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Abstract: In this article, the asymptotic nonlinear behavior of the Rayleigh–Taylor hydrodynamic instability driven by

time dependent variable accelerations of the form gð1 � e�
t
TÞ and gð1 � e�

t
TÞð1 þ cos ltÞ has been reported simultaneously.

The nonlinear model based on potential flow theory has been extended to describe the effect of afore mentioned accel-

erations with vorticity generation inside the bubble. It is seen that the asymptotic growth rate and curvature of the tip of the

bubble like interface tends to a finite saturation value and depends on the parameters T and l. Also, an oscillatory behavior

is observed for the acceleration gð1 � e�
t
TÞð1 þ cos ltÞ. Such time-dependent accelerations are a representative of the flow

conditions in several applications including Inertial Confinement Fusion, type la supernova and several Rayleigh–Taylor

experiments.
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1. Introduction

The interfacial instability of two superposed fluids has been

investigated since the turn of the nineteenth century by

Lord Rayleigh and Taylor [1, 2], who studied the linear

regime. According to their names, the problem of interfa-

cial instability under gravitational field is known as Ray-

leigh–Taylor instability (RTI). This instability is observed

when a fluid is accelerated across a sharp interface into a

second, heavier fluid. Such flows occur in the explosive

detonation of type la supernova and in the ablation stage of

the Inertial Confinement Fusion (ICF) process. In ICF,

ablation and blow-off at an outer core results in the shell

interface accelerated normally inward with a complex

acceleration profile, so that, applied perturbations grows,

dominated by a strong RTI [3].

There are three stages in the RTI process. In the linear

regime, where the amplitude of perturbation becomes very

small compared to the wave length, the perturbed ampli-

tude nðtÞ is obtained from the dispersion relation [4]

€nðtÞ � gðtÞkAnðtÞ ¼ 0

where g(t) is the acceleration, k is perturbed wave number

and A is the Atwood number defined by
qh�ql

qhþql
, qhðlÞ is the

density of the upper(lower) fluid. When g(t) is constant, the

amplitude of the interface grows as � expð
ffiffiffiffiffiffiffiffi

Akg
p

tÞ. In the

second stage, the small perturbation grows into non-linear

structures in the form of a bubble (a part of lighter fluid that

penetrates into heavier one) and spike (a part of heavier

fluid that penetrates into lighter region) where the ampli-

tude of perturbation becomes comparable with the wave

length. Finally, turbulent mixing occurs and the motion is

broken [5].

In the linear stage, the amplitude of the bubble is just

opposite to the spike due to the sinusoidal shape of the

interface [4]. However, in the non-linear regime, the shape

of the interface is far from the sinusoidal structure. To

described the evolution of the non-linear structures, several

models have been proposed. One of them was proposed by

Layzer [6], where the initial structure is assumed to be a

parabola. Extending this model for arbitrary density ration,

Goncharov [7] derived the asymptotic velocity of the

bubble tip, which is
ffiffiffiffiffiffiffiffiffiffiffi

2A
1þA

g
3k

q

. However, the observed sim-

ulation and experimental results [8–12] claim that nonlin-

ear theory correctly describes the bubble’s behavior in the

early nonlinear stage, but fails in the highly nonlinear

phase. Betti and Sanz [9] established that this occurs due to

vorticity accretion inside the bubble and the velocity of the*Corresponding author, E-mail: rbanerjee.math@gmail.com
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bubble tip is slightly greater than the classical value

derived by Goncharov [7]. A similar result was observed

by Fu et al. [10] using localized perturbations described by

a Gaussian mode. The overwhelming majority of RTI

investigations have been done assuming the gravitational

acceleration as constant. However, in most experimental

configurations, astrophysical systems and ICF applications,

this instability occurs under a variable acceleration.

Depending upon the nature of the acceleration profile, it

may even be possible to stabilize the growth of the

instability.

For the purpose of the study of the dynamic stabilization

of RTI, Kawata et al. [13] reported the stabilization of RTI

mixing layer, subject to temporally varying acceleration

histories of the form gðtÞ ¼ g0 þ l2a sinðltÞ, where g0 is

the constant acceleration, l is the frequency and a is the

amplitude. Instead of sinðltÞ, Piriz et al. [14, 15] consid-

ered gðtÞ ¼ g0 þ mu2a½dðlt � 2 mpÞ � dðlt � 2 m þ 1pÞ�,
where m is an integer. Piriz et al. [16] also analyzed the

dynamic stabilization of RTI in an ablation front by con-

sidering a general square wave for modulating the vertical

acceleration of the front. In nonlinear regime, Mikaelian

[17] analyzed the same effect by considering

gðtÞ ¼ g0 þ g1 cosðltÞ. Mikaelian [18] also reported the

effect of variable accelerations of the form gð1 � e�
t
TÞ and

gð1 � e�
t
TÞð1 þ cos ltÞ on RTI without considering the

ablation. Recently, Ramapraphu et al. [3] and Aslangil el

al. [19] considered the acceleration of the form g0tn, and

studied the stabilizing effect on RTI.

The variable g(t) induced RTI mixing study proposed

here will help to understand the effect of pulse shaping on

improving the entropy profiles and fuel capsule perfor-

mance in an ICF setting [20]. Here we will investigate the

effect of two simplified time dependent accelerations such

as gðtÞ ¼ gð1 � e�
t
TÞ and gð1 � e�

t
TÞð1 þ cos ltÞ on the

RTI bubble tip using extended Layzer’s model with vor-

ticity accumulation inside the bubble. These two types of

acceleration profiles are idealized forms simplified from a

realistic laser-driven system such as ICF. By considering

the vorticity inside the bubble, as proposed by Betti and

Sanz [9], the effect of time-varying accelerations on the

late time evolution of RTI will be investigated analytically

and numerically.

2. Non-linear hydrodynamic model

The x-y plane (z ¼ 0) is assumed to be the unperturbed

interface between the denser fluid of density qh (region

z[ 0) and lighter fluid of density ql (region z\0).

Acceleration g(t) is taken to point along negative z-axis.

According to Layzer [6], after perturbation the finger shape

interface is assumed to take up a parabolic form, given by

z ¼ gðx; tÞ ¼ g0ðtÞ þ g2ðtÞx2 ð1Þ

where g0 [ 0 and g2\0 respectively represents the

amplitude and curvature of the bubble tip.

The evolution of the interface z ¼ gðx; tÞ can be deter-

mined by the kinematical boundary conditions as [21]

og
ot

þ vhx
og
ox

¼ vhz ð2Þ

og
ox

ðvhx � vlxÞ ¼ vhz � vlz ð3Þ

where ðvhÞx;z and ðvlÞx;z are the velocity components of the

denser and lighter fluids respectively.

The velocity potential describing the irrotational motion

for the denser fluid is assumed to be given by [7, 22]

/ðx; z; tÞ ¼ aðtÞ cosðkxÞe�kðz�g0ðtÞÞ ð4Þ

where k is the perturbed wave number and a(t) is the

perturbed velocity amplitude of the denser fluid.

The equation of motion of the upper incompressible

fluid leads to the following Bernoulli’s equation [23]:

qh½�
o/
ot

þ 1

2
ðr~/Þ2 þ gðtÞz� þ ph ¼ fhðtÞ ð5Þ

The motion of the lighter fluid inside the bubble is assumed

to be rotational with vorticity x~ ¼ ðovlz

ox � ovlx

oz Þŷ. This

motion is described by the stream function Wðx; z; tÞ,
given by [9]

Wðx; z; tÞ ¼ b0ðtÞx þ ½b1ðtÞekðz�g0Þ

þ x0ðtÞ=k2� sin ðkxÞ
ð6Þ

with vlx ¼ � oW
oz and vlz ¼ oW

ox .

Hence

r2W ¼ �x ð7Þ

Now consider a function vðx; z; tÞ, such that

r2v ¼ �x ð8Þ

clearly ðW� vÞ is a harmonic function as r2ðW� vÞ ¼ 0.

Let Uðx; z; tÞ be the conjugate function of ðW� vÞ, then

oU
ox

¼ oW
oz

� ov
oz

oU
oz

¼ � oW
ox

þ ov
ox

ð9Þ

Hence the velocity components of the lighter fluid are

vlx ¼ � oW
oz

¼ � oU
ox

� ov
oz
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vlz ¼
oW
ox

¼ � oU
oz

þ ov
ox

ð10Þ

Starting from the equation of motion of the lighter fluid

ql

ov~

ot
þ 1

2
r~ðv~lÞ2 þ xby � v~l

� �

þr~ðp1 þ qlgðtÞzÞ ¼ 0

ð11Þ

and using Eqs. (7)–(10), we get

ql½�
oU
ot

þ 1

2
ðv~lÞ2 � xWþ gðtÞz�

þ
Z

ql½ðW
ox
oz

� o _v
oz
Þdx þ ðW ox

ox
þ o _v

ox
Þdz� þ pl ¼ flðtÞ

ð12Þ

The following choices are made according to Ref. [12]

Uðx; z; tÞ ¼ �b0ðtÞy þ b1ðtÞ cos ðkxÞekðz�g0Þ ð13Þ

and

vðx; z; tÞ ¼ x0ðtÞ sin ðkxÞ=k2 ð14Þ

Plugging the dynamical boundary condition ph ¼ pl [21] at

the interface z ¼ gðx; tÞ in Eqs. (5) and (12), we obtained

the following equation:

qh½�
o/
ot

þ 1

2
ðr~/Þ2 þ gz� � ql½�

oU
ot

þ 1

2
ðr~UÞ2 � xWþ gz� �

Z

ql½ðW
ox
oz

� o _v
oz
Þdx

þ ðW ox
ox

þ o _v
ox
Þdz� ¼ fhðtÞ � flðtÞ

ð15Þ

satisfied at the interface z ¼ gðx; tÞ.

Substituting g, ðvhÞx;z, ðvlÞx;z in Eqs. (2) and (3) and

expanding in powers of the transverse coordinate x,

neglecting terms O(xi)(i� 3), we obtain the following

equations:

dn1

ds
¼ n3 ð16Þ

dn2

ds
¼ � 1

2
ð6n2 þ 1Þn3 ð17Þ

kb0
ffiffiffiffiffiffiffi

kg0

p ¼ 6n2ð2n3 � XÞ
ð6n2 � 1Þ ð18Þ

k2b1
ffiffiffiffiffiffiffi

kg0

p ¼ �ð6n2 þ 1Þn3 � X
ð6n2 � 1Þ

ð19Þ

where n1 ¼ kg0, n2 ¼ g2

k and n3 ¼ k2a1
ffiffiffiffiffi

kg0

p are respectively the

dimensionless amplitude, curvature and velocity of the tip

of the nonlinear bubble structure, s ¼ t
ffiffiffiffiffiffiffi

kg0

p
is the

dimensionless time, X ¼ x0
ffiffiffiffiffi

kg0

p is the dimensionless vortic-

ity and g0 is the constant acceleration due to gravity.

Equations (16) and (17) are the first two of the three time

development equations needed to describe the time eval-

uation of the nonlinear bubble structure.

Now, substituting /h, W, v, U and g in Eq. (15), using

Eqs. (16)–(20) and equating coefficient of x2, we obtain the

following time development equation for n3:

dn3

ds
¼ 1

Dðn2; rÞ
½�Nðn2; rÞ

n2
3

ð6n2 � 1Þ þ 2ðr � 1Þð6n2 � 1Þn2GðsÞ

þ X2 � 5ð6n2 þ 1ÞXn3

ð1 � 6n2Þ
þ _X�

ð20Þ

Fig. 1 Vorticity XðsÞ plotted

against s with Xc = 2 and

parameter s0= 8
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Fig. 2 The time evolution of

the bubble amplitude (n1),

curvature (n2) and velocity (n3)

under the acceleration profile

GðsÞ ¼ 1 � e�
s
f, where r ¼ 2

and f ¼ 0 (Solid line), f ¼ 1

(Dot-dash line), f ¼ 2 (Dash

line), f ¼ 5 (Dotted)
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Fig. 3 The time evolution of

the bubble amplitude (n1),

curvature (n2) and velocity (n3)

under the acceleration profile

GðsÞ ¼ ð1 � e�
s
fÞð1 þ cos jsÞ,

where j ¼ 10, r ¼ 2 and f ¼ 0

(Solid line), f ¼ 1 (Dotted line),

f ¼ 2 (Dash line), f ¼ 5 (Dot-

dash line)
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where r ¼ qh

ql
, GðsÞ ¼ gðtÞ

g0
, Dðn2; rÞ ¼ 12ð1 � rÞn2

2 þ 4ð1 �
rÞn2 þ ðr þ 1Þ and Nðn2; rÞ ¼ 36ð1 � rÞn2

2 þ 12ð4 þ
rÞn2þ ð7 � rÞ

Equations (16), (17) and (20) describe the time behavior

of the bubble tip driven by variable acceleration profiles.

3. Results and discussions

The time evolution of the bubble structure of the interface

is described by the Eqs. (16), (17) and (20). Before inte-

grating the equations numerically, it is necessary to

understand the dependence of the vorticity XðsÞ on s. As

suggested by Snaz and Betti [9], we consider XðsÞ in the

following form so that the time dependence of XðsÞ has

similarities with the simulation results:

XðsÞ ¼ Xc

1 þ 2 tanhðs0Þ
½tanhðs0Þð1 þ tanhðsÞÞ þ tanhðs� s0Þ�

ð21Þ

Here Xc is the asymptotic value of the dimensionless

vorticity and s0 is a dimensionless time parameter. Note

that, XðsÞ increases from 0 and tends to an asymptotic

value Xc as s ! 1. The constants s0 and Xc are consid-

ered according to simulation results given by Snaz and

Betti [9]. s0 ¼ 8 and Xc ¼ 2 gives a good approximation of

the simulation and experimental results. The plot for XðsÞ
is shown in Fig. 1.

To obtain the initial conditions of the numerical inte-

gration, it is assumed that the initial interface is given by

z ¼ g0ðt ¼ 0ÞcosðkxÞ. The expansion of the cosine function

gives ðn2Þinitial ¼ � 1
2
ðn1Þinitial, where ðn1Þinitial is the arbi-

trary initial amplitude. Since the perturbation starts from

rest, we may often choose ðn3Þinitial ¼ 0.

The dimensionless time development of bubble param-

eters n1, n2 and n3 is shown in Figs. 2 and 3. In Fig. 2, we

consider GðsÞ ¼ ð1 � e�
s
fÞ, where f ¼ T

ffiffiffiffiffiffiffi

kg0

p
. For f ¼ 0,

the result coincide with constant gravitational acceleration

case, in which the asymptotic value of the curvature of the

bubble tip and bubble velocity are obtained by setting dn2

ds ¼
0 and dn3

ds ¼ 0.

n2jasymptotic ¼ � 1

6
ð22Þ

n3jasymptotic ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

3

A

1 þ A
þ X2

c

4

1 � A

1 þ A

s

ð23Þ

Figure 2 describes that, in early nonlinear stage the

amplitude (n1), curvature (n2) and velocity (n3) of the

bubble tip depend on f. The growth and velocity of the

bubble tip reduces for large f and formation of the bubble

slows down. This happens as GðsÞ\1 for f[ 0. However,

the asymptotic values of the velocity and curvature coin-

cide with the classical asymptotic values given by Eqs. (22)

and (23).

Next we consider another acceleration profile

GðsÞ ¼ ð1 � e�
s
fÞð1 þ cos jsÞ, where j ¼ l

ffiffiffiffiffi

kg0

p . Figure 3

shows the temporal development of the parameters n1, n2

and n3 of bubbles with a given j but with different values

of f. It is found that the dynamical behavior of the bubble is

oscillating about the classical value due to the term cos js.

However, for f ¼ 0, we get the particular result obtained

by Mikaelian [17]. As j denote the dimensionless fre-

quency, oscillation becomes more rapid with increasing j
and growth and velocity of the bubble tip reduces with

increasing f. It is also observed that the asymptotic value of

the curvature do not depend on f and j and always coin-

cides with the classical value given by Eq. (22). In early

nonlinear stage, the dynamics of the bubble are quite

similar with the results obtained by Mikaelian [18] and in

latter phase, the observation agrees with the MOBILE

simulation results [3]. However, in asymptotic stage, the

amplitude and velocity of the bubble tip is quite large due

to vorticity accumulation.

4. Conclusions

In this article, a two dimensional nonlinear potential flow

model of ablative Rayleigh–Taylor Instability with two

different variable acceleration profiles gðtÞ ¼ gð1 � e�
t
TÞ

and gð1 � e�
t
TÞð1 þ cos ltÞ has been described. This model

can be applied to investigate the evolution of the Rayleigh–

Taylor Instability in Inertial Confinement Fusion where

different gravitational profiles have been considered. It is

found that, for gðtÞ ¼ gð1 � e�
t
TÞ, in the early nonlinear

stage, the structure of the bubble is affected by T, but, as

time increases, the effect reduces and coincides with the

case T ¼ 0. On the other hand, for gðtÞ ¼
gð1 � e�

t
TÞð1 þ cos ltÞ, the structure of the bubble is

affected by both parameters T and l. With increasing value

of T, the growth and velocity of the bubble tip reduces with

an oscillation due to the frequency term l, but curvature of

the bubble tip is always independent. This model can help

to understand the RTI process in astrophysical and exper-

imental laser-driven system under the variable acceleration

profiles.
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