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Abstract: This paper employs an analytical approach to achieve a precise solution and physical application for the

unsteady one-dimensional adiabatic flow of weak shock waves with generalized geometries in a non-viscous perfect fluid

under the influence of a weak gravitational field. In the disturbed region, the density is considered to have a functional

relationship with distance, meaning that a relative change in distance from the source of disturbance causes a corre-

sponding change in density. Finally, the problem’s solution comes in the shape of distance and time power. The current

technique handles this scenario in a natural way, and the approximations produce results that are reasonably accurate.
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1. Introduction

It was the first time that the impact of bursting bombs’

shock waves was detected during World War II. Despite

the lack of obvious traces of violence, it was discovered

that castaways’ lungs had been damaged as a result of

water bomb blasts. Following that, the first systematic

experiments on the implementation of shock waves in

medicine were conducted.

A propagation of disturbances which travels faster than

sound is known as shock wave. The characteristics of a

surface discontinuity in a solution of quasi-linear first-order

hyperbolic system of partial differential equations can be

explained by shock waves. Due to the existence of dis-

continuity in solution, it is complicated to formulate the

problem of ideal gas and fluid flow mathematically in

physics. As a result, in gas dynamics, shock wave theory is

incorporated into the hypothesis of generalized solutions of

integral conservation laws systems.

Researchers have attempted to examine the propagation

of shock waves several times during the last few decades.

Classical work of Taylor [1, 2], Taylor [3], Sakurai [4, 5],

and Rogers [6] created a comprehensive mathematical

technique for understanding blast wave propagation in the

context of a hyperbolic system. In the two monographs

Courant and Friedrichs [7] and Whitham [8], we find the

major development in the theory of shock waves. They

looked into the topic of weak and powerful shock waves

propagating in standard gas dynamics. Research in the field

of weak shock waves has always been a fascinating subject

because of its vital applications, such as the treatment of

numerous ailments such as kidney stones, orthopedics,

cancer etc. To treat the evolution of weak shock waves,

Anile [9] developed the generalized wave front expansion,

which is based on an asymptotic technique. Many

researchers like Poslavskii [10] and Farshi and Trubnikov

[11] have derived a precise solution to the one-dimensional

gas dynamical system of equations having issue with shock

wave propagation. Sharma, Ram and Sachdev [12] pre-

sented an exact solution which is uniformly valid for the

whole flow field that lies behind the decaying shock wave.

They analyzed the interaction of a shock of any strength

with a centered simple wave passing over it and captured

the entire history of decay with an incredible accuracy even

for strong shocks. In the study of finding precise solution to

gas dynamical equations involving discontinuities using an

analytical approach, the disturbance is assumed to have

been of little range, so the theory of small disturbance
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utilized within this can come up with precise solution in the

entire disturbed domain governed by the following funda-

mental assumptions: the gas is assumed to be ideal and its

heat conductivity and viscosity are ignored. The fact that

weak discontinuity propagation is a subcategory of non-

linear waves that may be handled analytically is one of the

most exciting element of the theory. In the case, where the

density of the gas in the disturbed region varies according

to relative change in distance and time from the source of

the disturbance, Murata [13] gave a closed form of the

precise solution for the problem of strong shock waves.

Sharma and Radha [14] obtained an exact solution of Euler

equations with the help of Lie group analysis for ideal gas

dynamics. Singh, Ram and Singh [15] found a precise

solution to the weak shock wave problem in gas dynamics

using generalized geometries for ideal fluid motion. In

2018, Chaudhary and Singh [16] worked on finding precise

solution of the weak shock waves for non-ideal gases.

The stellar atmospheric structure and dynamic processes

are dominated by applied gravity. In astrophysics, a field of

gravity, the process of unsteady gaseous motion mentioned

in this work, is extremely essential. The transient process is

one of the most important dynamical issue in the solar

atmosphere. Singh, Ram and Singh [17] employed a sys-

tematic perturbation approach to investigate the pattern of

the flow generated by the motion of a planar piston trav-

eling at constant velocity in a gas which is non-ideal with

the field of weak gravity. Also, Chaudhary, Ram and Singh

[18] obtained a precise solution to the planar piston prob-

lem for a dusty gas under the field of weak gravity.

Recently, in 2019, Nath and Singh [19] addressed the

problem of a cylindrical shock wave which propagates in

rotating axisymmetric for perfect gas in isothermal flow

under an azimuthal magnetic field and discovered

approximate analytical solution by expanding flow

parameters in power series. In 2020, Nath and Singh [20]

found approximate analytical answer to the problem of

propagation of an ionizing cylindrical shock wave in

rotating axisymmetric for non-ideal gas in isothermal flow

with an azimuthal magnetic field. In the same year, Husain,

Singh and Haider [21] focused on developing an analytical

formula for the total energy influenced by Van der Waals

excluded volume in the presence of dust-laden particles, as

well as establishing an efficient precise solution to the blast

wave problem in real gas flow under the effect of dust-

laden particles. Then, in 2021, Nath and Singh [22]

obtained an approximate analytical solution for the prob-

lem of propagation of ionizing cylindrical magnetogasdy-

namic shock wave in axially symmetric rotating self-

gravitating ideal gas under isothermal flow condition. In

2022, Arora and Singh [23] applied the method of power

series to explore the shock waves propagation with

generalized geometries caused by a violent explosion in a

hazy gas.

In the current study, an analytical approach is used to

investigate the propagation of an unsteady one-dimensional

flow of a non-viscous perfect gas with generalized

geometries under a weak gravitational field. The distribu-

tion of density of the mass in the medium in this case is

supposed to be in the form of a function of power of the

radial distance from the weak shock wave’s propagation

point. In terms of three variables velocity, density, and

pressure in the interrupted zone, a precise solution to the

problem is obtained. The closed form precise solution of

the given problem using this method represents the novelty

of the current analysis. The effects of weak gravitational

field on the flow variables and energy are studied. In

addition, results of the total energy investigation for the

different stellar masses are plotted against time. The

obtained results are physically and experimentally true.

The method used in the present study is more interesting

from a physical and mathematical point of view. The

suggested method has a wider application in such types of

physical problems, which is justifiable.

2. Governing equations

In the local outer region of the volume of a star, we propose

a co-ordinate system. In this system, the origin is on the

star’s center and the x-axis is in the direction of the radius

of the star for the motion of gas which is transient. The

equations that govern for an unsteady one-dimensional

motion of a non-viscous fluid in the this region are as

follows [15, 17]:

qt þ uqx þ q ux þ
n

x
u

� �
¼ 0; ð1Þ

ut þ uux þ
1

q
px þ

Gm�

x2
¼ 0; ð2Þ

pq�cð Þtþ pq�cð Þx¼ 0; ð3Þ

where t and x are only the independent variables and they

represent time and space co-ordinate, respectively. The

notations u, p and q are dependent variables and they

represent particle’s velocity, pressure and density, respec-

tively, and their typical units are considered. m� is the mass

of the star, G is the gravitational constant, c is the poly-

tropic index. The values of constant n are 0, 1 and 2

according as the motion is planar, cylindrical and spherical,

respectively.

The relation p ¼ qRT is the equation of state which is

added to the system of Eqs. (1)–(3). Here, temperature is

denoted by T and the symbol R denotes the gas constant.

Equations (1)–(3), including the gravitational constant,
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involve another quantity ug with velocity dimension which

is given by [17, 24]:

ug ¼
ffiffiffiffiffiffiffiffiffi
Gm�

x

r
: ð4Þ

If there is weak gravity, the gravitational velocity given in

Eq. (4) is smaller than the particle’s velocity u and the

sonic velocity a ¼ cp
q

� �1=2

, and the basic flow resembles a

Riemann flow. It is simple to demonstrate how gravity

affects the flow field in this case. Let us introduce a small

parameter which is dimensionless:

� ¼
u2g
u2

� 1: ð5Þ

Let us assume the position of shock front as x ¼ RðtÞ and
speed of the shock as dR

dt
¼ U, where R(t) is propagating

into the local region characterized by the following

conditions:

q ¼ q0 xð Þ; p ¼ p0 xð Þ; u ¼ u0 xð Þ ¼ 0; ð6Þ

where q0, p0 and u0 are the evaluation of flow parameters

density, pressure and velocity just ahead of the shock front,

respectively.

3. Rankine–Hugoniot conditions

The law of conservation of mass, momentum, and energy

across the shock front determine the RH conditions at the

shock, which are stated as [13, 15]:

q
q0

¼ cþ 1

c� 1
1þ 2

c� 1

1

M2

� ��1

; ð7Þ

u

a0
¼ 2M

cþ 1
1� 1

M2

� �
; ð8Þ

p

p0
¼ 2

cþ 1
1� c� 1

2c
1

M2

� �
cM2; ð9Þ

where M = U
a0

is the Mach number. The effective sound

speed a0 just ahead of the shock is given by cp0
q0

� �1=2

. In the

present problem, the density q0 varies according to the

power function of radius of the shock front and R is as

follows:

q0 ¼ qaR
f; ð10Þ

where qa and f are constants.

Above RH conditions (7)–(9) agree with Singh, Ram

and Singh [15], also if we take the case of strong shock

waves it will reduce to the same as given by Murata [13].

4. Precise solution for the weak shock problem

with weak gravitational field

We find a relation among pressure p, velocity u and density

q in the flow field which satisfy RH conditions (7)–(9) as:

pk ¼ qu2; ð11Þ

where k is the constant which is given as:

k ¼ M2 � 1ð Þ2

1þ c�1
2
M2

� �
M2 � c�1

2c

� � ; ð12Þ

inserting Eq. (11) into Eqs. (2) and (3), we get:

ut þ uux þ
1

k
u2

q
qx þ 2uux

� �
¼ �Gm�

x2
; ð13Þ

ut þ uux þ
c� 1

2
u ux þ

n

x
u

� �
¼ 0; ð14Þ

on combining Eqs. (13) and (14) and then using the

relations (4) and (5) in the resulting equation, we get:

a
u
ux þ

1

q
qx þ �k� c� 1

2
kn

� �
1

x
¼ 0; ð15Þ

where a ¼ 2� c�1
2
k is a constant. On integrating Eq. (15),

we find:

QðtÞ ¼ quax�k�
c�1
2
kn; ð16Þ

where Q(t) is a function of t.

Using Eq. (16) into Eq. (1), we get:

a
u
ut � 1� að Þux � 1þ c� 1

2
k

� �
nu

x
þ k�

u

x

� �
� 1

Q

dQ

dt
¼ 0:

ð17Þ

Combining Eqs. (14) and (17), we get:

u ¼ �x
x

Q

dQ

dt
; ð18Þ

where x ¼ 1þ c�1
2

k
b

� �
nþ k�

b þ 1
h i�1

and b ¼ 1þ ðc�1Þa
2

.

Putting Eq. (18) into (17), and on integrating the

resulting equation, we deduce:

QðtÞ ¼ Q0t
�X

x; ð19Þ

where Q0 is arbitrary constant and X ¼ 1� c�1
2

� �2nk
b

h i�1

.

Let us take Eqs. (7) and (8). Equation (7) gives the

following analytical expression:

RðtÞ ¼ t
cþ1
2

M2

M2�1
X: ð20Þ

The value of f obtained with help of RH conditions (7) and

(8) is given by:
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f ¼
2ðnþ 1Þ 1

M2 � 1
� �

ðcþ 1Þ : ð21Þ

Now, the precise solution for the given system of gas

dynamic problem with the weak shock waves is given as:

u ¼ 1� c� 1

2

� �2
nk
b

" #�1
x

t
; ð22Þ

q ¼ Q0 1� c� 1

2

� �2
nk
b

" #a

x� aþk��n c�1
2ð Þk½ �ta�X

x; ð23Þ

p ¼ Q0

k
1� c� 1

2

� �2
nk
b

" #a�2

x2� aþk��n c�1
2ð Þk½ �t�2þa�X

x:

ð24Þ

Equations (22)–(24) give a precise solution of our con-

sidered problem. The solution that we have obtained in

presence of gravitational field will reduce to a solution

obtained in ideal gas dynamics by Singh, Ram and Singh

[15] in the absence of gravitational field.

5. Behavior of energy

Under a weak gravitational field, the total energy trans-

ported by motion of the wave is represented as [25]:

E ¼ 4p
Z R

0

1

2
qu2 þ 1

c� 1
p� Gm�

x
q

� �
xndx; ð25Þ

where E shows the sum of the gas’s internal, kinetic and

gravitational potential energy as a function of time.

Put the values of u, q and p from Eqs. (22)–(24) into

Eq. (25), we get:

E ¼ gta�2�vþD 3þrð Þ � hta�vþDr; ð26Þ

where

g ¼
4pQ0

1
2
þ 1

ðc�1Þk

h i
1� c�1

2ð Þ2nkb
	 
a�2

3þr ,

h ¼ 4pGm�Q0 1� c�1
2ð Þ2nkb

	 
a
r ,

D ¼ cþ1
2

M2

M2�1
X, r ¼ n� aþ k�� n c�1

2

� �
k

	 

, v ¼ X

x.

It may be noted here that the total energy carried by the

wave varies with respect to time t and the term containing

negative coefficient h shows the effect of gravity on the

total energy that is decreasing in the strength of total

energy. Due to gravity, energy behaves opposite to

behavior of energy presented by Singh, Ram and Singh

[15].

6. Results and discussion

Eqs. (22)–(24) represent the precise solution of the one-

dimensional gas dynamical system of equations under the

influence of the weak gravitational field. Following are the

typical values for physical quantities used in our compu-

tation: c=1.4, M=1.2, G=6:67408� 10�11Nm2=Kg2 and �

has been taken small i.e. � � 1: When there is no gravity,

density is increasing behind the shock front on the other

hand pressure decreases. In the presence of gravity, the

increasing process of density is speeding up and pressure

behavior is just reversed. This is, of course, what is

expected physical point of view. The given solution will

reduce to a solution obtained in ideal gas dynamics by

Singh, Ram and Singh [15] in the absence of gravitational

field. Eqs. (22)–(24) demonstrate that gravity causes the

pressure to increase everywhere in the flow field behind the

shock which is same as presented by Nath, Dutta and

Pathak [25] for non-ideal medium.

For different stellar masses, Figs. 1, 2 and 3 represent

the behavior of the energy for n ¼ 0; 1; 2; respectively,

under the influence of weak gravity. In each graph, energy

is plotted against the time for three different planets and

energy measured in kg m2=s2 and the time in seconds.

Figures 1, 2 and 3 show that total energy is decreasing as

the time passes due to the presence of weak gravity. It is

totally opposite to behavior of total energy presented by

Singh, Ram and Singh [15] in the absence of gravity. For

the planar geometry shown in Fig. 1, it can be observed that

value of energy is decreasing as the time increases for all

the planets. In case of cylindrical geometry represented by

Fig. 2, the behavior of energy is same as in the case of

planar geometry but the process of decreasing in the value

of energy is slow. In the case of spherical geometry rep-

resented by Fig. 3, the process of decreasing in the value of

energy is more slower than that in other geometries.

Fig. 1 Behavior of the energy for the different value of m� in planar

geometry
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7. Conclusion

In the present study, we find the solution of one-dimen-

sional weak shock wave problem in the presence of weak

gravitational field using an analytical approach by placing

an assumption for the pressure to satisfy one of the

Rankine–Hugoniot conditions automatically. The effect of

weak gravitational field on the flow parameters presented

analytically in Eqs. (22)–(24). Figs. 1, 2 and 3 are showing

the effect of weak gravity on total energy, which have

calculated in Eq. (26) for the plane, cylindrical and

spherical geometry, respectively. On the basis of these

findings, we may draw the following conclusions which

agree with the physical and experimental points of view:

1. Weak gravity causes an increase in pressure every-

where behind the shock. When the value of gravity

increases, the density drops near the shock but

increases toward the inner boundary surface.

2. Total energy strength decreases with passes of time

and process is delayed for different stellar masses

which is shown in Figs. 1, 2 and 3.

3. In the absence of gravity, the results agree with the

solution obtained by Singh, Ram and Singh [15].

4. The results presented are supported by physical

evidence, and the methodology employed in the

finding of it is new.

5. From a physical perspective, the strategy adopted in

the present work is more intriguing. It seems reason-

able that the recommended approach has a larger range

of applications in such types of physical problems.

This approach can also be used to investigate how a

weak gravitational field affects strong shock waves.

Acknowledgements The author Ekta Jain acknowledges the finan-

cial support from the Department of Mathematics, University of

Delhi, India, under the UGC-Non-Net Fellowship scheme.

Data availability The data will be made available on reasonable

request.

References

[1] G I Taylor Proc. Math. Phys. Eng. Sci. 201 159 (1950)

[2] G I Taylor Proc. Math. Phys. Eng. Sci. 201 175 (1950)

[3] J Lockwood Taylor Lond. Edinb. Dublin Philos. Mag. J. Sci. 46
317 (1955)

[4] A Sakurai J. Phys. Soc. Japan 8 662 (1953)

[5] A Sakurai J. Phys. Soc. Japan 9 256 (1954)

[6] M H Rogers Astrophys. J. 125 478 (1957)

[7] R Courant and K O Friedrichs Supersonic Flow and Shock
Waves (New York: Inter. science Publishers, INC.) (1948)

[8] G B Whitham Linear and Nonlinear Waves (New York: John

Wiley and Sons) (1974)

[9] A M Anile Wave Motion 6 571 (1984)

[10] S A Poslavskii J. Appl. Math. Mech. 49 578 (1985)

[11] E Farshi and B A Trubnikov Fusion Eng. Des. 60 99 (2002)

[12] V D Sharma, R Ram and P L Sachdev J. Fluid Mech. 185 153

(1987)

[13] S Murata Chaos Solit. Fractals 28 327 (2006)

[14] V D Sharma and R Radha Z. fur Angew. Math. Phys. 59 1029

(2008)

[15] L P Singh, S D Ram, and D B Singh Chaos Solit. Fractals 44
964 (2011)

[16] J P Chaudhary and L P Singh Int. J. Appl. Comput. Math. 4 1

(2018)

[17] L P Singh, S D Ram, and D B Singh Ain Shams Eng. J. 2 125

(2011)

[18] J P Chaudhary, S D Ram and L P Singh J. King Saud Univ. Sci.
31 1027 (2019)

[19] G Nath and S Singh. J. Astrophys. Astron., 40 1 (2019)

[20] G Nath and S Singh. Can. J. Phys., 98 1077 (2020)

Fig. 2 Behavior of the energy for the different value of m� in

cylindrical geometry

Fig. 3 Behavior of the energy for the different value of m� in

Spherical geometry

The behavior of weak shock waves 801



[21] A Husain, V K Singh and S A Haider Int. J. Eng. Adv. Technol.
9 2490 (2020)

[22] G Nath and S Singh. Differ. Equ. Dyn. Syst. 1 (2021)

[23] D Singh and R Arora Math. Methods Appl. Sci. 45 5149 (2022)

[24] H Wen-rui Appl. Math. Mech. 6 75 (1985)

[25] G Nath, M Dutta and R P Pathak 2017 International Conference
on Advances in Mechanical, Industrial, Automation and Man-
agement Systems (AMIAMS), p 369. IEEE, (2017)

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds

exclusive rights to this article under a publishing agreement with the

author(s) or other rightsholder(s); author self-archiving of the

accepted manuscript version of this article is solely governed by the

terms of such publishing agreement and applicable law.

802 D Singh et al.


	The behavior of weak shock waves under the influence of weak gravitational field
	Abstract
	Introduction
	Governing equations
	Rankine--Hugoniot conditions
	Precise solution for the weak shock problem with weak gravitational field
	Behavior of energy
	Results and discussion
	Conclusion
	Data availability
	References




