicitly energy dependent. This

difficulty led us to use a trick to be able to apply the

SUSYQM approach without ambiguity. We have thus

determined the energy levels in a simple and elegant way

and then we have obtained the corresponding wavefunc-

tions. Also, we have clarified all the necessary constraints

that the parameters of the problem must satisfy for the

existence of bound states.

By way of application and also verification of our

results, we deduced all the results known in the literature,

in the context of a constant mass and vector potential of the

Hulthén or Coulomb type, both in the relativistic and

nonrelativistic framework.
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