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Abstract: Higher-order cumulants have a greater ability to mechanically reduce the impact of Gaussian noise, whether it

is white or colored. As a consequence, higher-order statistical cumulants are gaining more attention in signal processing.

Bispectral peaks arise due to phase coupling, and the distribution of these spectral peaks follows a special law. To analyze

the distribution of these spectral peaks, this study adopted the method of harmonic decomposition. Based on Fourier

transform theory, the harmonic frequencies where phase coupling occurs are calculated. By conducting a third-order

cumulant analysis of the harmonics, the position of the spectral peak can be obtained. Then, using trigonometric functions,

the methods of amplifying, reducing, and increasing the spectral peaks were discussed and verified through experiments.

Since the collected vibration signal can be regarded as a function that satisfies the Fourier transform conditions, the above

theoretical analysis can be applied to the analysis of various actual collected signals. Currently, bispectrum is generally

used in actual applications to distinguish signal states by showing different peaks of the signal in different states. However,

this application often encounters situations where the bispectrum in different states is difficult to distinguish. The

experimental results showed that the methods of amplifying, reducing, and increasing the spectral peaks were helpful in

strengthening the practical application effects of the bispectrum.
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1. Introduction

A random process can be completely described by its

moments. Similarly, cumulants can be used to describe the

statistical characteristics of random processes in the time

domain. Higher-order spectra, including power spectra, can

also be used to describe the statistical characteristics of

random processes in the frequency domain. Higher-order

spectra have many advantages compared to power spectra.

Mainly, they can be used to check the ‘‘Gaussianness’’ of

the process [1]. Because the third- and second-order spectra

are always equal to zero, a higher-order spectrum can be

used to check the Gaussian nature of the process. In

addition, the third-order spectrum and the fourth-order

cumulant spectrum can be used to filter out the zero-mean

Gaussian distribution mixed in the signal. Higher-order

spectra are also not sensitive to noise [2] and can detect the

nonlinearity of the system. Like the Gaussian process, the

third-order spectrum of a sine signal is also equal to zero.

Under the excitation of a sine signal, the response of a

steady-state linear system will still be a sinusoidal signal

with the same frequency. However, the response to the

input sine signal of a nonlinear system will contain higher-

order harmonics, so the third-order spectrum is not equal to

zero. For zero-mean white-noise excitation, the response of

a linear system will not contain the contribution of higher-

order transfer function, and the response and input will be

independent of each other. However, for nonlinear systems,

due to nonlinear effects, the response will contain the

contribution of higher-order transfer functions, so the

cumulant spectrum is not equal to zero [3]. Collis [4]

proposed an approximate explanation for the physical

meaning of the bispectrum and trispectrum. The phase of a

non-Gaussian process can be estimated using higher-order

spectra, which is important in long-distance communica-

tion and geophysics where non-minimum phase estimation

of reflected waves and seismic wavelets needs to be solved.

Generally speaking, higher-order spectra can solve

problems that power spectra cannot solve. When the phase
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information is as important as, or even more important

than, the amplitude information, the correlation-domain

method can only accurately describe the minimum phase

signal that is equivalent to the power-spectrum domain but

cannot provide the correct phase information. Higher-order

spectra are utilized to solve the non-minimum phase-

channel equalization phase problem in communication. In

the field of control systems, higher-order spectra are

employed to identify system zeros and classify nonlinear

systems.

The Gaussian process with higher-order spectra equal to

zero indicates that higher-order cumulants as mathematical

tools can theoretically completely suppress the influences

of Gaussian noise. However, higher-order moments do not

have this advantage because the moments of Gaussian

processes with higher-order are not always zero. Therefore,

in practical engineering applications, higher-order spectra

as well as cumulant spectra are usually used as significant

analysis tools for analyzing non-Gaussian random pro-

cesses [5, 6]. The unclear physical meaning of higher-order

spectra is one of the reasons why it is not widely used like

power spectra. Power spectra characterize the distribution

of signal energy with frequency, while the bispectrum and

trispectrum have no clear physical meaning. Correlation

analysis and Fourier transform can completely describe the

second-order characteristics of a signal and are effective

tools for processing Gaussian signals. Higher-order statis-

tics are extensions of second-order statistics and include

information that cannot be reflected by the correlation

function and its Fourier transform results. For non-Gaus-

sian signals, higher-order statistics reflect the degree to

which the signal deviates from the Gaussian distribution.

Currently, bispectrum has been applied to fault diag-

nosis [7–9], radar signal analysis [10, 11], optical signal

analysis [12], and astronomy [13, 14], among other fields.

These applications use existing bispectrum theory to ana-

lyze the characteristics of bispectra of different signals and

draw meaningful conclusions. In recent years, bispectrum

analysis based on autoregressive models has also made new

progress and obtained meaningful results [15–18]. The

major contributions are explained as follows:

• The paper presents a comprehensive analysis of

bispectral peaks and their formation due to phase

coupling in signals.

• The paper proposes a method of harmonic decompo-

sition to analyze the distribution of spectral peaks and,

using Fourier transform theory, calculates the harmonic

frequencies where phase coupling occurs.

• The paper conducts a third-order cumulant analysis of

the harmonics to obtain the position of the spectral peak

and discusses methods of amplifying, reducing, and

increasing the spectral peaks using trigonometric

functions.

• The paper verifies the proposed methods through

experiments and shows that they can effectively

strengthen the practical application effects of

bispectrum.

• The paper demonstrates the applicability of the theo-

retical analysis to various actual collected signals.

However, none of the above-mentioned research and

application documents seem to clearly explain the reasons

for bispectral peaks and how the positions and sizes of

these peaks are determined. Additionally, none of them

attempted to change the bispectral peak distribution in

existing theories. The formation of bispectral peaks is due

to the phenomenon of phase coupling in the signal, and the

bispectral peak is the embodiment of this phase coupling.

This study will comprehensively discuss the reasons for the

formation of bispectral peaks and propose several methods

to change the distribution of bispectral peaks in actual

signals. The remaining sections of the paper are organized

as follows: Various surveys are elucidated in Sect. 2, the

proposed methodology is described in Sect. 3, the experi-

mental results are described in Sect. 4, and the conclusion

is described in Sect. 5.

2. Literature survey

Czeluśniak et al. [18] carried out a high-order spectral

evaluation to accurately detect structural damages using

nonlinear vibro-acoustic methods. They analyzed and

predicted the severities of damages using amplitude and

phase coupling processes and examined response data

using bicoherence and bispectrum of modulation signals.

However, this approach resulted in some computational

complexities.

Guo et al. [19] introduced an average filter-based

modulated signal bispectrum (EAVG-MSB) to retain

impulse feature information without degrading their char-

acteristics by harmonics and background noises. However,

the efficiency of the EAVG filter was limited by the length

of the structural element, so the length was adaptively

optimized utilizing the maximum kurtosis index. The

EAVG-MSB technique generated optimal results in

extracting negative and positive impulse features, but had

difficulty analyzing modulated signals.

Zandvoort and Nolte [20] jointly introduced recom-

mendations to deal with high-frequency amplitudes by

enhancing cross-entropy coupling measures to eliminate

misinterpretations. The coupling process is influenced

when cross-frequency and phase amplitude correlation is

measured using phase amplitude coupling. Smearing
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estimation results were mitigated using diverse filter set-

tings, but this generates difficulties in distinguishing wide-

band phenomena from high harmonics.

Guo et al. [21] developed an auto-regression model-

based modulation signal bispectrum (AR-MSB) method for

machinery fault detection and Gaussian noise reduction.

Parameters such as amplitude, frequency, and probability

density were applied to determine the performance rate.

The experimental results showed a high accuracy rate in

fault feature extraction. However, the AR-MSB method is

not suitable to detect faults with variable speed conditions.

Huang et al. [22] investigated conventional bispectrum

(CB) and modulation signal bispectrum (MSB) for moni-

toring motor-driven systems. They characterized sideband-

based simulated signals to discuss the proficiency of MSB

and the inefficiency of CB. The current signals were ana-

lyzed using both CB and MSB methods, and performance

metrics such as amplitude and frequency were used for

experimental purposes to measure several rotor faults, such

as different compressor faults, downstream gearbox wear

progression, and broken rotor bar (BRB).

Saidi et al. [23] discussed identifying the permanent

magnet synchronous generator (PMSG) by utilizing stator

current bispectrum analysis. They used the bispectrum to

construct more precise diagnostic designs. The experi-

mental results demonstrated that the scheme was highly

effective but failed to acquire cost-efficient blade

condition.

Guo et al. [24] presented modulation signal bispectrum

(MSB) for extracting the modulation signature by sup-

pressing random noise. They authenticated the multistage

noise minimization approach using simulation investiga-

tion. The simulation displays that the MSB

scheme achieved higher accuracy but failed to be regarded

as an accurate and efficient technique for fault feature

extraction.

Wang et al. [25] evaluated the sparse modulation signal

bispectrum (MSB) analysis approach to acquire fault fre-

quencies by the rolling bearing. The sparse MSB (S-MSB)

was more appropriate for investigating the complex mod-

ulated signal. The diagonal slice was performed for

acquiring the MSB sparse representation, which enhanced

the efficiency and eliminated the harmonic frequency.

However, the S-MSB approach did not eliminate the har-

monic frequency interference.

3. Proposed methodology

Bispectral peaks arise due to phase coupling, and the dis-

tribution of these spectral peaks follows a special law. To

analyze the distribution of these spectral peaks, this study

adopted the method of harmonic decomposition. A detailed

explanation of formation of bispectral peaks due to phase

coupling in the harmonics is discussed in the following

subsections.

3.1. Coupled signals

Let x(n) be the random signal:

xðnÞ ¼
X6

i¼1

Ai cosðxinþ/iÞ ð1Þ

where x2 [x1 [ 0; x3 ¼ x1 þ x2; x5 [x4 [ 0; x6 ¼
x4 þ x5; u6 ¼ u4 þ u5: Here, /1;/2; . . .;/5 is an inde-

pendent random variable uniformly distributed on (0, 2p)
and then w4; w5; w6 is called the coupled harmonic

component.

Since Fourier transform of cosine signal is:

cosxit $
1

2
½2pdðx�xiÞ þ 2pdðxþ xiÞ�

¼ pdðxþ xiÞ þ pdðx�xiÞ ð2Þ

sinxit $ �jpdðx�xiÞ þ jpdðxþ xiÞ ð3Þ

get:

XðnÞ ¼ cos(xit þ uiÞ $ pcosui dðxþ xiÞ þ dðx� xiÞ½ �
� jp sinui dðxþ xiÞ�dðx� xiÞ½ � ¼ X xð Þ

ð4Þ

Therefore, for the coupled signal given by Eq. (1), the

Fourier transform cannot distinguish the phase relationship

of /6 ¼ /4 þ /5. This is because for the Fourier spectrum,

there will be spectral peaks on w1; w2; . . .w6; and the role

of /1; /2; . . ./6 are only to change the size of these peaks.

3.2. Recognition of coupled signals by bispectrum

This section provides the detailed description of the

recognition of coupled signals by bispectrum. Here, the

bispectral peak analysis is carried out on deterministic

sequence, random process and analog signals. These steps

are discussed as follows.

3.2.1. Bispectral peak analysis of deterministic sequence

Let x nð Þf g be a deterministic sequence, then its bispectral

definition is

Bx ðx1;x2Þ ¼ Xðx1 ÞXðx2ÞX � ðx1 þ x2Þ ð5Þ

If xðtÞ ¼ A þ cosxot,

then

X xð Þ ¼ Ad xð Þ þ 1

2
p dðxþ x� Þ þ dðx� xoÞ½ � ð6Þ

Substituting Eq. (6) into Eq. (5) gives
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Bx x1;x2ð Þ ¼
A3 x1;x2ð Þ ¼ 0; 0ð Þ

A
4
x1;x2ð Þ ¼ �xo; 0ð Þ; 0;�xoð Þ; �x0;x0ð Þ; x0;x0ð Þ

0 otherwise

8
<

:

ð7Þ

The bispectrum of xðtÞ) is shown in Fig. 1.

3.2.2. Bispectral peak analysis of random process

The random signal x nð Þf g containing zero-mean value

provides the third-order cumulant of process as [6]:

c k; lð Þ ¼ E x nð Þx n þ kð Þx n þ 1ð Þ½ � ð8Þ

Substituting Eq. (1) into x nð Þx n þ kð Þx n þ 1ð Þ½ �, it can
be observed that the multiplication term consists of three

columns, each of which has six terms, and the

multiplication result has a total of 216 terms. Parameters

Ai; xi; ui in the first column are represented by Af
i ;x

f
i ;u

f
i ;

s the second column is represented by As
i ; x

s
i ; u

s
i ; the third

column is represented by At
i; x

t
i; u

t
i; then, its product

general term can be found.

After expanding, we get

Af
i A

s
i A

t
i cos½x

f
i nþuf

i � cos½xs
i ðn þ kÞþut

i� cos½xt
iðn þ lÞþut

i�

¼ 1

4
Af

i A
s
i A

t
ifcos½xf

nnþxs
i ðn þ kÞþxt

iðn þ lÞþ/f
iþ

/i
s þ /t

i� þ cos½xf
i n

þ xs
i ðn þ kÞ�xt

iðn þ lÞ þ /f
i þ /s

i�/t
i�

þ cos½xf
i n�xs

i ðn þ kÞþxt
iðn þ lÞ

þ /f
i�/s

i þ /t
i� þ cos½xf

i n�
xs

i ðn þ kÞ�xt
iðn þ lÞ þ /f

i�/s
i � /t

i�g
ð9Þ

Let /f
i ¼ /4; /

s
i ¼ /5; /

t
i ¼ /6; and consider a cosine

term in (9), for instance,

cos½xf
i n þ xs

i ðn þ kÞ � xt
i ðn þ lÞ þ /f

i � /s
i � /t

i�

To make

E cos½xf
i n þ xs

i ðn þ kÞ � xt
i ðn þ lÞ þ /f

i þ /s
i � /t

i�
n o

6
¼ 0

ð10Þ

then /f
i þ /s

i�/t
i ¼ 0 is needed.

In (10), if /f
i ¼ /4�/s

i ¼ /5; /
t
i ¼ /6, then

E cos½xf
i n þ xs

i ðn þ kÞ � xt
i ðn þ lÞ þ /f

i þ /s
i � /t

i �
n o

¼ cos x05k � x06lð Þ
ð11Þ

For the same reason, if

/f
i ¼ /4�/s

i ¼ /5;/
t
i ¼ /6

then

E cos½xf
i n þ xs

i ðn þ kÞ � xt
i ðn þ lÞ þ /f

i þ /s
i � /t

i �
n o

¼ cos x04k � x06lð Þ
ð12Þ

According to the above method, we get

cðk; lÞ ¼ A4A5A6

4
½cosðx05kþx04lÞ þ cosðx06k�x04lÞ�

þ cosðx04kþx05lÞ
þ cosðx06k�x05lÞ þ cosðx04k�x06lÞ
þ cosðx05k � x06lÞ

ð13Þ

For terms of the form cos x01k þ x02lð Þ, to investigate

the distribution of its bispectral peaks, we must substitute it

into the following bispectral expression:
Fig. 1 Cosine signal bispectrogram
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S3;xðx1; x2Þ ¼
X1

k¼�1

X1

i¼�1
C3;xðk; lÞ exp½�jðx1kþx2lÞ�

ð14Þ

According to the Fourier transform result obtained by

cosine function in Eq. (2), it is inferred that the bispectrum

of the operation result contains the following product

terms:

½dðx1 þ x04Þ þ dðx1 � x04Þ� � ½dðx2 � x055Þ þ dðx2

� x05Þ�
ð15Þ

So, for terms of the form cos x01k þ x02lð Þ, the non-zero
points (spectral peaks) in the bispectrum include:

½ð�x01;�x02Þ; ð�x01;�x02Þ; ðx01;�x02Þ; ðx01;x02Þ�.
It can be seen that only the harmonics with phase cou-

pling can produce spectral peaks in the bispectrogram, and

the spectral peaks appear at the intersection of the fre-

quencies of the two harmonics with phase coupling.

3.2.3. Spectrum peak analysis of analog signals

According to the x(n) in Eq. (1), the following random

signal was generated:

y ¼ cosð4px þ a1Þ þ cosð6px þ a2Þ þ cosð10px þ a3Þ
þ cosð30px þ a4Þ þ cosð50px þ a5Þ
þ cosð80px þ a6Þ

ð16Þ

Among them, a1, a2,..., a6 were independent random

variables uniformly distributed on ð0; 2pÞ and

a6 = a5 ? a4. The bispectrum image is shown in Fig. 2.

Figure 2 displays there were apparent peaks at the fre-

quencies (15, 25) and (25, 15). This result was consistent

with the theoretical analysis.

3.2.4. Specific calculation method of bispectral coupling

signal

According to the Fourier transform theorem, a function f(t)

with T as the period satisfies the Dirichlet condition in the

interval � T
2
; T
2

� �
:

1. Discontinuities with finite number;

2. Extreme points with finite number. Then, it can be

developed into a Fourier series. At consecutive points:

f tð Þ ¼ ao þ
X1

n¼1

an cos nxt þ bn sin nxtð Þ ð17Þ

where x ¼ 2p
T ,

an ¼ 2

T

Z
T
2
T
2

f ðtÞ cos nxtdt; ðn ¼ 0; 1; 2; . . .Þ ð18Þ

bn ¼ 2

T

Z
T
2
T
2

f ðtÞ sin nxtdt; ðn ¼ 0; 1; 2; 3. . .Þ ð19Þ

Based on Euler’s formula:

ejh ¼ cos hþjsinh ð20Þ

Equation (17) turns into

f ðtÞ ¼ c0 þ
X1

n¼1

cn cosðnx1t þ unÞ ð21Þ

where

c2n ¼ a2
n þ b2

nun ¼ arctan � bn

b n

� �
c0 ¼ a0 ð22Þ

If the phase coupling condition is to be satisfied, then

uk ¼ ui þ uj ð23Þ

must be satisfied, such that

arctan � bk

ak

� �
¼ arctan � bi

ai

� �
arctan � bj

aj

� �
ð24Þ

4. Results and discussion

For attaining the operating signals from t pressure-reducing

valves, the experiments are conducted in two states such as

normal and fault. The further investigations are explained

in the next subsections.

4.1. Data collection

The experimental results were simulated using a pilot-op-

erated pressure-minimizing valve. The normal working

operation of pressure minimization valve is affected when

there exists a foreign matter in the outlet and inlet ports of
Fig. 2 Bispectrum of analog signal
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valves. To achieve operating signal of pressure-minimizing

valves in faulty as well as normal states, the following

criteria are made.

Normal state: It represents working condition of pres-

sure-reducing valve in normal state.

Fault state: u 3 mm iron core is included to the inlet as

well as outlet ports of pressure-minimizing valve.

In this experiment, pressure-reducing valve’s operating

signal was collected for two fault states and the normal

operation state of each of the 18 acquisition groups of 54

sets of data. The maximum number of data used by this

experimentation was 1024.

4.2. Mechanical signal verification of coupled signal

phase

According to the method in 4.1, select a set of data col-

lected by the pressure-reducing valve in usual working

conditions, decompose this set of data according to the

Fourier transform method, then follow the methods in

Eqs. (18) and (19), calculate the coefficients an and bn, then

calculate the corresponding phase un, then get a corre-

sponding phase array, hence find the array elements that

satisfy the phase coupling relationship uk ¼ ui þ uj in this

array according to the requirements of Eq. (24), and record

their corresponding subscripts; then, these subscripts are

the frequencies corresponding to these harmonics, and the

harmonic frequency that meets the phase coupling condi-

tion obtained by the calculation result is [2 86 298, 32 216

428, 65 179 222, 65 292 335, 74 87 144, 74 370 427, 74

454 466, 86 216 482, 87 370 440, 179 292 449, 261 300

453, 283 483 489, 287 299 485, 296 357 0], a total of 14

groups.

Then, according to formula (14), the bispectrum of this

group of data (displayed in Fig. 3) reveals that, regardless

of the symmetry of the bispectrum, there are about 13

bispectrum peaks in this set of data, which are roughly the

same as the 14 harmonics that meet the phase coupling

conditions calculated earlier, which illustrates the previous

analysis in this article is correct. From the results obtained,

as long as the phase coupling condition of uk ¼ ui þ uj is

met, spectral peaks can be generated in the bispectrogram,

regardless of whether the frequency of the corresponding

harmonic satisfies the sum–difference relationship of

xk ¼ xi þ xj. Take the first element (74 87 144) in the

value as an example, the first component 2 represents the

frequency xi in the harmonic cos xin þ /ið Þ; the second

represents b xj in the harmonic cos xjn þ /j

� �
; and the

third represents xk in the harmonic cos xkn þ /kð Þ: It can
be seen that xi þ xj is not equal toxk, but the phases of the

three harmonic components satisfy the condition

uk ¼ ui þ uj.

Therefore, in Fig. 3, there is a bispectral peak at the

coordinates (74, 87). From the calculation results, the

harmonics of the same frequency can also form a phase

coupling relationship with the harmonics of different fre-

quencies at the same time. For example, a harmonic with a

frequency of 74 Hz can be combined with (74 87 144), (74

370 427) and (74 454 466), these three groups of harmonics

of different frequencies form a phase coupling relationship,

and this phenomenon is reflected in the bispectrogram as

there are multiple spectral peaks on a certain straight line.

In the experiment process, when the calculation accuracy

of Eq. (24) is determined to retain two decimal digits, the

number of groups of harmonic frequencies that meet the

phase coupling condition is almost infinite; when it is

determined to be three decimal places, the number of

groups is in hundreds of groups and nearly 1000 groups;

when it is determined to be four digits after the decimal

point, the number of groups is in dozens of groups and

nearly 100 groups; when it is determined to be five digits

after the decimal point, the number of groups is the

aforementioned 14 groups; when it is further determined

that it is six digits after the decimal point, there is no

answer. This situation shows that the solution of Eq. (24) is

related to the calculation accuracy, but it raises a question,

that is, what is the theoretical solution of Eq. (24). It can be

seen from Eq. (24) that this equation is an underdetermined

equation, that is, an equation contains three unknowns, and

theoretically, there should be infinite solutions.

From the above analysis, it can be concluded that the

peaks of the bispectrum are generated by the phase cou-

pling phenomenon, and this phase coupling is a real phe-

nomenon. Therefore, bispectrum can objectively reflect theFig. 3 The bispectrum of the group
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phase coupling phenomenon existing in real signals and is

an effective signal analysis method.

4.3. Amplification method of bispectral peaks

For a deterministic signal, after differentiation, its bispec-

trum is approximately equal to

B1
x ¼ x3

i X x1ð ÞX x2ð ÞX � x1 þ x2ð Þ ð25Þ

After it is differentiated n times, the corresponding

bispectrum becomes

Bn
x ¼ x3n

i X x1ð ÞX x2ð ÞX � x1 þ x2ð Þ ð26Þ

For a random signal, after differentiating x(n) in Eq. (1),

it can be substituted into Eq. (13) to obtain

cðk; lÞ ¼ A4A5A6x04x05x06

4
½cosðx05kþx04lÞ

þ cosðx06k�x04lÞ þ cosðx04kþx05lÞ
þ cosðx06k�x05lÞ þ cosðx04k�x06lÞ
þ cosðx05k�x06lÞ�

ð27Þ

After differentiation n times, we get

cðk; lÞ ¼ A4A5A6xn
04x

n
05x

n
06

4
½cosðx05kþx04lÞ

þ cosðx06k�x04lÞ þ cosðx04kþx05lÞ
þ cosðx06k � x05lÞ þ cosðx04k � x06lÞ
þ cos ?ðx05k � x06lÞ�

ð28Þ

From Eqs. (25) to (28), it can be seen that through the

differentiation method, whether deterministic or random

signals, the spectral peaks of the coupled harmonics can be

highlighted. Additionally, as the order of differentiation

increases, if the product of the three frequencies x04x05x06

in the coupled harmonics is larger, the peaks of the

spectrum are more and more prominent.

Figures 4 and 5 show the bispectra of the two sets of

signals in normal and fault states. As can be seen from the

figure, they were very similar. Figures 6 and 7 show the

bispectra corresponding to the data of Figs. 4 and 5 afterFig. 4 The bispectrum in the normal state

Fig. 5 The bispectrum in the fault state

Fig. 6 The bispectrum in the normal state after differentiation

Fig. 7 The bispectrum in the fault state after differentiation
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being differentiated once. It can be seen that the difference

between Figs. 6 and 7 became more obvious. Under normal

conditions, once differentiated, the spectral peaks became

thicker and more numerous, and although similar changes

occurred in the data of the fault state, the degree of change

was smaller.

4.4. Method of adding bispectral peaks

For x(n) in Eq. (1): xðnÞ ¼
P6

i¼1 Ai cosðxinþ/iÞ,
let

xðnÞ ¼
X6

i¼1

ði ¼ 1ÞAi cosðxi n þ /iÞ ð29Þ

where /3 6¼ /1 þ /2, so the phase coupling condition is

not met.

Consider

ðcos aþ cos b Þ2 ¼ cos2 aþ2 cos a cos bþ cos2 b

¼ 1þ 1

2
ðcos 2aþ cos 2b Þ

þ ðcosðaþ bÞ þ cosða� bÞÞ

ð30Þ

Since there is a cosðaþ bÞ term in Eq. (29), let

a ¼ x1n þ /1, b ¼ x2n þ /2.

Then,

cosðaþ b Þ ¼ cos x1 þ x2ð Þn þ /1 þ /2ð Þ ð31Þ

It can be seen from Eq. (31) that through the square-sum

operation, the required coupling components are artificially

generated by two harmonic components that do not

originally have phase coupling: x1 þ x2ð Þn þ /1 þ /2.

Therefore, for Eq. (29), let yðnÞ ¼ x1ðnÞ þ x21ðnÞ; then
y(n) must also contain the harmonic components of at the

same x1n þ /1, x2n þ /2, x1 þ x2ð Þn þ /1 þ /2 time,

meaning that a signal that meets the phase coupling con-

dition is artificially generated.

Fig. 8 The bispectrum in the normal state

Fig. 9 The bispectrum in the fault state

Fig. 10 The bispectrum in the normal state after peaks added

Fig. 11 The bispectrum in the fault state after peaks added
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Observe the following formula:

ðcos aþ cos bþ cos cÞ2

¼ 3=2þ 1=2 cos 2aþ cos 2bþ cos 2bþ cos 2cð Þðcos að þ bÞ
þ ðcosða� bÞÞ þ cosðaþ cÞ þ cosða� cÞÞ þ cosðbþ cÞ þ cosðb� cÞ

ð32Þ

Here,

x2ðnÞ ¼
X6

i¼1

Ai cosðxinþ/iÞ ð33Þ

where u6 ¼ /4 þ /5 satisfies the phase coupling condition.

Then, let a ¼ x4 n þ /4; b ¼ x5 n þ /5; c ¼ x6 n þ /6

By substituting into Eq. (31), it can be seen that the

harmonic components originally met the phase coupling

condition. After the square-sum calculation, in addition to

this term, cos aþ bð Þ the terms are added. After cos aþ cð Þ,
cos bþ cð Þ operation of square sum, not only is the previ-

ous coupling term retained, but some new coupling terms

are added. That is, the square-sum operation can increase

the number of bispectral peaks of the original signal.

Here, two diverse sets of data were chosen, in which one

is utilized for normal state and the other is for fault state. It

can be seen from Figs. 8 and 9 that the bispectra were very

similar and difficult to distinguish. Assuming that the

original data were represented by x(n), after

yðnÞ ¼ xðnÞ þ x2ðnÞ, the bispectrum of the signal y(n) was

calculated. The corresponding outcomes of two data sets

are displayed in Figs. 10 and 11. It can be seen that,

compared with Figs. 8 and 9, in Figs. 10 and 11, the bis-

pectral peaks of the two sets of data were significantly

increased, making it possible to distinguish the two

mechanical operating states that were difficult to distin-

guish by bispectra alone. Since the number of peaks in

Fig. 10 is significantly more than that in Fig. 11 after the

Fig. 12 The bispectrum in the normal state

Fig. 13 The bispectrum in the fault state

Fig. 14 The bispectrum in the normal state after peaks added

Fig. 15 The bispectrum in the fault state after peaks added
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square-sum calculation, this phenomenon further illustrates

that the square-sum calculation can make the harmonic

components that do not meet the phase coupling conditions

match. Presumably, the original signal in the fault state

contains more harmonic components that do not meet the

phase coupling conditions than the corresponding compo-

nents of the original signal in the normal state.

4.5. Method of suppressing bispectral peaks

Set: x2ðnÞ ¼
P6

i¼1 Ai cosðxinþ/iÞ.where /6 6¼ /4 þ /5

meet the phase coupling condition, and let

a ¼ x4nþ/4;b ¼ x5nþ/5;c ¼ x6nþx6
Consider the following equations:

cosððx4nþ/4Þ þ cosðx4nþ/4ÞÞ
¼ 2 cosðx4n þ ð/4 þ u4Þ=2Þ cosððð/4 � u4Þ=2ÞÞ ð34Þ

cosððx5nþ/5Þ þ cosðx5nþ/5ÞÞ
¼ 2 cosðx5n þ ð/5 þ u5Þ=2Þ cosððð/5 � u5Þ=2ÞÞ ð35Þ

Among them, u4;u5 can be any value in the interval

0; 2p½ �, and cosðx4 n þ /4Þ , cosðx5 n þ /5Þ are signal

components that are added artificially.

The /6 6¼ /4 þ /5 equation that originally satisfies the

phase coupling relationship is changed into

u6 6¼ /4 þ u4 þ /5 þ u5ð Þ=2, which no longer meets the

phase coupling condition.

To conduct experimental verification, in a similar fash-

ion to the previous section, a set of data was also taken in

normal and fault states, and bispectra are shown in Figs. 12

and 13. To determine the frequency of the added signal, an

algorithm was adopted. The normal state and fault state of

bispectrum after adding peaks are described in Figs. 14 and

15.

The algorithm to determine the frequency of the added

signal is given as follows:

1. Calculate the bispectrum of the signal to be added.

2. Determine a number of spectral peaks from large to

small in the bispectral results obtained, and record the

frequency coordinates of each spectral peak at the

same time.

3. The determined frequency-coordinate value is used as

the frequency of the added cosine signal, and the phase

of the signal can be randomly generated.

According to the above algorithm, in the experiment,

five values were taken from large to small according to the

size of the peak of the spectrum, and then, the corre-

sponding cosine signals were constructed. These were then

added to the original signal in Figs. 12 and 13, and the

corresponding bispectra were obtained, as shown in

Figs. 14 and 15. Compared with Figs. 12 and 13, the peaks

of Figs. 14 and 15 were significantly reduced. It can also be

seen from Figs. 14 and 15 that although Figs. 12 and 13 are

difficult to distinguish, after taking the above measures to

suppress the peaks, the composition of the peaks in Fig. 14

was obviously simpler than that in Fig. 15. The peaks in

Fig. 13 were also relatively more concentrated. This shows

that the components of the fault-state signal may be more

complicated than that of the normal-state signal. At the

same time, by adopting the above method, the bispectral

peaks of the signal could be successfully reduced. This also

shows that the coupled harmonic component cosðx6 n þ
/6Þ in the mechanical signals could possibly exist inde-

pendently of its constituent components cosðx4 n þ /4Þ,
cosðx5 n þ /5Þ: Otherwise, this method of reducing the

bispectral peaks would not succeed.

5. Conclusions

Bispectrum analysis has gained significant attention in

various fields such as mechanical fault diagnosis, radar

signal analysis, and sound signal analysis, among others.

The formation of bispectral peaks is due to phase coupling

in harmonics, which can be utilized to distinguish signal

states. However, in some cases, bispectrum in different

states can be difficult to distinguish, and thus, methods to

enhance the application result of bispectrum have been

proposed. This study analyzed the generation mechanism

of coupled harmonic signals for bispectral peaks and pro-

posed a method to calculate the number of bispectral peaks

and their positions. The proposed methods to amplify,

increase, and suppress bispectral peaks can make bispectra

more distinguishable for signals that were originally

indistinguishable. Experimental testing confirmed the

effectiveness of the proposed methods, which may make

bispectrum more applicable in practical engineering situ-

ations. By using these methods, the distribution of bis-

pectral peaks in different states can be changed, making it

easier to distinguish between different states. The results of

this study contribute to the development of bispectrum

analysis and provide a new perspective for studying the

distribution of bispectral peaks. Furthermore, the proposed

methods offer practical solutions for enhancing the appli-

cation efficiency of bispectrum analysis in various fields. In

summary, this study contributes to the understanding of

bispectrum analysis and its potential applications in

mechanical fault diagnosis, radar signal analysis, and

sound signal analysis. The proposed methods provide

practical solutions for improving the application efficiency

of bispectrum analysis and may lead to new developments

in this area.
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