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Abstract: The Fisher information-theoretic measurement and the oscillator strength are studied with a mixed hyperbolic

Pöschl–Teller potential (MHPTP). Using the total energy eigenvalue equation obtained via the super-symmetric WKB

approach as well as the total wave function. We obtained the oscillator strength for the atomic transitions

1s� 2p and 1s� 3p, where the strength length decreased with increasing potential screening parameters. Also, the Fisher

information entropies for both position and momentum spaces are obtained numerically. We studied the correlation

between potential parameters and the energy spectra graphically. Our results for the information-theoretic measures obey

the Fisher’s uncertainty product and the Cramer–Rao inequality in position space. The analytical result for the N-

dimensional energy eigenvalue obtained by the super-symmetric WKB approach is the same as the result obtained by a

different analytic approach in the existing literature. The oscillator strength conforms to the ones reported in existing

literature using different potential energy functions.

Keywords: Super-symmetric WKB method; Pöschl–Teller potential; Oscillator strengths; Fisher information entropies;

Cramer–Rao inequalities

1. Introduction

Quantum information-theoretic measures have applications

in engineering as well as physical and chemical sciences.

Information measurements have applications in quantum

computing which is the basis for the technological devel-

opment of some quantum and signal processing devices,

and thus provide an in-depth understanding of the internal

structure of atoms [1–4]. Fisher and Shannon information

entropies happened to be two complementary information-

theoretic measures that characterize the spread and mea-

sure of the probability distribution expressed in terms of

hypergeometric functions, Jacobi, Laguerre polynomials as

well as spherical harmonics [5]. Quantum information

theory has a direct relationship with the Heisenberg

uncertainty principle which plays a significant role in the

simultaneous measurement of the position and momentum

of quantum mechanical particles. Different potential

energy functions have been used to study the information

entropies [4, 6–11]. Dehesa et.al [12] studied the Fisher

information-based uncertainty relation, Cramer–Rao

inequalities and the kinetic energy for the D-dimensional

central problem. Considering the effects of a large

dimensional number on quantum mechanical systems,

Puertas-Centeno et al. [13] obtained the Renyi entropies in

conjugated spaces (position and momentum) for the

hydrogenic states using a constructive technique. Also,

their results attained the saturation of the known position–

momentum Renyi-entropy-based uncertainty relations

using the condition for small hyper-quantum numbers.*Corresponding author, E-mail: omugbeekwevugbe@gmail.com
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On the other hand, the oscillator strength occurs due to

the emission or the absorption of electromagnetic radiation

as electrons transit between energy levels [14]. Hibbert

[14] stated that the oscillator strength can be used to

describe the electric dipole emission using dipole approx-

imation and the selection rule. Equally, it can be used to

study the spectra of stars due to the transition of atoms

from a lower quantum state to an upper state either through

the absorption or the radiation of energy [14]. Ikot

et al.[15] studied the oscillator strength of a particle con-

fined by the improved molecular Manning–Rosen poten-

tial. Their findings revealed that the oscillator strength

length decreased with increasing potential parameters.

Varshni [16] examined the energy levels and oscillator

strengths for the transitions 1s� 2p; 1s� 3p and 2p� 3d

quantum states under the Hulthen potential function where

the oscillator strengths decrease with an increase in the

potential screening parameter. Hassanabadi et al. [17]

investigated the expectation values and the oscillator

strength of a generalized Pöschl–Teller potential where

their results show that the oscillator strength increased as

the potential parameters increased. In this present work, we

present the analytical N-dimensional energy spectra using

the super-symmetric WKB (SWKB) approximation

method with a centrifugal approximation under a mixed

hyperbolic Pöschl–Teller potential (MHPTP). The

approximate eigensolutions, thermodynamic properties and

expectation values of the mixed hyperbolic Pöschl–Teller

potential were recently studied by the parametric Niki-

forov–Uvarov method and WKB approach [18]. Presently,

we are proposing its use to study the Fisher information-

theoretic measurement in coordinate spaces and the oscil-

lator strength for the first time to our knowledge best. The

MHPTP is given as [18]

U rð Þ ¼ A

Cosh2 arð Þ þ
B

Sinh2 arð Þ þ CTanh2 arð Þ

þ D

Tanh2 arð Þ þ E ð1Þ

where A, B, C, D and E are parameters that could be

controlled by proper adjustment. The notations r and a are

the respective internuclear distance and the potential

screening parameter. The retrieval of several Pöschl–Teller

type potentials from Eq. (1) was shown in [18].

The Pöschl–Teller potential happens to be one of the

potentials of significant interest over the past decades. It is

a long-range potential applicable in atomic physics for the

description of energy spectra of atoms and vibrations of

diatomic molecules [19, 20]. The exact and approximate

bound state solutions of the Pöschl–Teller potential have

been obtained using the Schrödinger, Klein–Gordon and

Dirac equations [21]. Ikhdair and Falaye [22] applied the

asymptotic iteration method to obtain the bound state

solution of the Schrödinger equation using the Pöschl–

Teller potential. They also obtain the solution of the Dirac

equation for the same potential under the condition of spin

and pseudo-spin symmetries. Hamzavi and Ikhdair [23]

used the trigonometric Pöschl–Teller potential to describe

diatomic molecular vibrations where they obtained the

approximate eigensolutions of the radial Schrödinger

equation by the Nikiforov–Uvarov method. Saregar

et al.[24] obtained the energy eigenvalues and eigenfunc-

tion of the trigonometric Pöschl–Teller plus Rosen–Morse

potential using the super-symmetric quantum mechanics

approach. They obtained the ground state wave function

using the lowering operator and the excited state wave

function using the raising operator. As a result of numerous

applications of the Pöschl–Teller-type potentials especially

in studying diatomic molecular vibrations, many

researchers have also developed a keen interest in under-

standing the contribution of the Pöschl–Teller potential

family to information-theoretic measurements. Ghafourian

and Hassanabadi [25] studied the Shannon information

entropies for the three-dimensional Klein–Gordon equation

using Pöschl–Teller potential where position space infor-

mation entropies were calculated for both the ground and

excited states. Dehesa et al. [26] studied information-the-

oretic measures for the Morse and Pöschl–Teller potential

where they established a general relationship between the

variances and the Fisher information entropies in coordi-

nate spaces. Sun et al. [27] studied the effects of the

Pöschl–Teller-like function parameters on the information

entropy densities and verified the Shannon sum entropies

for different quantum states. Using hyperbolic potential

energy, Valencia-Torres et al. [28] obtained the Shannon

entropy in position and momentum spaces for the low-

lying quantum states n ¼ 0; n ¼ 1ð Þ, where their results

obey the Bialynicki–Birula–Mycieski inequality. The

Shannon information entropy for the position-dependent

mass Schrödinger equation under a hyperbolic type

potential has been investigated in [29].

The organization of the remaining parts of the paper is

as follows: In Sect. 2, we shall obtain the analytical energy

spectra solution of the Schrödinger equation under the

MHPTP function using the SWKB approach. In Sect. 3, we

present a brief review of the Fisher information-theoretic

measures in coordinate spaces. In Sect. 4, we discuss the

oscillator strength. The numerical analysis of the energy

spectra, Fisher information entropies and oscillator strength

are presented in Sect. 5. Finally, in Sect. 6, we give the

concluding remarks.
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2. Energy spectra of the Schrödinger equation

under the MHPTP by SWKB approximation method

The SWKB approach has been used to obtain the exact

energy spectra of quantum mechanical solvable potentials

and also the potentials that obey the shape invariance

condition. Specifically, the method is developed by com-

bining the super-symmetric quantum mechanics approach

and the zeroth-order WKB approximation. The approach

involves the use of super-symmetric partner Hamiltonians

H1;2 and potentials V1;2 rð Þ which are constructed from the

Schrödinger equation.

H1;2 ¼ ��h2

2l
d2

dr2
þ V1;2 ð3Þ

The partner Hamiltonian H1 has a zero ground state

energy while H2 has a nonzero ground state energy.

The eigenenergies of the Hamiltonians are given by the

relation

E
2ð Þ
nl ¼ E

1ð Þ
nl þ E0l ð4Þ

where E0l is the ground state n ¼ 0ð Þ energy of a particle

under the MHPTP.

The difference between the usual WKB and SWKB

methods is rooted in the proposition of a super-symmetric

super-potential W rð Þ in the SWKB approach which satis-

fies two first-order differential equations given by

V1;2 rð Þ ¼ W2 rð Þ � �h
ffiffiffiffiffiffi

2l
p dW rð Þ

dr
ð5Þ

W rð Þ ¼ ��h
ffiffiffiffiffiffi

2l
p 1

W0l rð Þ
dW0l rð Þ

dr
ð6Þ

If the ground state wave function is known, then the

super-potential can be obtained from Eq. (6). It is

noteworthy to state that the V1;2 rð Þ was obtained from the

factorization [30, 31] of Eq. (3). Another difference

between the SWKB and WKB methods is that the former

does not require modification of the orbital centrifugal

barrier since the wave function is well behaved near the

origin [32, 33]. Once the super-potential is obtained then

the energy eigenvalue E
1ð Þ
nl belonging to H1 can be obtained

from the energy quantization integral given by [32, 33]

ffiffiffiffiffiffi

2l

�h2

r

Z

r2

r1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E
1ð Þ
nl �W2 rð Þ

q

dr ¼ np; n ¼ 0; 1; 2; 3 ð7Þ

where the turning points 0\r1\r2 are obtained from the

solution E
1ð Þ
nl �W2 rð Þ ¼ 0.

We proposed a super-potential of the form

W rð Þ ¼ f Tanh arð Þ � g

Tanh arð Þ ; g; f [ 0 ð8Þ

where g and f can be determined from the partner potential

V1 rð Þ in Eq. (5).

In Eq. (5), we set V1 rð Þ ¼ Veff rð Þ � E0l to preserve the

super-symmetric ground state energy E
1ð Þ

0l ¼ 0.

Veff rð Þ � E0l ¼ W2 rð Þ � �hW 0 rð Þ
ffiffiffiffiffiffi

2l
p ð9Þ

where the effective potential and notations for the super-

potential Veff rð Þ, W2 rð Þ and
dW rð Þ
dr are given as

Veff rð Þ ¼ A

Cosh2 arð Þ þ
B

Sinh2 arð Þ þ CTanh2 arð Þ

þ D

Tanh2 arð Þ þ E þ �h2

2lr2
lþ N � 2

2

� �2

� 1

4

" #

ð10Þ

W2 rð Þ ¼ f 2Tanh2 arð Þ � 2gf þ g2

Tanh2 arð Þ ð11Þ

dW

dr
¼ a

f

Cosh2 arð Þ þ
g

Sinh2 arð Þ

� �

ð12Þ

In Eq. (10), following the authors [18, 34], we used the

centrifugal approximation for 1=r2 as

1

r2
¼ a2 d0

Cosh2 arð Þ þ
1

Sinh2 arð Þ

� �

; d0 ¼ 1=3 ð13Þ

If we insert Eqs. (10–12) into (9) and solve it

completely, we obtained the following equations

f 2 þ af
�h
ffiffiffiffiffiffi

2l
p � C � A� Ld0ð Þ ¼ 0 ð14Þ

g2 � ag
�h
ffiffiffiffiffiffi

2l
p � Bþ Dþ Lð Þ ¼ 0 ð15Þ

a�h
ffiffiffiffiffiffi

2l
p g� fð Þ � 2gf ¼ A� Bþ E þ Ld0 � L� E0l ð16Þ

where L ¼ a2�h2

2l lþ N�2
2

� �2� 1
4

h i

.

It is easy to see that Eqs. (14) and (15) are quadratic in f

and g, and their respective roots are obtained as

f ¼ �a�h
ffiffiffiffiffiffi

2l
p 1

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

4
þ 2l

a2�h2
C � A� Ld0ð Þ

r

 !

ð17Þ

g ¼ a�h
ffiffiffiffiffiffi

2l
p 1

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

4
þ 2l

a2�h2
Bþ Dþ Lð Þ

r

 !

: ð18Þ

Solving Eqs. (14)–(16), we found the ground state

energy of the SE with the MHPTP as

E0l ¼ C þ Dþ E � g� fð Þ2: ð19Þ

To obtain the energy for excited states, we used the

SWKB energy quantization formula in Eq. (7).
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ffiffiffiffiffiffi

2l

�h2

r

Z

r2

r1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E
1ð Þ
nl � f 2Tanh2 arð Þ þ 2gf � g2

Tanh2 arð Þ

s

dr ¼ np:

ð20Þ

Using the change of variable z ¼ Tanh2 arð Þ, Eq. (20)

transforms as

ffiffiffiffiffiffiffiffiffiffi

lf 2

2a�h2

r

Z

z2

z1

dz

z 1 � zð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�z2 þ Kz� C
p

¼ np;

n ¼ 0; 1; 2; 3 � � �

ð21Þ

where K ¼ 2gfþE
1ð Þ
nl

f 2 , C ¼ g2

f 2 .

Using the integration solution in [18], the energy spectra

equation can be obtained from Eq. (21) as

E
1ð Þ
nl ¼ K0 � K1 nþ K2ð Þ2�E0l: ð22Þ

where

K0 ¼ C þ Dþ E; K1 ¼ 2a2�h2

l
:

K2 ¼ 1

2
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2l Bþ Dð Þ
a2�h2

þ lþ N � 2ð Þ
2

� �2
s

0

@

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2l C � Að Þ
a2�h2

� lþ N � 2ð Þ
2

� �2

d0 þ
1

3

s

1

A:

ð23Þ

The exact total energy of the system can be obtained

from the identity E
2ð Þ
nl ¼ E

1ð Þ
nl þ E0l. It is easy to see that the

energy E
1ð Þ
nl gives the exact value for the ground state

n ¼ 0ð Þ. The normalized wave function of the MHPTP was

obtained recently in [18] using the parametrized

Nikiforov–Uvarov method.

Wnl zð Þ ¼ Nnlz
1
4þQ1 1 � zð ÞQ2P 2Q1;2Q2ð Þ

n 1 � 2zð Þ; z
¼ Tanh2 arð Þ 2 0; 1ð Þ ð24Þ

where Nnl is the normalization constant given by

Nnl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2an!2Q2C 2Q1 þ 2Q2 þ nþ 1ð Þ
C 2Q2 þ nþ 1ð ÞC 2Q1 þ nþ 1ð Þ

s

Q2 ¼ K2; Q1 ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2l Bþ Dð Þ
a2�h2

þ lþ N � 2ð Þ
2

� �2
s

and

P 2Q1;2Q2ð Þ
n 1 � 2zð Þ is the Jacobi polynomial of order n.

3. Fisher information-theoretic measurement

The Fisher information-theoretic measures of a quantum

system in position and momentum space are given by the

relations, respectively [12, 35]

I qð Þ ¼ 4

Z

R3

rWnlm rð Þj j2dr ¼
Z

R3

1

q rð Þ rq rð Þj j2dr ð25Þ

I cð Þ ¼ 4

Z

R3

rWnlm pð Þj j2dp ¼
Z

R3

1

/ pð Þ r/ pð Þj j2dp ð26Þ

where q rð Þ ¼ Wnl rð Þj j2 Ylm h;uð Þj j2;/ pð Þ ¼ W pð Þj j2 Ylm h;ðj
uÞj2 and Wnlm pð Þ are the respective probability densities in

radial and momentum spaces and the wave function in

momentum space. The differential operator dx

ðxN�1Sin hð Þdxdhdu; x ¼ r or pÞ is the volume element.

The notation r is the gradient of a particle defined as

r ¼ r̂
o

or
þ ĥ

1

r

1

Sin uð Þ
o

oh
þ û

1

r

o

ou
ð27Þ

The wave function in momentum space can be obtained

from the Fourier transform given by

Wnlm pð Þ ¼ 1

2pð Þ3=2

Z

R3

e�i p�rð ÞWnml rð Þdr ð28Þ

Also, the Fisher information in position and momentum

spaces can be represented by the radial expectation value

and momentum expectation value as [12]

I qð Þ� 4 1 � 2 mj j
2L0 þ 1

� �

p2
� �

ð29Þ

I cð Þ� 4 1 � 2 mj j
2L0 þ 1

� �

r2
� �

ð30Þ

where L0 ¼ lþ N�3
2

is the grand orbital quantum number,

N; l and m are the respective dimensionality number,

orbital and magnetic quantum numbers. The Fisher

information uncertainty product can then be expressed as

I cð ÞI qð Þ� 16 1 � 2 mj j
2L0 þ 1

� �2

p2
� �

r2
� �

ð31Þ

where the Heisenberg product is given as [12]

p2
� �

r2
� �

� 9

4
ð32Þ

Substituting Eq. (32) into (31) in the absence of

magnetic interaction ( m ¼ 0) results to

I cð ÞI qð Þ� 36 ð33Þ

Another important uncertainty relation is the Cramer–

Rao inequalities given as the products of the Fisher
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information measure and the expectation values in

coordinate spaces [12].

I qð Þ r2
� �

�N2 ð34Þ

I cð Þ p2
� �

�N2 ð35Þ

4. Oscillator strength

The oscillator strength of electrons that transit from a lower

energy state to a higher state is given by the formula:

f lij ¼
2M

3�h2
Ej � Ei

� �

Wj rj jWi

� �
	

	

	

	

2 ð36Þ

where Ej and Wj are at a higher state than the respective Ei

and Wi. The M represents an electronic mass. The notation

hWj rj jWii
	

	

	

	 is the matrix element and Ej � Ei

� �

is the

energy difference. Hibbert [14]stated that there are two

sources of errors associated with the absorption oscillator

strength, namely, the matrix element and the energy dif-

ference. According to Hibbert[14], the error associated

with the matrix element can be removed using experi-

mental energy difference, while the errors introduced by

the energy can be isolated by taking into account the

geometric mean of the oscillator strength.

5. Results and discussion

We obtained the non-relativistic N-dimensional energy

spectrum of the MHPTP potential function in closed form

using the SWKB approach. The analytical result of the

Fig. 1 Variation of energy level (in a.u) with the radial quantum

number. We used the arbitrary constants in [18] A ¼ �20;ð
B ¼ 3;C ¼ 4;E ¼ 2;D ¼ 1; l ¼ 0; h�¼ 1;l ¼ 1; a ¼ 0:025Þ

Fig. 2 Variation of energy level (in a.u) with potential depth.We used

the arbitrary energy equation constants in[18] a ¼ 0:025;ð
B ¼ 3;C ¼ 4;E ¼ 2;D ¼ 1; l ¼ 0; n ¼ 0; h�¼ 1;l ¼ 1Þ

Fig. 3 Variation of energy level (in a.u) with screening parameter.

We used the arbitrary energy equation constants in [18]

A ¼ �20;B ¼ 3;C ¼ 4;E ¼ 2;D ¼ 1; l ¼ 0; n ¼ 0; h�¼ 1;l ¼ 1ð Þ

Fisher information entropies and the strength of an oscillator 3415



energy levels coincides with the result obtained recently

[18] using the Nikiforov–Uvarov method. The plots of the

energy levels against the potential parameters for the two-

and four-dimensional spaces are investigated. In Fig. 1, the

energy levels overlay on each other and increase with the

radial quantum number. At a maximum value of around

n ¼ 81, the energy reaches a maximum of 7 units. Also in

Fig. 2, we graphed the energy levels as a function of

potential depth. As can be seen, the energy increases from

about A ¼ �20 units to a maximum value of 7 units before

decreasing and converging asymptotically at A� 4. In

Fig. 3, the energy increases with the dimension number

and the screening parameter of the potential. Also, there is

an occurrence of energy overlap between a ¼ 0 � 0:1

while the splitting of the energy levels is noticeable as the

screening parameter gain strength. We obtained the Fisher

information-theoretic measure in coordinate spaces

numerically by using Eq. (25) for the position and

Eq. (30), for the momentum coordinate with

N ¼ 3;m ¼ 0; n ¼ 0; l ¼ 0. The Fisher entropy in position

space I qð Þ increases monotonically with increasing

screening parameters. The increment in I qð Þ is compen-

sated by the gradual decrease in I cð Þ as the screening

parameter increases. Generally, our results obey the Fisher

uncertainty product (I qð ÞI cð Þ� 36) and the Cramer–Rao

inequality ( I qð Þhr2i� 9) in position space as presented in

Table 1. We calculated the oscillator strength for the

transitions 1s� 2p and 1s� 3p states using both the total

energy equation and wave function for arbitrary potential

parameters. Our results presented in Table 2 revealed that

the oscillator strengths decrease with increasing screening

parameters of the MHPTP function. The current results are

consistent with the ones reported in existing literature using

different potential energy functions [15, 16].

6. Conclusions

In this work, using the SWKB method, we obtained the

analytical N-dimensional energy eigenvalue of the Schrö-

dinger wave equation under a mixed hyperbolic Pöschl–

Teller potential function. The variations of the energy level

for the two- and four-dimensional spaces are studied. We

obtained the Fisher information numerically for both the

position and momentum spaces. Using the energy transi-

tions 1s� 2p and 1s� 3p with the matrix elements, we

obtained the oscillator strength. Our results for the infor-

mation uncertainty measures obey the inequality

(I qð ÞI cð Þ� 36) as well as the Cramer–Rao inequality in

position space (I qð Þhr2i� 9). The behavior of the oscillator

strength for the MHPTP is similar to the ones reported in

existing literature using different potential energy

functions.

Table 2 Oscillator strength for the MHPTP. We used the arbitrary

parameters A ¼ �20;B ¼ 3;C ¼ 4;E ¼ 2;D ¼ 1;N ¼ 3; h�¼ 1;ð
l ¼ 1Þ in Ref [18]

Transition a f lij

1s� 2p 0.025 145.4991434

0.050 144.7037977

0.075 143.9715694

0.100 143.3010130

0.150 142.1412047

1s� 3p 0.025 2836.953785

0.050 1407.239593

0.075 930.2359023

0.100 691.4132820

0.150 446.0197072

Table 1 Fisher information-theoretic measurement and Cramer–Rao inequality N ¼ 3;A ¼ 1;B ¼ 1;C ¼ 3;D ¼ 1; l ¼ 0; n ¼ 0; h�¼ 1;ð
l ¼ 1; d0 ¼ 1=3Þ

a I qð Þ I cð Þ I qð ÞI cð Þ� 36 I qð Þhr2i� 9

0.1 0.040045 2672.9 107.0373 26.75932

0.2 0.160665 516.966 83.05849 20.76462

0.3 0.3631 196.346 71.29314 17.82328

0.4 0.649065 98.6458 64.02755 16.00689

0.5 1.020566 57.8484 59.03813 14.75953

0.6 1.479774 37.4335 55.39315 13.84829

0.7 2.028944 25.9348 52.62032 13.15508

0.8 2.670354 18.8927 50.45009 12.61252

0.9 3.406259 14.3018 48.71559 12.1789

1 4.23886 11.1603 47.30712 11.82678
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Data availability All data used in this paper are derived from the

equations in the article. Therefore, no data were used in our paper.
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