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Abstract: This study focuses on the cosmic evolution of a scenario with dark energy and matter in the background of flat

FLRW metric within the context of f ðTÞ gravity theory. We examined the Renyi holographic dark energy and Tsallis

holographic dark energy models with Hubble’s cut-off in this work. The Renyi HDE and Tsallis HDE energy densities are

increasing functions of z, supporting the expanding behavior of the universe. The models move through the quintessence

phase (�1\xde\� 0:33), then towards the K CDM model, and finally slopes to the phantom area xde\� 1ð Þ for the
value of d ¼ 4:5 ; however, for the value of d ¼ 4 , the model moves through the quintessence region. The models vary

from KCDM era to the quintessence era. Additionally, the validity of our models is checked via statefinder diagnostic

parameters.
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1. Introduction

Our universe is experiencing accelerated expansion that

has been validated by many cosmological observations

such as Type 1a Supernova [1, 2] and cosmic microwave

background radiation [3, 4]. Two theories potentially

explain the universe’s rapid expansion: (i) a mysterious

force called Dark Energy (DE) (see [5–8] and references

therein), and (ii) a modification of the General Theory of

Relativity [9–15]. Moreover, WMAP estimates that nearly

73, 23, and 4% of our universe filled up with dark energy,

dark matter and normal matter, respectively [16]. There are

other types of dark energy models, including quintessence

[17], k-essence [18], Chaplygin gas [19], holographic dark

energy [20, 21], new agegraphic dark energy [22], and

others. Existing measurements, in accordance with [23],

point to a cosmic constant, i.e. x � �1. A useful tool for

explaining the cosmic expansion at this time is the study of

the holographic dark energy model [24] in the context of

the holographic principle (HP) [20, 21]. There are other

reading materials accessible (check references for illus-

tration [25–42]). Assuming c is an arithmetic constant, the

energy density of the HDE is written as qde ¼ 3c2M2
pL

�2.

System entropy (S), the IR (L), and UV cutoffs are corre-

lated in L3K3 � S
3
4 [24]. Following their work in [43], the

authors have presented Sd ¼ cAd (the horizon entropy of a

black hole), where (i) A denotes the area of the horizon, (ii)

d denotes the non-additivity parameter, and (iii) c deflects

an unspecified constant. The consequence of this is

K4 � c 4pð Þd
� �

L2d�4 [24]. Many dark energy models have

been developed to represent or comprehend the accelerated

phase of the universe; however, the challenge of distin-

guishing the numerous contenders is now required. To be

able to discern between various conflicting cosmological

scenarios, including dark energy, a sensitive and detailed

analysis of dark energy ideas is needed. The long-range

nature of gravity, the enigmatic character of space–time,

and the fact that the Bekenstein entropy is a non-extensive

entropy measure have all recently contributed to this. To

examine cosmological and gravitational phenomena, the

generalized entropies, or Tsallis and Rényi entropies, have

been assigned to the horizons. Many extended entropy

formalisms have been used to explore cosmological and

gravitational events, but Tsallis and Rényi entropies pro-

duce the most accurate universe model. The horizon is

given Tsallis and Rényi entropies in order to study the

cosmic repercussions. Tsallis HDE, Renyi HDE, and

Sharma Mitall Holographic Dark Energy (SMHDE)

believe that the universe is made up of both interacting
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dark energy and cold dark matter in order to understand the

accelerated expansion of our universe.

The dynamics of the Tsallis HDE and the increase in

energy density are governed by its free parameters, which

is what makes Tsallis HDE so intriguing because it exhibits

good agreement with the expansion of the universe and

exhibits a certain form of cosmological stability. The non-

extensive Tsallis entropy within the context of cosmology

has recently sparked a lot of curiosity. It has been proposed

that the Tsallis parameter modifies the gravitational con-

stant’s strength and, consequently, the energy density of

the universe’s dark matter and dark energy, requiring less

(more) dark energy to produce the late-time acceleration.

The Tsallis cosmology/entropy experiments were also

expanded to include the situation with a changeable Tsallis

parameter [44]. It was shown that the additional terms from

the Tsallis non-extensive entropy can serve as an efficient

dark energy for explaining how the cosmos evolved from

the early epoch to late-time acceleration [45]. The literature

describes the construction of the Tsallis HDE [46, 47],

Sharma-Mittal HDE (SMHDE) [48], and Renyi HDE

model [49]. The Renyi HDE model was investigated in

[50], with the IR cutoff serving as the Hubble horizon. The

authors of Ref. [51] explored Tsallis, Renyi, and Sharma-

Mittal entropies in the context of Chern-Simons modified

gravity, whereas Ghaffari et al. [52] considered Tsallis

HDE in various brane worlds. Jawad et al. investigated the

Tsallis HDE, Renyi HDE, and Sharma-Mittal HDE models

in loop quantum cosmology in [53]. Ghaffari et al. [54]

investigated the implications of using the Tsallis HDE

model to model dark energy in the Brans-Dicke cosmol-

ogy. The authors of [55] investigated whether interacting

Tsallis HDE can have a significant impact on the universe’s

intergalactic progress. The energy conservation law for

Tsallis HDE does not hold in Brans-Dicke gravity,

according to Yadav [56].

Numerous attempts have been made by many cosmol-

ogists to modify the geometrical action and explain the

late-time accelerated expansion phase of the universe.

Modified gravity is mostly used as a substitute of dark

energy and exotic matters with the introduction of higher

order Ricci scalar modification. According to f ðRÞ [57–59],
and f ðGÞ [60], ‘‘Modified theories of gravity are desired to

detect faster expansion and give a substitute for the DE.’’

The authors of Refs. [61–64]. state that the torsion term T

in the teleparallel scenario is modified by an arbitrary

function with a changing action known as f ðTÞ gravity,

which is adjusted from the curvature term R in general

relativity. Bamba and Geng examined the thermodynamics

of the apparent horizon in [65]. In Ref. [66], Sharif and

Rani looked into two subjects: the dynamic instability of a

collapsing spherically symmetric star and charged worm-

hole solutions gravity with non-commutative background.

Numerous scientists have recently explored f ðTÞ gravity in

relation to numerous cosmological features [67–84].

Inciting with above discussion, in this work, the author was

interested in investigating an interacting scenario between

two fluids, pressureless dark matter and dark energy in f ðTÞ
gravity toward FRW Universe. In light of the aforemen-

tioned discussion, the author investigates the Renyi HDE

and Tsallis HDE f ðTÞ gravity models.

2. Review of f ðTÞ gravity

The action for f ðTÞ theory of gravity is given by [65].

S ¼
Z

T þ f ðTÞ þ Lmatter½ �e d4x: ð1Þ

Here f ðTÞ represents an algebraic function of the torsion

scalar T . Making the functional variation of the action (1)

with respect to the tetrads, one can get the following

equations of motion [85, 86]

Smql oqTfTT þ e�1eiloqðeeai Smqa Þ þ Ta
klS

mk
a

h i
ð1þ fTÞ

þ 1

4
dmlðT þ f Þ ¼ Tm

l;
ð2Þ

where the energy momentum tensor is Tm
l, fT ¼ df ðTÞ

dT
. Now,

the energy momentum tensor for the obtained model of two

fluids is defined as Tm
l ¼ Tm

lv þ Tde
lv , where Tm

lm ¼ qmulum;

Tde
lm ¼ ðqde þ pdeÞulum � glmpde; whereas qm and qde

represent the energy density of matter and DE density.pde
is the pressure of the DE while equation of state (EoS) is

defined as xde ¼ pde
qde
.The energy–momentum tensor of DE

can be parameterized as

Tde
lv ¼ ð�xde;�xde;�xde; 1Þqde: ð3Þ

3. Metric and field equations

Assume that the universe is described by the homogeneous,

isotropic and spatially FLRW metric given

ds2 ¼ dt2 � a2ðtÞ dr2

1� kr2
þ r2ðdh2 þ sin2 hdu2Þ

� �
: ð4Þ

The spherical coordinate system is azimuthal and polar

angles are 0� h� p and 0�u� p, respectively. The

following considerations can be made in light of the

space’s curvature indicated by k. It is related to the closed

universe k ¼ 1, the flat universe k ¼ 0, and the open

universe k ¼ �1, respectively. In this work, the flat

universe is purposefully taken into account. We obtain

the torsion scalar as T ¼ �6H2. The Hubble parameter is
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defined as H ¼ _a
a. The field Eqs. (2) for the line element (4)

take on the following form using Eq. (3)

_a

a
_TfTT þ

€a

a
þ 2

_a2

a2

� �
1þ fTð Þ þ 1

4
T þ fð Þ ¼ �xdeqde; ð5Þ

3 1þ fTð Þ _a2

a2
þ 1

4
T þ fð Þ ¼ ðqm þ qdeÞ; ð6Þ

where dot stands for differentiation with respect to time.

4. Power law expansion solution

Equations (5) and (6) are two independent equations in six

unknowns. Therefore, to obtain explicit solutions of the

system, additional constraints relating these parameters are

required. We consider in the following the power-law

mode of the scalar factor in terms of cosmic time a ¼ tn

[87–89], where n[ 0 is a constant, to describe the evolu-

tion of cosmological parameters. The choice of such a scale

factor was motivated by the fact that the universe is

expanding at a faster rate currently and has slowed in the

past. For various numbers of n, different stages of the

cosmos are expected. The model describes the universe’s

decelerating phase for 0\n\1 while it accelerates for

n[ 1. The model displays singularity at an early stage.

The big-bang at the first epoch will now cause the model to

jerk. According to the following relationship, the scale

factor aðtÞ and redshift z are related: ð1þ zÞ ¼ a0
a , where a0

represents the current value of the scale factor. The

deceleration parameter represents q ¼ d
dt

1
H

� 	
� 1 ¼ 1

n � 1.

The deceleration parameter exhibits signature flipping on

the constraints of n. The universe accelerates for q\0 and

inflates for q[ 0. The deceleration parameter q ffi �0:733

is achieved after choosing n ¼ 3:75. If the observational

data from the KCDM are used, the current value of DP

might be q0 ¼ �0:6.

5. Renyi Holographic dark energy model with Hubble’s

horizon cutoff

The energy density of Renyi HDE is characterized as fol-

lows qde ¼ 3b2

8pL2 1þ pdL2ð Þ�1
, where b and d are constants.

By considering the Hubble horizon as a candidate for the

IR-cutoff, i.e.

L ¼ H�1 as qde ¼
3b2n2

8pt2
1þ pdt2

n2


 ��1

ð7Þ

The energy density of matter is obtained as qm

¼ 3n2

2t2
� 3b2n2

8pt2
1þ pdt2

n2


 ��1

: ð8Þ

The equation of state (EoS) parameter, which describes

the relationship between pressure pde and dark energy

density qde, is frequently used to categorize the many parts

of the expanding cosmos. EoS parameter is used to

categorize decelerated and accelerated phases of the

universe. The DE dominated phase has following eras:

• Stiff fluid for x ¼ 1.

• Radiation era for 0\x\1=3.

• Cold Dark Matter or dust fluid for x ¼ 0.

• The cosmological constant, or K CDM model for

x ¼ �1

• Phantom era (x\� 1).

The EoS parameter of Renyi HDE is obtained asxde

¼
�n2

t2

3b2n2

8pt2 1þ pdt2
n2

� 	�1
: ð9Þ

Quintom period is a combination of phantom and

quintessence. The Renyi HDE density parameter and the

matter energy density parameter are described by

Xde ¼
qde
3H2

¼
3b2n2

8pt2 1þ pdt2
n2

� ��1
� �

3n2

t2

; Xm ¼ qm
3H2

¼
3n2

2t2
� 3b2n2

8pt2 1þ pdt2
n2

� ��1
� �

3n2

t2

: ð10Þ

HenceX ¼ Xm þ Xde ¼ 1: ð11Þ

The behavior of Renyi HDE density versus z for various
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Fig. 1 Renyi HDE density shown against z for b ¼ 1:2 ; d ¼ 4 ; n ¼
1:5 (blue) and b ¼ 1:2 ; d ¼ 4:5 ; n ¼ 1:5 (green) (color

figure online)
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values d ¼ 4 and d ¼ 4:5 is shown in Fig. 1.It is

observed that as the Universe expands, the energy density

of Renyi HDE qde stays positive and decreasing function of

cosmic time (or increasing function of redshift). The results

indicate that ‘‘the energy density of matter falls from a high

red-shift zone to a low red-shift region, i.e. from past to

future.’’ Also they tend to zero in the future. The behavior

of the Renyi HDE EoS parameter as a function of z for

various values d ¼ 4 and d ¼ 4:5 is depicted in Fig. 2.

In conclusion �1� z� 0, it is observed that the model has

crossed the quintessence phase (�1\xde\� 0:33), or

Cosmological constant, i.e. finally, the model approaches

the quintessence area for the value d ¼ 4 , whereas for the

value of d ¼ 4:5 , the K CDM model leans toward the

phantom region xde\� 1ð Þ. Also, the EoS parameter

corresponding to the Observational Hubble datasets

(OHD) ? Pantheon is x0 ¼ �0:7161. Furthermore for

z[ 0, the Renyi HDE EoS parameter leans toward the

quintessence model which indicate the cosmic acceleration

of the universe. Therefore, it is concluded that the dark

energy EoS parameter shows a rich behavior; it can be

quintessence-like, crossing the phantom-divide line, or

phantom-like depending on the value of d. The total energy
density parameters (X) i.e. the sum of the matter energy

density parameter and the Renyi HDE density parameter is

one indicated by Eq. (11), which gives the affirmation that

as the dark energy dominates the universe energy density,

the universe shows the isotropic nature.

6. Tsallis holographic dark energy model

with Hubble’s horizon cutoff

Tsallis and Citro [43] suggested that the Tsallis generalized

entropy-area relation is independent of the gravitational

theory used to describe the system. Hence the energy

density of THDE is defined as

qde ¼ L2d�4; ð12Þ

where d is identical. For the value of d ¼ 1, the energy

density of the Tsallis holographic dark energy is moderated

by the energy density of the HDE model. By choosing the

simplest IR-cutoff as Hubble horizon (L ¼ H�1), the

corresponding energy density becomes qde ¼ 1
H2d�4

The density of Tsallis HDE is obtained as qde ¼
t

n

� �2d�4

:

ð13Þ

The energy density of matter is found out to be qm

¼ 3n2

2t2
� t

n

� �2d�4

: ð14Þ

The Tsallis HDEEoS parameter is characterized asxde

¼
�n2

t2

t
n

� 	2d�4
:

ð15Þ

The parameter for matter energy density and the Tsallis

HDE are both written as

Xde ¼
qde
3H2

¼
t
n

� 	2d�4
n o

3n2

t2

; Xm ¼ qm
3H2

¼
3n2

2t2
� t

n

� 	2d�4
n o

3n2

t2

:

ð16Þ
HenceX ¼ Xm þ Xde ¼ 1: ð17Þ

There is a correlation between the running behavior of d
and the EoS, which is an intriguing cosmological

phenomenon shown by the Tsallis HDE, or the modified

cosmological scenario with varying exponent [90–92]. The

entropy relates to physical degrees of freedom, whereas the

renormalization of quantum theory indicates that degrees

-1 -0.5 0 0.5 1 1.5 2
-2

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

z

E
o

S
 p

ar
am

et
er

 o
f 

R
en

y
i 

H
D

E
 

Fig. 2 Renyi HDE EoS parameter shown against z for b ¼ 1:2 ; d ¼
4 ; n ¼ 1:5 (red) and b ¼ 1:2 ; d ¼ 4:5 ; n ¼ 1:5 (green) (color

figure online)
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Fig. 3 Density of THDE against z for d ¼ 4 ; n ¼ 1:5 (brown) and

d ¼ 4:5 ; n ¼ 1:5 (pink) (color figure online)
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of freedom depend on scale. Figure 3 shows the behavior

of Tsallis HDE density against z for the values d ¼ 4 and

d ¼ 4:5 . The Tsallis energy density qde is positive and

diminishing as the universe changes. The behavior of the

Tsallis HDE EoS parameter against z for various values

d ¼ 4 and d ¼ 4:5 is shown in Fig. 4. In Eq. (15), the

EoS is explained in terms of n and d. The values of d must

justify the restrictions followed from Eq. (15), to get the

accelerated expansion. Overall �1� z� 0, the model is

found to cross the quintessence phase (�1\xde\� 0:33),

Cosmological constant, i.e. for the value of d ¼ 4:5 the K
CDM model slants to xde\� 1ð Þ, whereas for the value of
d ¼ 4 the model approaches the region of the

quintessence. Additionally z[ 0, the Tsallis HDE EoS

parameter favors the Quintessence model. The dark energy

sector can therefore be quintessence-like, phantom-like, or

experience the phantom-divide crossing before or after the

current time, depending on the values of d. The resulting

model’s findings are in strong accord with the available

observational data. We have compared the derived results

with the most recent Planck collaboration data [93], where

the limitations on the EoS parameter are stated.

xde ¼ �1:56þ0:60
�0:48ðPlankþ TT þ lowEÞ

xde ¼ �1:58þ0:52
�0:41ðPlankþ TT ; TE;EE þ lowEÞ

xde ¼ �1:57þ0:50
�0:40ðPlankþ TT ; TE;EE þ lowEþ lensingÞ

xde ¼ �1:04þ0:10
�0:10

ðPlankþ TT ; TE;EE þ lowEþ lensingþ BAOÞ

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

It can be seen that the results for the EoS parameter of

both Renyi HDE and Tsallis HDE are consistent with the

Planck Collaboration data [93]. The derived model predicts

a flat universe because the overall energy density tends to

unity.

7. Statefinder diagnostics

The accurate explanation of expansion of the universe can

be done by using Hubble and deceleration parameters. The

values of these parameters, however, are the same in many

dynamical dark energy models at the moment. The best

suited model among the numerous dynamical dark energy

models cannot be found using these parameters. In 2003,

Sahni et al. introduced the cosmological diagnostic pair,

where r and s are defined as

r ¼ a
...

aH3
; s ¼ ðr � 1Þ

3 q� 1
2

� 	 ð18Þ

The correlation between the parameters is given by

r ¼ 9s2 � 9sþ 2

2
: ð19Þ

The following is a description of the statefinder

parameters:

• ðr; sÞ ¼ ð1; 0Þ$ K CDM model.

• ðr; sÞ ¼ ð1; 1Þ$ SCDM model.

• s[ 0 and r\1$ Quintessence.

• s\0 and r[ 1$ Chaplygin gas, and

• ðr; sÞ ¼ 1; 2
3

� 	
$ HDE.

The major goal is to analyze how the trajectory of the

r-s parametric curve corresponds to the K CDM model in

terms of convergence and divergence. The deviation from

indicates a departure from the K CDM model. Hence, in

the near future, it will be important to describe the dark

energy models. Figure 5 depicts the model’s predicted

behavior [94]. The parameter trajectories r; sf g are given in
Fig. 5. The parameter s is seen to remain negative for all

values of r. This suggests that the HDE models and the

Chaplygin gas model corresponded. Moreover, at late

times, the r-s plane coincides to K CDM limit. Figure 5
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Fig. 4 Plot of the THDE EoS parameter against z for d ¼ 4 ; n ¼
1:5 (green) and d ¼ 4:5 ; n ¼ 1:5 (purple) (color figure online)
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suggests that the model will take place concurrently with

the K CDM flat model. The conduct fits with accepted

cosmology.

8. Observational constraints

8.1. Distance modulus, luminosity distance,

and redshift

Given the scale factor a and the redshift z, 1þ z ¼ t0
t

� 	n
,

one can arrive at the following equation, which results

through mathematical manipulation t ¼ t0 1þ zð Þ�
1
n. An

alternative form of above equation is

H0 t0 � tð Þ ¼ n 1� 1þ zð Þ�
1
n

h i
, where H0 is the current

value of the Hubble’s parameter. In the event of a smallest

redshift z, H0 t0 � tð Þ ¼ n z
n �

1
n

1
n�1ð Þ
2

z2 þ � � �
� �

.

Hence,H0 t0 � tð Þ ¼ z� q
2n z

2 þ � � �
� 

. The expression for

the distance modulus is

lðzÞ ¼ 5 log dLðzÞ þ 25; ð20Þ

where dLðzÞ is the luminance distance and is written as

dL ¼ r1ð1þ zÞa0. For the purpose of determining r1,

assume that a photon is emitted by a source with

coordinates at r ¼ r0 to t ¼ t0 and received at a time t by

an observer placed at r ¼ 0,

r1 ¼
Zt0

t

dt

a
¼

Zt0

t

t�ndt: ð21Þ

The luminosity distance expression can be expressed as

dL ¼
ð1þ zÞH�1

0 1� ð1þ zÞ
1�1

n
h i

ð1� nÞ : ð22Þ

Red shift causes the luminosity distance to increase

more quickly, as expected from supernova data. Using

Eqs. (20) and (22) yields

lðzÞ ¼ 5 log
ð1þ zÞH�1

0 1� ð1þ zÞ
1�1

n
h i

ð1� nÞ

( )
þ 25: ð23Þ

The distance modulus shows some potential with SN Ia

statistics.

The distance modulus of the proposed model is in good

agreement with SN Ia data, and the theoretical values

generated from the derived model have been compared

with SNe Ia related 581 data’s from Pantheon compilation

[95]. Figure 6 in this analysis shows the contrast between

the distance modulus of the derived model and the obser-

vational lðzÞ SN Ia data from Amanullah et al.[96], Yadav

et al. [97], and Katore and Kapse [98]. Also, a comparison

Fig. 6 The distance modulus as a function of z

Table 1 Comparison between the results of observed data and pre-

sent power law model

Redshift (z) Supernovae Ia lð Þ Power law model lð Þ

0.014 33.73 33.79

0.026 35.62 35.66

0.036 36.39 36.42

0.040 36.38 36.54

0.050 37.08 37.15

0.060 37.67 37.78

0.079 37.94 37.99

0.088 38.07 38.06

0.101 38.73 38.78

0.160 39.08 39.10

0.240 40.68 40.72

0.380 42.02 42.20

0.430 42.33 42.37

0.480 42.37 42.51

0.620 43.11 43.17

0.740 43.35 43.46

0.778 43.81 43.88

0.828 43.59 43.67

0.886 43.91 43.99

0.910 44.44 44.52

0.930 44.61 44.70

0.949 43.99 43.99

0.970 44.13 44.17

0.983 44.13 44.17

1.056 44.25 44.28

1.190 44.19 44.20

1.305 44.51 44.56

1.340 44.92 44.97

1.551 45.07 45.10
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between the distance modulus of the calculated model and

the range’s observational lðzÞ SN Ia data has been shown

in (Table 1). It has been found that the developed model

closely matches the physically plausible observed values

for SN Ia.

9. Conclusions

In this paper, the main interest is to know the reason behind

the universe’s rapid expansion. The Renyi HDE and Tsallis

HDE models for f ðTÞ gravity were used in this investiga-

tion. The Renyi HDE and Tsallis HDE energy densities are

increasing functions of z, as shown by the Hubble horizon

cutoff, supporting the universe’s ascending behavior. For

example �1� z� 0, Renyi HDE’s EoS value is getting

close to the phantom area, yet Tsallis HDE approves

Quintessence. Since 0\z the Tsallis HDE settles in the

Quintessence zone, the Renyi HDE EoS parameter tends to

favor the K CDM model. In order to guarantee model

consistency, the EoS parameters of Renyi HDE and Tsallis

HDE are in the accelerated stage dominated by the dark

energy era. Exact information about the EoS of DE at the

present epoch and its evolution will provide valuable

insights into cosmic evolution leading to the late-time

cosmic acceleration. The developed models perform simi-

lar to the K CDM model [99–102]. As a result, both current

evidence of cosmic expansion and well-known theoretical

findings support the derived models.
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