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Abstract: In this work, the dependence of the oscillation of the combined density of states on a strong magnetic field in

heterostructures based on a rectangular quantum well is studied. The effect of a quantizing magnetic field on the tem-

perature dependence of the combined density of states in nanoscale straight-band heterostructures is investigated. A new

mathematical model has been developed for calculating the temperature dependence of the two-dimensional combined

density of quantum well states in quantizing magnetic fields. The proposed model explains the experimental results in

nanoscale straight-band semiconductors with a parabolic dispersion law.
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1. Introduction

As is known, the influence of external factors (temperature,

magnetic field, and pressure) on quantum-dimensional

heterostructures leads to a change in the position of the

energy levels of charge carriers and, consequently, to a

shift of the magneto-optical absorption edge [1–20]. The

magneto-optical absorption spectrum of nanoscale semi-

conductors is determined by the energy distance between

different minima of the sparse zone. Hence, the width of

the forbidden zone of the quantum well can either decrease

or increase due to external influences. Thus, the study of

the magneto-optical absorption spectrum near the boundary

of its absorption edge provides information about the

structure of the energy spectrum of charge carriers near the

lower edge of the conduction band and near the upper edge

of the valence band of the quantum well, which is essential

for determining the magnetic, optical, and electrical prop-

erties of nanoscale semiconductors.

The combined densities of quantum well states play an

important role in the oscillation of interband magneto-op-

tical absorption. Therefore, in many cases, the matrix ele-

ment pctð Þ changes little within the Brillouin zone.

Consequently, the structure of the spectrum mainly

determines the combined density of states in quantum-di-

mensional heterostructures. In works [1–3], a method was

developed for calculating the oscillation of the combined

density of states in a quantizing magnetic field with a non-

quadratic law of dispersion under the influence of tempera-

ture and hydrostatic pressure. This method is used in the

study of magnetic absorption in narrow-band semiconduc-

tors with a nonparabolic dispersion law. A fan diagram of the

magnetic absorption spectrum in narrow-band semicon-

ductors is constructed. However, these papers do not con-

sider the temperature dependence of the two-dimensional

combined density of states in the allowed zone of a quantum

well with a parabolic law of dispersion. That is, the resulting

method applies only to bulk semiconductor materials.

In addition, in works [4, 5], the spectrum of InGaN/

AlGaN/GaN heterostructures with quantum wells is emit-

ted by an LED and analyzed based on a two-dimensional

combined density of states model. The considered model of

approximation of the luminescence spectra of LEDs in

these works was developed for complex heterostructures

with multiple quantum wells. In work [6], a random walk

in a two-dimensional space consisting of an energy

parameter of the order and an energy correlation function

was performed, and a two-dimensional combined density

of quantum well states was obtained. The order parameter,
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susceptibility, and correlation function are calculated from

the two-dimensional combined density of quantum well

states. The numerical calculations of the author show that

to determine the two–dimensional combined density of

states in continuous models, the Wang–Landau transition

matrix method can be considered an alternative to the pure

Wang-Landau method. In work [7], an exact mathematical

expression is proposed that directly combines the density

functions of the states of the resolved zone of a quantum

well to create a two-dimensional combined density of

states for direct transitions. Using both expressions, the

absorption coefficient of the quantum well and the super-

lattice was calculated, which led to a positive coincidence

with the experimental data. In the above literature, the

temperature dependence of the oscillation of the two-di-

mensional combined density of quantum well states in a

quantizing magnetic field is not discussed. Also, the work

determines the oscillations of the combined density of

quantum well states at constant temperatures in the absence

of a magnetic field.

The purpose of this work is to determine the effect of a

strong magnetic field on the combined density of states in

heterostructures with quantum wells.

2. Theoretical part

2.1. Calculation of the oscillation of the combined

density of states in heterostructures with quantum

wells in the presence of a magnetic field

In the absence of a magnetic field, the dependence of the

density of the energy states of the conduction band and the

valence band in the quantum well on the energy spectrum

of charge carriers are step functions (Fig. 1a) [21]:

gc Eð Þ ¼ me
n

�h2p

X

n

h E � Enð Þ

gv Eð Þ ¼ mh
n

�h2p

X

m

h E � Emð Þ
ð1Þ

Here, me
n and mh

n are the effective masses of electrons

and holes in the dimensional quantization subband in a

quantum well numbered n and m. hðEÞ—Heaviside step

function.

For direct interband transitions, the combined densities

of states are a convolution in energy, which also has a step

function in energy [21]:

N2d
jds Eð Þ ¼ m�

mn

�h2p

X

m;n

h E � Emnð Þ ð2Þ

Here, m�
mn is the reduced effective mass of charge

carriers for the subzones of dimensional quantization n and

m, which is calculated by the ratio:

m�
mn

� ��1¼ me
n

� ��1þ mh
m

� ��1
.

If the electronic and hole states in GeSi structures turn

out to be size-quantized in all three quasi-momentum

components, that is, they represent a quantum dot for

charge carriers, then in this case the combined density of

states in the allowed band of such a structure is a Gaussian

function (Fig. 1b). Then, in the allowed zone, there is a

zero-dimensional combined density of states, which is a

discrete non-decreasing function. In this case, the com-

bined density of states is described using the so-called

Dirac delta function d Eð Þ:

Fig. 1 The energy distribution of the density of electronic states in quantum-dimensional GeSi/Si structures [21]: (a) Quantum well,

(b) Quantum dot
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N0d
jds Eð Þ ¼

X

l;m;n

d E � Elmnð Þ ð3Þ

The combined density of states is a collection of

infinitely narrow and high peaks (Fig. 1b). All the results

obtained above are valid for cases without the influence of

quantization of the magnetic field, temperature, and

pressure. Specific questions arise: How to determine the

combined density of states in quantum-dimensional direct

transitions of heterostructures in the presence of a strong

magnetic field? How does the dynamics of temperature rise

affect this process?

Let’s calculate the dependence of the combined density

of states on the quantizing magnetic field in two-dimen-

sional semiconductor materials with direct allowed transi-

tions. In a quantizing magnetic field, the combined density

of states is defined as an integral over all states in the

conduction band with energies EC and in the valence band

with energies EV of the quantum well, which satisfies the

law of conservation of energy during the magneto-optical

transition. Let us analyze the simplest model of a band

structure near the edge of the band gap of a straight-band

heterostructure with a quantum well under the influence of

a strong magnetic field. That is, the valence band of the

quantum well is completely filled with charge carriers, and

the conduction band is empty. Here, the filling functions of

the corresponding states are equal to fV = 1, fC = 0. In

addition, in this model, the dependence of impurity levels

on the combined density of quantum well states with the

parabolic law of dispersion can be neglected. The magnetic

field inductions are directed across (along the Z axis) and

will be perpendicular to the XY plane. This is called a

transverse quantum magnetic field.

Hence, in the presence of a strong magnetic field, the

laws of dispersion energy are used to calculate the com-

bined density of quantum well states, which can be written

as follows:

E2d
c B; d; ncZð Þ ¼ Nc

L þ
1

2

� �
�hxc

c þ
�h2p2

2mcd2
n2eZ þ mc

sgclBH

E2d
v B; d; nvZð Þ ¼ � Nv

L þ
1

2

� �
�hxv

c �
�h2p2

2mvd2
n2vZ

� mv
sgvlBH � E2d

g 0ð Þ
ð4Þ

Here, Nc
L;N

v
L is the number of Landau levels of charge

carriers in the allowed zone of the quantum well; xc
c;x

v
c is

the cyclotron frequency of the magnetic field in the

conduction band and valence band of the quantum well; d

is the thickness of the quantum well; n2eZ ; n
2
vZ is the number

of the dimensional quantization subzone in the conduction

band and the valence band of the quantum well; neZ ; nmZ is

the ordinal number of the quantization levels of electrons

and holes along the Z axis, respectively.

Imagine that the electron and valence bands are sym-

metric, then the condition neZ ¼ nmZ ¼ nZ is fulfilled.

mc
sgclBH; mv

sgvlBH is the spin energy in the allowed zone;

E2d
g 0ð Þ is the width of the forbidden zone of the quantum

well at absolute zero temperature; B is the induction of the

magnetic field.

For E2d
c B; d; nZð Þ and E2d

v B; d; nZð Þ, without taking into

account spin, magneto-optical transitions will correspond

to the law of conservation of energy

E2d
cv B; d; nZð Þ ¼ E2d

c B; d; nZð Þ � E2d
v B; d; nZð Þ

E2d
cv B; d; nZð Þ ¼ E2d

g 0ð Þ þ Nc
L þ

1

2

� �
�hxc

c

þ Nv
L þ

1

2

� �
�hxv

c þ
�h2p2

2m�
cvd

2
n2Z

hm�E2d
cv B; d; nZð Þ

ð5Þ

where hm is the absorbed photon energy, m is the frequency
of light, 1

m�
cv
¼ 1

m�
c
þ 1

m�
v
is the combined (reduced) effective

mass.

In the Z direction, a strong magnetic field does not

change the relationship between the energy and the wave

vector for the movement of charge carriers. However, for

the movement of charge carriers in the direction of per-

pendicular magnetic induction (in the XY plane), the for-

mer quasi-continuous series of energy levels is replaced by

a system of discrete Landau levels. Since the effective

mass of electrons and holes is assumed to be constant, the

distance between the Landau levels does not depend on the

quantum number, which is �hxc. Hence, in the conduction

band and the valence band of the quantum well, the

movement of free electrons and holes in all three directions

is limited. When exposed to a quantizing magnetic field, a

quantum well becomes an analog of a quantum dot. And

also, the energy spectrum of charge carriers will be entirely

discrete. According to Eq. (3), when replacing E with �hm
and Elmn with E2d

cv B; d; nZð Þ in the argument d E � Elmnð Þ,
we have:

N2d
jds hm;E2d

cv B; d;Ncv
L ; nZ

� �� �
¼ eB

p�h

X

Nc
L;N

v
L;nZ

d hm� E2d
cv B; d;Ncv

L ; nZ
� �� �

ð6Þ

Thus, under the influence of a quantizing magnetic field,

Eq. (6) can be used to determine the combined density of

quantum well states. However, such equations do not take

into account the influence of temperature and pressure on

the discrete Landau levels of electrons and holes for

straight-band quantum wells.
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2.2. Effects of the quantizing magnetic field

on the temperature dependence of the combined

density of states in nanoscale straight-band

heterostructures

The magneto-optical absorption spectrum is a key

requirement for many volumetric and low-dimensional

optoelectronic devices. The process of magneto-optical

absorption in straight-band heterostructures with quantum

wells and a2dB �hm;B; dð Þ can be expressed as a function of

the combined density of states. When exposed to a quan-

tizing magnetic field, the combined density of states pro-

vides a measure of the number of allowed magneto-optical

transitions between the electronic states of the filled

valence band and the unoccupied electronic states of the

conduction band separated by the photon energy �hm. In
well-known scientific literature, several attempts have been

reported to relate the densities of the energy states of the

permitted zone with the combined density of states in the

absence and presence of a magnetic field. [4–7]. However,

all the empirical and simplified expressions of the com-

bined density of states obtained were limited by the

absence of pressure and low temperatures.

From Eq. (6), it is clear that for hm[E2d
cv B; d;Ncv

L ; nZ
� �

,

the form of the combined density of states as a function of

energies reflects the nature of the deltoid. When exposed to

a quantizing magnetic field, the two-dimensional combined

density of states N2d
jds hm;E2d

cv B; d;Ncv
L ; nZ

� �� �
is determined

by the energy spectrum of charge carriers in the allowed

zone of the quantum well. Experiments show that the

density of states of electrons and holes depends on tem-

perature. The temperature dependence of the density of

states of electrons and holes in a quantum well is explained

by the thermal blurring of discrete Landau levels [22–25].

As shown in works [23, 24], the density of electron states

in the conduction band of a quantum well at sufficiently

high temperatures transforms from discrete Landau levels

into a continuous energy spectrum. And at low tempera-

tures, the quantizing magnetic field strongly affects the

densities of states in the resolved zone of the quantum well,

whereas the continuous energy spectrum decomposes into

discrete Landau levels. In this case, as the temperature

increases, collisions of charge carriers and thermal motions

lubricate the discrete Landau levels, turning them into a

continuous spectrum of the density of quantum well states.

Hence, the temperature dependence of discrete Landau

levels of charge carriers can be described by decomposing

the combined density of quantum well states into a series of

delta-shaped functions. The temperature dependence of the

oscillation of the interband magneto-optical absorption in

heterostructures with quantum wells was explained by a

study using the delta-shaped functions of two-dimensional

combined densities of states. The temperature dependence

of the two-dimensional combined density of states is

determined by the thermal broadening of discrete Landau

levels of charge carriers in the allowed zone of the quantum

well.

At T = 0, the Gaussian distribution function is delta-

shaped and is defined by the following expression [26]:

Gauss E; Tð Þ ¼ 1

kT
� exp � E � Eið Þ2

kTð Þ2

 !
ð7Þ

In addition, to describe the interband magneto-optical

absorption, it is usually assumed that each energy spectrum

of a quantum well is blurred according to the Gaussian law

with a blurring parameter. This approach can be described

by the temperature dependence of the two-dimensional

combined density of states in a quantum well. Hence, the

deep filled discrete Landau levels of charge carriers in a

quantum well depend exponentially on the two-

dimensional combined density of states. To calculate the

temperature dependence of the two-dimensional combined

density of states N2d
jds hm;E2d

cv B; d; nZð Þ
� �

we assume that

N2d
jds �hm;E2d

cv B; d;Ncv
L ; nZ

� �� �
for T = 0 equal to the known

energy functions E2d
cv B; d;Ncv

L ; nZ
� �

. For a heterostructure

with quantum wells, in a strong magnetic field, the two-

dimensional combined density of states is calculated by

Eq. (6). With increasing temperature, each combined

density of states in the allowed zone of the quantum well

with the energy of the conduction band and the valence

band E2d
cv B; d;Ncv

L ; nZ
� �

is eroded. Thermal blur

N2d
jds hm;E2d

cv B; d;Ncv
L ; nZ

� �� �
with energy E2d

cv B; d;Ncv
L ; nZ

� �

is calculated by the Shockley-Reed-Hall statistics [27].

Thus, under the influence of a quantizing magnetic field, in

the permitted zone of the quantum well, the resulting two-

dimensional combined density of states, taking into

account the contribution of thermal blurring of all states,

will be determined by the sum of all blurring. Hence, at a

finite temperature T, this reduces to the decomposition into

a series N2d
jds hm;E2d

cv B; d;Ncv
L ; nZ

� �� �
by Gaussian functions,

for nanoscale semiconductor structures.

Equation (6) does not take into account thermal blurring

of the two-dimensional combined density of states. If we

decompose N2d
jds hm;E2d

cv B; d;Ncv
L ; nZ

� �� �
in a row according

to Eqs. (7), then it is possible to take into account the

temperature dependence of the two-dimensional combined

density of states in the allowed zone of the quantum well.

In a strong magnetic field, temperature blurring of the

combined density of quantum well states leads to

smoothing of discrete Landau levels of charge carriers and

thermal blurring is calculated using Eq. (7). At T = 0,

Eq. (7) turns into a delta-like function of the form:
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Gauss E;Ei; Tð Þ
T!0

! d E � Eið Þ ð8Þ

Thus, it follows from Eqs. (5), (6) and (7) that under the

influence of a quantizing magnetic field, the temperature

dependence of the combined density of quantum well states

is reduced to the following analytical expression:

N2d
jds hm;E2d

cv B; T ; d;Ncv
L ; nZ

� �� �
¼ eB

p�h
� 1

kT
�

X

Nc
L;N

v
L;nZ

exp

�
hm� E2d

g 0ð Þ þ Nc
L þ 1

2

� �
�hxc

c þ Nv
L þ 1

2

� �
�hxv

c þ �h2p2
2m�

cvd
2 n

2
Z

� �� �2

kTð Þ2

2

64

3

75

ð9Þ

where N2d
jds �hm;E2d

cv B; T; d;Ncv
L ; nZ

� �� �
—temperature depen-

dence of the oscillation of the combined density of states in

the allowed zone of the quantum well in the presence of a

strong magnetic field. B is the induction of a transverse

quantizing magnetic field.

This new analytical equation expresses the effect of the

quantizing magnetic field on the temperature dependence

of the two-dimensional combined density of states in

heterostructures with quantum wells. The obtained

expression is convenient for processing experimental data

on the oscillation of interband magneto-optical absorption

in quantum wells at various magnetic fields and tempera-

tures. Thus, a mathematical model describing the effects of

external factors (temperature and magnetic field) on the

two-dimensional combined density of states in nanoscale

semiconductor structures has been obtained.

3. Results and discussions

3.1. The results obtained on the new reduced model

and its discussion

Now, for specific straight-band heterostructures based on

quantum wells, we consider the temperature dependence of

the two-dimensional combined density of states in a

quantizing magnetic field. In work [28], a high-quality

heterostructure with a GaAs/AlGaAs quantum well with a

width of 14 nm with a small concentration of aluminum

(3%) in the barrier layers was investigated. Heterostruc-

tures with a GaAs/AlGaAs quantum well were studied at a

temperature of 4 K. In the absence of a magnetic field, the

band gap of the GaAs quantum well is equal to 1.464 eV

(Fig. 2). Figure 2 shows the dependence of the two-di-

mensional combined density of states on the absorbing

photon energy for a GaAs quantum well d = 14 nm (nz =

1) at a temperature T = 4 K and a quantizing magnetic

field B = 9 T. This graph was created by numerical cal-

culation based on Eq. (9). In Fig. 2, the number of discrete

Landau levels of charge carriers is fourteen. These peaks

(discrete Landau levels of charge carriers (Ncv
L = 14)) are

observed in the allowed band of the GaAs quantum well. It

shows the two-dimensional combined density of states in a

quantizing magnetic field �hxc ¼ 0:02 eV at T = 4 K,

kT = 4.10–4, �hxc

kT
¼ 50; kT\\�hxc. In this case, the

thermal smearing of the Landau levels of charge carriers is

very weak and the two-dimensional combined density of

states does not feel any deviation from the ideal shape. In

this plot, the valence band and conduction band are chosen

as symmetrical energy spectra. Then, from the first discrete

Landau level of holes (NL(V) = 0) to NL(V) = 6, they are

located higher from the beginning of the ceiling of the

Fig. 2 Dependence of the two-dimensional combined density of states on the absorbing photon energy in direct-gap heterostructures with GaAs/

AlGaAs quantum wells (d = 14 nm) at a temperature T = 4 K and a quantizing magnetic field B = 9 T
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valence band of the quantum well. As well as other discrete

Landau levels of electrons are located above the bottom of

the conduction band of the quantum well.

Figure 3 shows the influence of temperature on the

dependence of the two-dimensional combined density of

states on the absorbing photon energy in direct-gap

heterostructures with GaAs/AlGaAs quantum wells

(d = 14 nm) under the action of a quantizing magnetic

field. Here, the amount of induction of the quantizing

magnetic field is 9 T and plots of N2d
jds �hm;E2d

cv B; T;ð
�

d;Ncv
L ; nZÞÞ are created for temperatures of 4 K, 20 K,

40 K, 60 K, 77 K. It can be seen from Fig. 3 that with

increasing temperature, the sharp peaks of the Landau

levels begin to smooth out, and at sufficiently high tem-

peratures the discrete energy densities of states turn into

continuous energy spectra. These results were obtained for

a constant quantum well thickness and magnetic field. With

increasing temperature, the sharp peaks of the Landau

levels of charge carriers begin to smooth out (Fig. 3) and at

kT � �hxcv
c gradually disappear. And also, at sufficiently

high temperatures kT[ �hxcv
c N2d

jds �hm;E2d
cv B; T ; d;ð

�

Ncv
L ; nZÞÞ they turn into a continuous combined density of

states of the quantum well and there will be no feel the

influence of a quantizing magnetic field. In addition, as the

temperature increases, the sharp peaks in the Landau levels

of charge carriers, due to the quantization of the energy

levels of electrons and holes in the allowed quantum well

gradually smooth out. This leads to the fact that at the

temperature T = 40 K, kT = 3, 5�10–3, kT � �hxcv
c discrete

Landau levels of quantum well charge carriers become

invisible. At a temperature of 77 K, the discrete Landau

levels in the allowed band of the GaAs/AlGaAs quantum

well are almost invisible and coincide with the two-di-

mensional combined density of states in the absence of a

magnetic field. Hence, the two-dimensional combined

density of states in the conduction band and the valence

band of the quantum well are observed at temperatures

kT\�hxcv
c . Starting from temperatures of the order of

0:5 kT� �hxcv
c , the two-dimensional combined densities of

states due to Landau quantization in the allowed band of

the quantum well are not observed.

In this case, the measurements give a continuous spec-

trum of the two-dimensional combined density of states.

Changing the cyclotron frequency of the magnetic field xcv
c

changes the energy distance between discrete Landau

levels of charge carriers in the quantum well (Fig. 4).

Figure 4 shows graphs of the two-dimensional combined

density of states in direct-gap heterostructures with GaAs/

AlGaAs quantum wells (d = 14 nm) at various magnetic

fields B = 9 T and 12 T. As can be seen from these figures,

with an increase in the induction of the quantizing mag-

netic field, we obtain a change in the discrete peaks of the

Landau levels of charge carriers.

3.2. Comparison of theory with experimental results

in the absence and presence of a quantizing

magnetic field

As is known from work [29], the influence of a quantizing

magnetic field on two-dimensional electron systems will

demonstrate very interesting physical properties arising

Fig. 3 Effects of temperature on the dependence of the two-dimensional combined density of states on the absorbing photon energy in direct-gap

heterostructures with GaAs/AlGaAs quantum wells (d = 14 nm) under the influence of a quantizing magnetic field B = 9 T
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from the quantum confinement of charge carriers in a

quantum well. Because of this quantum constraint, the 2D

combined density of states of charge carriers in a quantum

well exhibits Van Hove singularities, whereas in the case of

an ideal infinite zero-dimensional lattice (quantum dot), the

combined density of states tends to infinity for well-defined

energy values. Limiting a large number of 2D combined

densities of states to a single energy value leads to striking

physical properties such as extremely high magneto-optical

absorption, increased thermoelectric power, quantized

electronic conductivity, etc. Applications based on these

properties could lead to important new nanotechnological

and optoelectronic devices.

In particular, in work [30], two-dimensional combined

densities of states of heterostructures based on an InGaN/

GaN quantum well with different radiation wavelengths

(violet, blue, and green) operating at different currents

were studied. The results show that the blue shift of the

emission with increasing current is associated with a

change in the two-dimensional combined density of states.

In this work, the dependence of the two-dimensional

combined density of states of the InGaN/GaN quantum

well on the absorbing photon energy in the absence of a

magnetic field (B = 0) and at temperatures T = 300 K

(Fig. 5) was obtained. Here, the band gap of the InGaN/

GaN quantum well is Eg(0) = 3.2 eV, and the thickness of

the quantum well is d = 10 nm.

Now, let’s apply the proposed model to the InGaN/GaN

material. Figure 6 shows the influence of the quantizing

magnetic field on the dependence of the two-dimensional

combined density of states of the InGaN/GaN quantum

well on the energy-absorbing photon at different tempera-

tures. Here, B = 10 T, T = 300 K, 77 K and 5 K. Figures 5

and 6 show similar results with and without a magnetic

field at room temperature. At room temperature, the

influence of the magnetic field is not felt when the photon

energy of the two-dimensional combined density of states

is absorbed, since kT � �hxc. The combined density of

states behaves as if there is no magnetic field.

It follows from this that the proposed model obeys

certain laws, and this indicates the correctness of the

model.

Using Eq. (9), one can observe oscillations of the two-

dimensional combined density of states (6) at different low

temperatures. Also, a new analytical expression (the pro-

posed new model) allows one to obtain the results of

changes in the thickness of the quantum well associated

with the combined density of states. This leads to a theo-

retical analysis of some experimental data.

4. Conclusions

Based on the work carried out, the following conclusions

can be drawn: An analytical expression is obtained for the

oscillations of the two-dimensional combined density of

states in the allowed band of a quantum well under the

action of a quantizing magnetic field. A new model has

been developed for calculating the effect of a quantizing

magnetic field on the temperature dependence of the two-

dimensional combined density of states in direct-gap

heterostructures with quantum wells. The temperature

Fig. 4 Influence of a quantizing magnetic field on the dependence of the two-dimensional combined density of states upon absorption of photon

energy in direct-gap heterostructures with GaAs/AlGaAs (d = 14 nm) quantum wells at a temperature of T = 4 K

Influence of a magnetic field and temperature on the oscillations 195



dependence of the oscillations of the two-dimensional

combined density of states of the quantum well is

explained by the thermal smearing of the Gaussian distri-

bution function in a strong magnetic field. Based on the

proposed new models, the Landau levels of charge carriers

in a direct-gap quantum well are determined in a wide

temperature range. The experimental results were inter-

preted using the oscillations of the combined density of

states of the quantum well in a quantizing magnetic field.

The calculation results were compared with experimental

results obtained for heterostructures based on an InGaN/

GaN quantum well in a quantizing magnetic field at various

temperatures.
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