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Abstract: This paper proposes an Asymmetric Tri-stable Stochastic Resonance (ATSSR) system that is driven by a

periodic signal and a combination of correlated non-Gaussian noise and Gaussian white noise. The authors obtain the

Markov process using the unified color noise approximation method and derive analytical expressions for the steady-state

probability density, the Mean First-Pass Time, and the spectral amplification under the adiabatic approximation limit.

Afterwards, the effects of various system parameters on them are analyzed, and the results show that both non-Gaussian

noise and Gaussian white noise can induce stochastic resonance, with stronger resonance occurring when the two types of

noise are correlated. Then, a periodic attenuated pulse signal and a harmonic vibration signal are constructed, which are

applied in simulated experiments to detect fault signals using the ATSSR system. The experimental results demonstrate the

outstanding performances in detecting fault signals and confirm its the feasibility for this purpose.
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1. Introduction

Over the past few decades, significant advancements have

been made by scholars in the research of stochastic reso-

nance (SR) [1], which has found widespread applications in

various fields such as biological [2, 3], physical [4, 5], and

neural networks [6, 7]. Initially, the focus of scholars was

on SR in bistable systems that were driven by Gaussian

white noise and periodic force. In Ref. [8], a second-order

underdamped bistable system was proposed, which was

driven by additive noise in the form of Gaussian white

noise. Ref. [9] and Ref. [10] focused on investigating dif-

ferent asymmetric bistable systems that were driven by

multiplicative and additive Gaussian white noise. In Ref.

[11], the authors presented a time-delayed bistable system

and analyzed the phenomenon of SR using statistical

complexity measure and normalized Shannon entropy.

Although Gaussian noise is widely used and easy to ana-

lyze, the probability density distribution of noise in real

applications is often more complex. To apply SR in prac-

tical engineering, scholars have turned to research on

nonlinear systems driven by non-Gaussian noise [12–18].

Fuentes et al. [13] observed the SR phenomenon in

bistable systems driven by non-Gaussian noise and found

that the resonance effect was enhanced when the noise

deviated from the Gaussian distribution. Jin and Li [14]

proposed a piecewise bistable system induced by correlated

multiplicative and additive color noise and derived the

expression of output signal-to-noise ratio (SNR) using two-

state theory. They also investigated the effects of color

noise on SNR. Guo et al. [15] studied and analyzed SR in

piecewise bistable systems under multiplicative non-

Gaussian noise and additive Gaussian white noise. The

results showed that the effects of non-Gaussian noise and

Gaussian white noise on SNR are different. In Ref. [16], a

coupled bistable SR system driven by levy noise was

proposed, and the effects of system parameters on the mean

signal-to-noise gain were studied. Additionally, scholars

have researched SR driven by non-Gaussian noise in neural

networks. In Ref. [17], a simplified one-dimensional F-N

neural network driven by correlated multiplicative non-

Gaussian noise and additive Gaussian white noise was

studied. In Ref. [18], SR phenomenon in time-delayed F-N

neural networks driven by non-Gaussian noise was studied,
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and the effects of time delay and non-Gaussian noise

strength on SNR were discussed.

Recent studies have shown that the dynamics of tri-

stable systems are more complex and exhibit better per-

formance than bistable systems, leading to extensive

research on tri-stable systems [19–23]. In Ref. [19], a

standard underdamped tri-stable SR system was proposed

through parameter transformation based on the classical tri-

stable system. In Ref. [20], a piecewise tri-stable SR sys-

tem was proposed and applied in bearing fault detection.

The SR phenomenon in a tri-stable system with time-de-

layed feedback was studied, and the effects of time delay

strength and length on SNR were explored in Ref. [21].

However, these studies on tri-stable SR systems are all

based on Gaussian white noise, and very few papers have

investigated tri-stable SR systems driven by non-Gaussian

noise, which exhibits properties more consistent with real

noise. Additionally, the analysis of the resonance behavior

of an asymmetric tri-stable system is more complex than

that of a symmetric tri-stable SR system. Moreover, the

derivation of the spectrum amplification becomes further

complicated when the system is driven by multiplicative

non-Gaussian noise and additive Gaussian white noise.

Hence, based on the above discussions, this paper proposes

an ATSSR system driven by correlated multiplicative non-

Gaussian noise and additive Gaussian white noise.

The contents of this paper are organized as follows: In

Sect. 1, the potential structure of ATSSR system is ana-

lyzed. In Sect. 2, the specific expressions of SPD, MFPT,

and SA are derived under the limit of adiabatic approxi-

mation, and the effects of each parameter on them are

analyzed. In Sect. 3, a periodic attenuated pulse signal and

a harmonic vibration signal are constructed, and simulated

fault signal detection experiments are performed using the

ATSSR system. Finally, the conclusions and outlook are

provided for future research in Sect. 4.

2. ATSSR system

2.1. System model

Driven by a periodic forcing and correlated multiplicative

non-Gaussian noise and additive Gaussian white noise,

ATSSR system can be described as the Langevin equation

of Eq. (1):

_x ¼ � _U xð Þ þ A0 cos 2pf0tð Þ þ x1 tð Þ þ e tð Þ ð1Þ

where A0 and f0 are the amplitude and frequency of the

external periodic forcing, respectively.

U xð Þ ¼ x2 a � bxð Þ a þ xð Þ þ cx6 is the asymmetric tri-

stable potential function, and a, b, and c are positive real

numbers. Since the symmetry of the potential function is

not related to the parameter c, without loss of generality,

c is fixed as c = 0.2 in Fig. 1. As can be shown, ATSSR

system has three stable points s1, s2, and s3, and two

unstable points u1 and u2. For convenience, s1, s2, and s3
are called the potential well on the left, middle, and right,

respectively. It can be seen that the depth and width of the

left and right potential wells become shallower and nar-

rower, respectively, while the depth of the middle potential

well increases as a increases. Nevertheless, the height of

the middle barrier decreases as b increases.

In Eq. (1), e tð Þ is a Gaussian white noise with the sta-

tistical characteristic: e tð Þh i ¼ 0, e tð Þe t1ð Þh i ¼ 2Qd t � t1ð Þ.
1 tð Þ can be generated by the following equation:

d1 tð Þ
dt

¼ � 1

s1

d

d1
Vq 1ð Þ þ 1

s1
n tð Þ ð2aÞ

Vq 1ð Þ ¼ D

s1 q � 1ð Þ ln 1þ s1 q � 1ð Þ
D

12

2

� �
ð2bÞ

The process 1 tð Þ is consistent with the Ornstein–

Uhlenbeck process when q = 1, while it is a non-

Gaussian process when q = 1. And the first-order and

second-order moments of 1 tð Þ satisfy:
1 tð Þh i ¼ 0 ð3aÞ

12 tð Þ
� �

¼
2D

s1 5�3qð Þ ; q 2 �1; 5
3

� �
1; q 2 5

3
; 3

� �
(

ð3bÞ

D and s1 are noise intensity and correlation time,

respectively, and q represents the degree of deviation of

1 tð Þ from the Gaussian distribution. n tð Þ is a Gaussian

white noise with mean value 0 and intensity D, and its

correlation intensity and correlation time with e tð Þ are k
and s2, respectively, that is: n tð Þe t1ð Þh i ¼ n t1ð Þe tð Þh i ¼
2k

ffiffiffiffiffi
DQ

p

s2
d t � t1ð Þ.

According to Ref. [24], when q � 1j j\\1, i.e., 1 tð Þ
slightly deviates from the Gaussian distribution, it can be

obtained:

1

s1

d

d1
Vq 1ð Þ ¼ 1

s1
1þ s1

D
q � 1ð Þ 1

2

2

	 
�1

� 1
s1

1þ s1
D

q � 1ð Þ
12
� �
2

	 
�1

ð4Þ

for q\ 5
3
, 12 tð Þ
� �

¼ 2D
s1 5�3qð Þ. Therefore, Eq. (4) can be

simplified as follows:

1

s1

d

d1
Vq 1ð Þ ¼ 1

s1

5� 3q

2 2� qð Þ 1 tð Þ ¼ 1

seff
1 tð Þ ð5Þ

where seff is the effective correlation time and

seff ¼ 2 2�qð Þ
5�3q s1.

Taking Eq. (4) into Eq. (2a), it is obtained:
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d1 tð Þ
dt

¼ � 1

seff
1 tð Þ þ 1

seff
n1 tð Þ ð6Þ

where n1 tð Þ is a Gaussian white noise, which satisfies:

n1 tð Þh i ¼ 0, n1 tð Þn1 t1ð Þh i ¼ 2Deffd t � t1ð Þ. Deff is the

effective noise intensity and Deff ¼ 2 2�qð Þ
5�3q

h i2
D.

n1 tð Þ and e tð Þ are cross-correlated noise with correlation

strength k and correlation time s2:

n1 tð Þe t1ð Þh i ¼ n1 t1ð Þe tð Þh i ¼ 2k

ffiffiffiffiffiffiffiffiffiffiffiffi
DeffQ

p

s2
d t � t1ð Þ ð7Þ

Applying the unified color noise approximation, the

Markov process of Eq. (1) is:

_x ¼ 1

Ah x; s1ð Þ h x; tð Þ þ xn1 tð Þ þ e tð Þ½ � ð8Þ

where h x; tð Þ ¼ � _U xð Þ þ A0 cos 2pf0tð Þ, Ah x; seffð Þ ¼ 1�
seff d

dx h x; tð Þ � 1
x h x; tð Þ

� �
, and Ah x; seffð Þ[ 0.

Equation (8) can be rewritten as the differential form of

Eq. (9):

_x ¼ a xð Þ þ b xð ÞC tð Þ ð9Þ

where a xð Þ¼ h x;tð Þ
Ah x;s1ð Þ, b xð Þ ¼ Deffx

2þ2k
ffiffiffiffiffiffiffiffi
DeffQ

p
x= 1þ2s2ð ÞþQð Þ1=2

Ah x;s1ð Þ ,

and the statistical properties of C xð Þ are: C tð Þh i ¼ 0,

C tð ÞC t � t1ð Þh i ¼ 2d t � t1ð Þ.

2.2. Steady-state probability density of ATSSR system

The Fokker–Planck equation of Eq. (10) can be approxi-

mated as follows:

oq x; tð Þ
ot

¼ � o

ox
a x; tð Þ þ b xð Þb0 xð Þ½ �q x; tð Þ

þ o2

ox2
b2 xð Þq x; tð Þ ð10Þ

The steady-state probability density (SPD) function is:

qst xð Þ ¼ N

b xð Þ exp �
~U x; tð Þ
Deff

	 

ð11Þ

where N ¼
R exp � ~U x;tð Þ=Deff½ �

b xð Þ

	 
�1

is the normalization

constant, and ~U x; tð Þ is the generalized potential function

whose expression is:

~U x; tð Þ ¼ Deff

Z
U0 xð Þ � A0 cos 2pf0tð Þ

x2 þ 2k
ffiffiffiffiffiffiffiffiffiffiffiffi
DeffQ

p
x


1þ 2s2ð Þ þ Q

Ah x; s1ð Þdx

ð12Þ

By neglecting the second-order term of A0 in ~U x; tð Þ, we
can obtain:

~U x; tð Þ ¼ U0 xð Þ � A0g xð Þ cos 2pf0tð Þ þ o A2
0

� �
ð13Þ

Setting a = 1.5, c = 0.1, s1 ¼ 0:1, s2 ¼ 0:1, Fig. 2

Fig. 1 Potential structure

U0 xð Þ ¼ Deff

Z
6cx5 � 4bx3 þ 3a 1� bð Þx2 þ 2ax
� �

1� seff �24cx4 þ 8bx2 � 3a 1� bð Þx½ �
� �

x2 þ 2k 1þ 2s2ð Þ�1 ffiffiffiffiffiffiffiffiffiffiffiffi
DeffQ

p
x þ Q

dx ð14Þ

g xð Þ ¼ Deff

Z
1� seff �24cx4 þ 8bx2 � 3a 1� bð Þx½ �

� �
� seff 6cx4 � 4bx2 þ 3a 1� bð Þx þ 2a½ �

x2 þ 2k 1þ 2s2ð Þ�1 ffiffiffiffiffiffiffiffiffiffiffiffi
DeffQ

p
x þ Q

dx ð15Þ

Stochastic resonance in an asymmetric tri-stable system 4019



shows the effects of certain parameters of the two noises

and the asymmetric intensity on the particle motion states.

In Fig. 2(a), SPD on the left and right potential wells

decreases, while SPD on the middle potential well

increases when D increases, which indicates that particles

are more prone to transit from the outermost potential wells

to the middle potential well. In Fig. 2(b), the effect of Q on

SPD is opposite to D, the probability of particles transition

from the middle to the outermost potential wells increases

as Q increases. In Fig. 2(c), SPD on the left and the middle

potential well decreases, while SPD on the right potential

well increases when q increases. In Fig. 2(d), with the

increase in k, SPD increases on the left potential well and

decreases on both right and middle potential wells. In

Fig. 2(e), SPD on the right potential well is greater than the

left one when b[ 1, since the depth of the right potential

well is larger and particles are less likely to transit. In

addition, SPD rises on right potential well and falls on

middle and left potential wells when b[ 1, and vice versa

when b\ 1.

Fig. 2 Curves of steady-state

probability density under

different parameters. (a) Steady-
state probability density as a

function of D (b = 0.98,

k ¼ 0:1, q = 1, Q = 0.5). (b)
Steady-state probability density

as a function of Q (b = 0.98,

k ¼ 0:1, q = 1, D = 0.5). (c)
Steady-state probability density

as a function of q (b = 0.98,

k ¼ 0:1, D = 0.5, Q = 0.5). (d)
Steady-state probability density

as a function of k (b = 0.98,

q = 1, D = 0.5, Q = 0.5). (e)
Steady-state probability density

as a function of b (k ¼ 0:1,
q = 1, D = 0.5, Q = 0.5)
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2.3. Mean First-Pass Time of ATSSR system

In this section, the escape of particles through Mean First-

Pass Time (MFPT) is analyzed. By defining Ts1!s2 as the

MFPT of the particles from s1 to s2, according to the def-

inition of MFPT, it can be obtained that:

Ts1!s2 ¼
Z s2

s1

dxffiffiffiffiffiffiffiffiffi
b xð Þ

p
qst xð Þ

Z x

�1
dyqst yð Þ

¼ 2pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U00 s1ð ÞU00 u1ð Þ

p exp
~U u1; tð Þ � ~U s1; tð Þ

Deff

	 

ð16Þ

Similarly:

Ts2!s3 ¼
Z s3

s2

dxffiffiffiffiffiffiffiffiffi
b xð Þ

p
qst xð Þ

Z x

�1
dyqst yð Þ

¼ 2pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U00 s2ð ÞU00 u2ð Þ

p exp
~U u2; tð Þ � ~U s2; tð Þ

Deff

	 

ð17Þ

Figure 3 demonstrates the variation of ln Ts1!s2ð Þ with D

which shows a decreasing trend as D increases, indicating

that the time for the particles to transit from s1 to s2
decreases. This is because as the multiplicative noise

intensity increases, the more energy is available to

facilitate particles transit and the shorter the time

required for the transition. In Fig. 3(a), ln Ts1!s2ð Þ

decreases when q increases, which indicates that less

time is needed for particles to transit from s1 to s2 as the

deviation of 1 tð Þ from the Gaussian distribution increases.

In Fig. 3(b), ln Ts1!s2ð Þ is smaller when the two noises are

not correlated and the time for particles to transit from s1 to

s2 increases as k increases. The power of two uncorrelated

noises can be superimposed, while the power of the

correlated noise cannot be superimposed; thus, the particles

can get more energy to transit when additive noise and

multiplicative noise are correlated. However, as k
increases, the correlated intensity of the two noises

increases, which leads to an increase in the transit time.

Similarly, Fig. 4 shows the variation of ln Ts1!s2ð Þ with
Q, which can be seen that ln Ts1!s2ð Þ decreases as Q

increases. Since the increase in additive noise intensity also

provides more energy for the particles to transit and

facilitates the transition. But the effects of q and k on

ln Ts1!s2ð Þ are different, ln Ts1!s2ð Þ decreases when q

increases, while ln Ts1!s2ð Þ increases as k increases. Fig-

ure 5 shows the effects of D and Q on ln Ts1!s2ð Þ for both
symmetric and asymmetric potential functions, which can

be seen that ln Ts1!s2ð Þ decreases with increasing D or Q.

But when the potential function is symmetrically dis-

tributed, the particles take more time to transit from s1 to

s2. This is because the potential well on the left side is

Fig. 2 continued
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deeper, and it is more difficult for particles to transit from

the left side potential well to the middle potential well

when b = 1, which is consistent with the previous theo-

retical results.

Figures 6 and 7 describe the variation of ln Ts2!s3ð Þ with
D and Q, respectively. ln Ts2!s3ð Þ decreases with the

increases in D or Q, indicating that when the external

energy increases, less time is needed for particles to transit.

Whether ln Ts2!s3ð Þ as a function of D or Q, ln Ts2!s3ð Þ
decreases as q or k increases.

Figure 8 indicates the variation of ln Ts2!s3ð Þ with D and

Q under different b. Similarly, ln Ts2!s3ð Þ decreases in both

cases as D or Q increases. However, different from Fig. 5,

the transit time of the particles from s2 to s3 is shorter

Fig. 3 Mean First-Pass Time of particles from s1 to s2 as a function of D (a = 1, b = 0.8, c = 0.1, s1 ¼ 0:1, s2 ¼ 0:1, Q = 0.5)

Fig. 4 Mean First-Pass Time of particles from s1 to s2 as a function of Q (a = 1, b = 0.8, c = 0.1, s1 ¼ 0:1, s2 ¼ 0:1, D = 0.5)

Fig. 5 Mean First-Pass Time of particles from s1 to s2 as a function of D and Q under different b (a = 1, c = 0.1, s1 ¼ 0:1, s2 ¼ 0:1, k ¼ 0:1,
q = 1)
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because the depth of the middle potential well is signifi-

cantly less than the depth of the potential wells on either

side when the potential function is symmetric.

2.4. Spectrum amplification

To further analyze the SR behavior of particles, this section

examines the spectral amplification factor of ATSSR

system. Assume that pi i ¼ 1; 2; 3ð Þ is the probability of a

Brownian particle at the steady-state point si i ¼ 1; 2; 3ð Þ
and

P
pi ¼ 1. The master equation for pi can be obtained

as follows:

dpi

dt
¼

X3

j¼1
Ri;jpj ð18Þ

where R is the transition matrix, and its specific expression

is shown in Appendix A.

Fig. 6 Mean First-Pass Time of particles from s2 to s3 as a function of D (a = 1, b = 0.8, c = 0.1, s1 ¼ 0:1, s2 ¼ 0:1, Q = 0.5)

Fig. 7 Mean First-Pass Time of particles from s2 to s3 as a function of Q (a = 1, b = 0.8, c = 0.1, s1 ¼ 0:1, s2 ¼ 0:1, D = 0.5)

Fig. 8 Mean First-Pass Time of particles from s2 to s3 as a function of D and Q under different b (a = 1, c = 0.1, s1 ¼ 0:1, s2 ¼ 0:1, k ¼ 0:1,
q = 1)
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The probability flow equation of Eq. (18) can be

decomposed as follows:

pi ¼ p
0ð Þ

i þ A0Dpi ð19Þ

Substituting Eq. (19) into Eq. (18), it is obtained as

follows:

dDpi

dt
¼

X3

j¼1
R

0ð Þ
i;j Dpj þ /i cos 2pf0tð Þ ð20Þ

Among them, R 0ð Þ represents the undisturbed transition

matrix, and / can be expressed as follows:

/ ¼ 1

Deff

�r
0ð Þ
1;2Dg1;2p

0ð Þ
1 þ r

0ð Þ
2;1Dg2;1p

0ð Þ
2

r
0ð Þ
1;2Dg1;2p

0ð Þ
1 � r

0ð Þ
2;1Dg2;1 þ r

0ð Þ
2;3Dg2;3

� �
p

0ð Þ
2 þ r

0ð Þ
3;2Dg3;2p

0ð Þ
3

r
0ð Þ
2;3Dg2;3p

0ð Þ
2 � r

0ð Þ
3;2Dg3;2p

0ð Þ
3

0
BBB@

1
CCCA

ð21Þ

Under the limit of long time, the simplified Eq. (21) is:

Dpi ¼ ki sin 2pf0tð Þ þ ri cos 2pf0tð Þ ð22Þ

Combining Eqs. (20) and (22), the specific expressions

of ki and ri are:

ki ¼
X3

j¼1
2pf0 l2j þ 2pf0ð Þ2

h i�1

ajmj;i;

ri ¼
X3

j¼1
lj l2j þ 2pf0ð Þ2
h i�1

ajmj;i

ð23Þ

where lj and mj are the eigenvalues and corresponding

eigenvectors of R 0ð Þ, respectively, and aj is the expansion

coefficients of /, satisfying / ¼
P3

j¼1 ajvj.

The mean time response of the system by a periodic

signal is:

x tð Þjx0; t0h i ¼
Z

xP x; tjx0; t0ð Þdx

¼
Z

x
X3

i¼1
pi tð Þd x � sið Þdx

ð24Þ

When t0 ! �1, Eq. (24) can be expressed as follows:

x tð Þh ias¼ A sin 2pf0t þ wð Þ ð25Þ

where A and w are the amplitude and phase of the

asymptotic average response, respectively:

With Ai ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2i þ r2i

q
, wi ¼ arctan ri=kið Þ, C1 ¼ w2�

w1, C2 ¼ w3 � w1 � K1, K1 ¼ arctan s2A2 sin C1ð Þ= s1A1þ½f
s2A2 cos C1ð Þ�g.

Therefore, the SA of ATSSR system is:

g ¼ A2

A2
0

¼
X3

i¼1
siAið Þ2 þ 2s1s2A1A2 cos C1ð Þ

þ 2s3A3 cos C2ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX2

i¼1
siAið Þ2þ2s1s2A1A2 cos C1ð Þ

r

ð27Þ

Since s2 ¼ 0, g is simplified as follows:

g ¼ s1A1ð Þ2þ s3A3ð Þ2þ2 s1A1j js3A3 cos C2ð Þ ð28Þ

Setting a = 1, c = 0.1, s1 ¼ 0:1, s2 ¼ 0:1, Fig. 9 and

Fig. 10 describe the variation of g with D, where g first

increases and then decreases as D increases, indicating

that the system occurs in stochastic resonance and that D

corresponding to the peak is the noise energy required

for the system to achieve optimal synergy. In Fig. 9, the

peak of g corresponds to a smaller D as q increases. The

difference is that when the potential function is

symmetric, g is greater, but the system requires more

energy for the occurrence of SR. In Fig. 10, g as a

function of D varies with k changes under different b.

When b = 0.8, the peak of g increases and the

corresponding D decreases with the increase in k,
while the peak value of g decreases and the

corresponding D increases when b = 1.

Figures 11 and 12 show the variation of g with Q.

Similarly, as Q increases, there is a single peak, indicating

the occurrence of SR. In Fig. 11, the peak of g increases as

q increases and its position shifts to the right, but the peak

is higher when b = 1. In Fig. 12, the peak of g decreases

with increasing k, at the same time, the peak is higher for

b = 1.

Figure 13 discusses the influence of D and Q on g. In
Fig. 13(a), when the potential structure is asymmetric, g as

a function of D, the peak value increases and the corre-

sponding position of the peak shifts to the left with the

increase in Q. But when Q[ 0.3, SR phenomenon disap-

pears. In Fig. 13(b), when the potential structure is sym-

A ¼ A0


s1A1ð Þ2þ2s1s2A1A2 cos C1ð Þ þ s2A2ð Þ2

q
þ s3A3 cos C2ð Þ

	 
2
þ s3A3 sin C2ð Þ½ �2

s
ð26Þ
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metrical, the peak value decreases and the corresponding D

decreases with the increase in Q. And g always decreases

with the increase in D when Q[ 0.2, then no sign of the

SR phenomenon can be observed.

3. Numerical simulations

To verify the feasibility of the proposed ATSSR system in

weak signal detection, a periodic attenuated pulse signal

and a harmonic vibration signal are constructed for simu-

lation experiments.

Fig. 9 Spectrum amplification (g) as a function of D and q under different b (k ¼ 0:1, Q = 0.2)

Fig. 10 Spectrum amplification (g) as a function of D and k under different b (q = 1, Q = 0.2)

Fig. 11 Spectrum amplification (g) as a function of Q and q under different b (k ¼ 0:1, D = 0.2)
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3.1. A periodically attenuated pulse signal detection

Bearings are commonly found in a variety of machinery

and their fault signals can take many forms, some of which

are in the form of shocks in order to effectively detect

faulty bearings at an early stage and reduce losses.

Therefore, periodically attenuated pulse signal is con-

structed to simulate the signal collected when an actual

bearing fault occurs, and the ATSSR system is used for

bearing fault signal detection to verify the practicality of

the system.

sðtÞ ¼ A exp �100 t � t=Tb c=Tð Þ½ �
� sin 100p t � t=Tb c=Tð Þ½ � ð32Þ

where sampling frequency fs ¼ 2000Hz, sampling points

N ¼ 2000, amplitude A ¼ 0:2, period T ¼ 0:2, and char-

acteristic signal frequency f ¼ 1=T ¼ 5Hz. Figure 14(a)

shows the time–frequency spectrum diagram of the original

periodically attenuated pulse signal. Figure 14(b) shows

the time–frequency diagram of the signal after adding

Gaussian white noise with an intensity of 1.5. It shows that

the signal is submerged in noise, and the fault characteristic

signal frequency cannot be observed in the spectrogram

under the background of strong noise. Since the charac-

teristic signal frequency does not meet the requirement of

small parameter, the secondary sampling is performed first

and sampling frequency fsr ¼ 5Hz, and then, the fault

signal is processed through ATSSR system. Fig-

ure 14(c) shows the time–frequency diagram of the output

signal. A large amount of noise in the time-domain signal

is filtered out, and the amplitude of the signal is amplified

by nearly 5 times. In the frequency domain, a peak occurs

at f = 4.998 Hz, with a difference of 15.9 from the sub-

peak. In addition, the peak at the characteristic frequency is

more prominent than the surrounding noise components,

which proves the feasibility of the system in signal

detection.

3.2. A harmonic vibration signal detection

Rotating machines are widely used in systems such as

generators, transportation, and medical equipment. It is a

prerequisite to ensure their operational safety for reducing

losses and avoiding personal injuries; thus, early fault

Fig. 12 Spectrum amplification (g) as a function of Q and k under different b (q = 1, D = 0.2)

Fig. 13 Spectrum amplification (g) as a function of D and Q under different b (k ¼ 0:1, q = 1)
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prediction of rotating machines is very important. Gener-

ally, the operating status of the machine can be observed

through the generated harmonic vibration signals of the

rotating machinery system. The harmonic vibration signals

Fig. 14 Periodically attenuated pulse signal detection based on ATSSR system. (a) A periodically attenuated pulse signal. (b) The signal after

adding Gaussian white noise. (c) ATSSR system output signal

Fig. 15 Harmonic vibration signal detection based on ATSSR system. (a) A harmonic vibration signal. (b) The signal after adding Gaussian

white noise. (c) ATSSR system output signal
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are mostly multi-frequency signals, so a vibration signal

with three frequencies is constructed to verify its

practicality:

s tð Þ ¼ 0:1 sin 2pftð Þ þ 0:1 sin 2p� 2ftð Þ þ 0:1 sin 2p� 3ftð Þ
ð33Þ

where the fundamental frequency f ¼ 15 Hz, sampling

frequency fs ¼ 5000 Hz, and sampling points N ¼ 4096.

Figure 15(a) shows the time domain and frequency spec-

trum of the original multi-frequency harmonic vibration

signal. After adding Gaussian white noise with an intensity

of 1.2, the time–frequency diagram of the signal is shown

in Fig. 15(b). The signal is submerged in strong noise in

the time domain and the frequency domain, and the peri-

odicity and characteristic frequency of the signal cannot be

observed. Since the three harmonic frequencies do not meet

the small parameters, similarly, the secondary sampling is

performed first and sampling frequency fsr ¼ 5 Hz, and

then, the fault signal is processed through ATSSR system.

Figure 15(c) shows the time–frequency diagram of output

signal from ATSSR system. The time-domain signal is

significantly less interfered by noise, and the signal

waveform shows periodicity, and its amplitude is about

twice that of the original signal. In addition, high-fre-

quency noise is almost filtered out, and the amplitudes at

the three harmonic frequencies are all higher than the

surrounding noise components. The results indicate that the

system can detect the characteristic frequency of the har-

monic vibration fault signal.

4. Conclusions

In this paper, an asymmetric tri-stable potential function is

proposed and its resonant behaviors driven by the periodic

forces, and the correlated multiplicative non-Gaussian

noise and additive Gaussian white noise are investigated.

Firstly, the effects of D, Q, q, k, and b on SPD and MFPT

are analyzed. The main conclusions are as follows: (i) The

effects of D and Q on SPD are opposite. (ii) Whether

increasing D or Q, MFPT for particles to transit between

wells is reduced. Then, the effects of D and Q on SA are

analyzed for different q, k, and b. The results show that g
has single peak with the increasing in D or Q, indicating

that parameter-induced SR appears. Besides, the asym-

metric intensity has a significant effect on g. Finally, a
periodic attenuated pulse signal and a harmonic vibration

signal are constructed, and ATSSR system is used for

simulated fault signal detection experiments. The experi-

mental results exhibit good performances and prove the

feasibility of ATSSR system in fault signal detection.

In this paper, we have only considered two typical

correlation noises for fault detection analysis. However,

practical applications involve various types of noise.

Therefore, in further research, we plan to analyze the

detection performance of this system under different

combinations of noise sources. Moreover, to further

improve the detection performance, we intend to search

and construct new potential functions that can enhance the

output signal-to-noise ratio.

Appendix A

R is the transition matrix, which is:

R ¼
�r1;2 r2;1 0

r1;2 � r2;1 þ r2;3
� �

r3;2
0 r2;3 �r3;2

0
@

1
A ðA:1Þ

In the above formula, ri,j represents the transition

probability of Brownian particles from si to sj. The

specific expression of ri,j is:

rm;mþ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U00 smð ÞU00 umð Þj j

p
2p

exp �
~U um; tð Þ � ~U sm; tð Þ

Deff

	 

;

m ¼ 1; 2

ðA:2aÞ

rn;n�1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U00 snð ÞU00 un�1ð Þj j

p
2p

exp �
~U un�1; tð Þ � ~U sn; tð Þ

Deff

	 

;

n ¼ 2; 3

ðA:2bÞ

From Eq. (13), by expanding Eq. (A.2a) and Eq. (A.2b)

to the first-order term of cos 2pf0tð Þ, it can be obtained:

rm;mþ1 ¼ r 0ð Þ
m;mþ1

þ A0D
�1
eff r

0ð Þ
m;mþ1

Dgm;mþ1 cos 2pf0tð Þ ðA:3aÞ

rn;n�1 ¼ r 0ð Þ
n;n�1

þ A0D�1
eff r

0ð Þ
n;n�11

Dgn;n�1 cos 2pf0tð Þ ðA:3bÞ

With

r 0ð Þ
m;mþ1

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U00 smð ÞU00 umð Þj j

p
2p

exp �U0 umð Þ � U0 smð Þ
Deff

	 


ðA:4aÞ

r 0ð Þ
n;n�1

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U00 snð ÞU00 un�1ð Þj j

p
2p

exp �U0 un�1ð Þ � U0 snð Þ
Deff

	 


ðA:4bÞ
Dgm;mþ1 ¼ g um; smð Þ;Dgn;n�1 ¼ g un�1; snð Þ ðA:4cÞ
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