
ORIGINAL PAPER

Propagation of shock waves in a non-ideal gas with dust particles
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Abstract: The present paper demonstrates the study of propagation of converging shock waves in a spherical interstellar

cloud of an non-ideal gas (van der Waals type) with dust particles using group theoretic technique. The Lie group of

transformation is used to determine the whole range of similarity solutions to a consider problem of spherically symmetric

flows in an non-ideal gas with dust particles in an interstellar medium involving strong converging shocks. Group theoretic

technique brings the different possible cases of potential solutions considering different cases for the arbitrary constants

appearing in the expressions of infinitesimals of the Lie group of transformation. Numerical solutions are obtained in the

case of power law shock path. The collapse of an imploding shock for the spherically symmetric flow with power law

shock path is worked out in detail. The similarity exponents are estimated numerically for the different values of van der

Waals excluded volume, dust parameters, and the values of leading similarity exponents are compared with the results

obtained from the Chester-Chisnell-Whitham approximation (CCW approximation). The effects of relative specific heat,

van der Waals excluded volume, mass fraction of dust particles and ratio of density of dust particle to the density of gas

have been shown on the flow variables. The distribution of the flow variables in the flow-field region behind the shock is

shown in graphs.

Keywords: Lie group theoretic method; Interstellar dusty gas clouds; Self-similar solutions; Converging shocks;

Characteristic method.

1. Introduction

Many fields including mathematics as well as physics

implements the evolutionary behavior of shock waves. The

study of shock waves propagation in a mixture of non-ideal

gas and small solid particles has become crucial because

there are several applications of it, in fields like environ-

mental and industrial. A few applications include nozzle

flow, black hole theory, lunar ash flow and phenomena like

nuclear blasts, volcanic explosion, dusty crystals forma-

tion, supersonic flight in dusty air etc. This literature is

quite vast as it is concerned with the study of shock waves

propagation in dusty gas [1, 2]. Strong shock waves con-

sequentially produce high pressure and high temperature at

the center of convergence, which is one of the prominent

reason for it being a field of continuous research interest.

This property of converging shocks further adds on to the

several engrossing applications in different aspects such as

fusion initiation, detonation. Shock waves is the most

common treatment for kidney stones in the medical field

and in laboratories, these waves are used to manage the

high temperature to observe and analyse the numerous

processes that occur in a gas medium. In past few decades,

the researchers gave more attention to the shock wave

because of its theoretical and practical involvement in the

various fields such as material science, aerodynamics,

astrophysics, medical science. Guderley [3], Zeldovich and

Raizer [4], Hafner [5], Zhao et al. [6], Ramsey et al. [7],

Pandey and Sharma [8] and Lazarus [9] investigated a

theoretical study of converging shock waves in a gaseous

medium.

The shock wave propagation in interstellar models has

immense significance from astrophysical point of view and

become an interesting topic for both physicists and

astronomers. In the context of formation of stars, the col-

lapse of interstellar gas clouds and the analytical and

numerical studies have been made by many authors, some

of them are worth mentioning [10–12]. In the past few
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decades, within the framework of Einstein’s theory of

gravity, many extensive investigations on the gravitational

collapse models were made which provided useful insights

into the final fate of massive stars [13]. The acceleration

waves, the formation of shocks, and their stability in the

atmosphere involving gravity are studied by Muracchini

and Ruggeri [14].

The non-linear discontinuity waves propagation theory

has been applied to study the gravitational collapse of a

spherically symmetric interstellar gas cloud by Ferraioli

et al. [15]. Later, the study of gravitational collapse in self-

gravitating gaseous systems were made by Virgopia and

Ferraioli [16] by using an asymptotic wave approach. In

order to understand how structure within interstellar gas is

shaped and created, supersonic turbulence is an essential

element. Gas components in interstellar medium have

highly supersonic velocity dispersion which indicates that

shock is already appearing in the medium. A crucial role is

played by shock waves in a number of astrophysical phe-

nomenon [17].

In this present work, we examined the study of propa-

gation of converging shock waves in a spherical interstellar

cloud of an non-ideal gas (van der Waals type) with dust

particles using Lie group theoretic technique. Sophus Lie

developed the group theoretic method which is one of the

powerful and systematic methods for studying and

obtaining the similarity solutions of systems of non-linear

PDEs. The study of continuous symmetries in mathematics,

theoretical physics and mechanics uses the Lie group of

transformation frequently because it helps in simplifying

the complicated problems into solvable equations. Gener-

ally, without approximations, it is tedious to find a solution

for a system of non-linear PDEs. In Lie group of point

transformations, there exists a solution of basic equation

with respect to the Rankine-Hugoniot jump conditions

along a set of curves, called the similarity curves, through

which, the system of PDEs can be converted into the sys-

tem of ODEs (see [18–23]). Thereafter, the system of

ODEs can be solved conveniently by using some numerical

techniques. A theoretical study for imploding shock was

first performed by Guderley [3]. Logan and Perez [23]

applied Lie group analysis to determine the entire class of

self-similar solutions for one-dimensional, time-dependent

shock hydrodynamics in which a chemical reaction takes

place behind the shock front. To obtain the entire class of

similarity solutions to a problem concerning radially and

plane symmetric flows of a relaxing gas, Sharma and

Radha [24] applied the Lie group method described in the

works of Bluman and Cole [21], Bluman and Kumei [22]

and Logan and Perez [23]. The method enables us to

characterize the medium for which the problem is invariant

and admits similarity solutions. Chadda and Jena [2]

obtained the similarity solutions to the non-ideal dusty gas

using Group theoretic technique. Yadav et al. [25] have

studied the strong shock propagation in a non-ideal gas

with rotational effect with the help of similarity method.

Nath [26] investigated the flow behind an exponential

shock wave in a perfectly conducting mixture of micro size

small solid particles and non-ideal gas with azimuthal

magnetic field. Sahu obtained the similarity solutions using

Lie group theoretic method and the influence of magnetic

and gravitational fields in a non-ideal dusty gas with heat

conduction and radiation heat flux is analysed in [27].

Some other important works related to Lie group theoretic

method are presented in [28–31]. The problem of con-

verging shock wave in different material medium has been

solved by many researchers [32–37] by using the pertur-

bation series method. Also, the other remarkable recent

works have been presented in the literature [38-42].

An interstellar gas cloud is composed of a mixture of

atomic hydrogen in large percentage, molecular hydrogen,

and in a minor percentage carbon, oxygen, heavy elements,

some of which ionized. It is also important to mention that

in the interstellar medium different types of grains and dust

exist [43]. Many physical phenomena in cosmology and

astrophysics, which involve the gravitational collapse in

interstellar gas clouds, are of great importance because of

the description of star formation. Therefore, the study of

the collapse of a self-gravitating interstellar gas clouds in

the spiral arms of the galaxy has grabbed the attention of

the astronomers and physicists. From the authors’ studies

so far, the considered problem has not been addressed in

any of the previous research publications using the method

of Lie group of invariance, which distinguishes this work

from the previously published studies and makes this work

novel. The present work can be significant to confirm the

correctness of the solution obtained by using the theory of

self-similarity and computational methods. In the present

work, we consider the one dimensional flow in a spherical

interstellar, self gravitating cloud with dust particles in

Sect. 2. We have adopted the model of van der Waals gas

with dust particles to discover how the deviations from the

ideal gas to non-ideal gas can affect the flow parameters

behind the shock wave. This system is more complex than

the Euler equations in ordinary gas dynamics and it is quite

difficult to obtain the exact analytical solution to the

problem without approximation. By writing the system of

PDEs (1) in its conservative form, we derive the Rankine-

Hugoniot jump conditions in Sect. 3. The motivation

behind the present study comes from the work presented by

Logan and Perez [23] and Logan [29]. They investigated a

problem in shock hydrodynamics by using the similarity
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method and determined all possible class of self-similar

solutions. In Sect. 4, we determine the similarity solutions

to the one-dimensional, unsteady, spherically symmetric

flow in an interstellar non-ideal dusty gas clouds by using

the method mentioned in Bluman and Cole [21], Bluman

and Kumei [22], Logan and Perez [23] and Logan [29]. In

Sect. 5, The collapse of imploding shock for the spheri-

cally symmetric flow with power law shock path is worked

out in detail and numerical calculations have been per-

formed to estimate the leading similarity exponents. In

Sect. 6, the comparison of the obtained similarity exponent

is made with the results obtained by the characteristic

method and listed in Table 1 for various values of kp; b;W
and b. Flow profiles behind the shock have been shown

graphically. In Sect. 7, all the observations are discussed in

detail. Section 8 concludes the paper.

2. Basic equations

We consider the one dimensional flow in a spherical

interstellar, self gravitating cloud with dust particles under

the following main assumptions: the dust particles are

spherical, uniform in size, taking up less than 5% of the

total volume, incompressible, their adiabatic index is

constant, and within each particle, the temperature is uni-

form, the interaction between different size particles is

neglected, dust particles are uniformly distributed, mass

transfer and heat transfer are not considered into account

between two phases. The effect of particles on gas appears

at the first in the wake of the particles and then distributed

over the rest of the gas by mixing, and the external forces

are not applied on the mixture of gas.

The system of equations describing the one-dimen-

sional, spherically symmetric flow in an invicid, self-

gravitating, interstellar non-ideal dusty gas cloud can be

expressed as follows [12, 15]

oq
ot

þ u
oq
or

þ q
ou

or
þ 2qu

r
¼ 0;

ou

ot
þ u

ou

or
þ 1

q
op

or
¼ g;

op

ot
þ u

op

or
þ qa2

ou

or
þ 2u

r

� �
¼ �ðC� 1Þð1þ �bqÞq

ð1� zÞ Lðp; qÞ;

og

ot
þ u

og

or
þ 2gu

r
¼ 0;

ð1Þ

where q; u; p, t, r, g represent the density, fluid velocity,

pressure, time, spatial coordinate which is radial in

spherically symmetric flows, gravitational force per unit

mass, respectively. L is the cooling-heating function. C
(Gr€uneisen coefficient) is defined as

C ¼ cð1þ kbÞ
ð1þ kbcÞ ;

with k ¼ kp=ð1� kpÞ, c ¼ cp=cv, b ¼ csp=cp, where csp is

the specific heat of solid particle, cv and cp are the specific

heats of gas at constant volume and constant pressure,

respectively. �b ¼ bð1� kpÞ, where kp is mass fraction of

the solid particles in the mixture defined as kp ¼ msp=mg;

with mg and msp as the total mass of the mixture and total

mass of solid particles, respectively and b ð0:9�
10�3 � b� 1:1� 10�3Þ is the van der Waals excluded

volume [44]. We have a relation between the mass fraction

kp and the volume fraction z given by the expression z ¼
#q; where # ¼ kp=qsp, with qsp as the density of solid

particles. We introduce the ratio of density of solid

particles to the species density of the gas as W ¼ qsp=qg.
The equation of state for the mixture of non-ideal gas [44]

and dust particles [2] is of the form:

p ¼ ð1� kpÞð1þ �bqÞ
ð1� zÞ qRT ; ð2Þ

where R is the specific gas constant and T is the absolute

temperature of the gas and the solid particles, provided the

equilibrium flow conditions are maintained.

Also, for isentropic flow the speed of sound is given by

a2 ¼
� op
oq

�
S

¼
� ðC� # �bq2 þ 2C �bqþ ðC� 1Þ �b2q2Þp

ð1� zÞð1þ �bqÞq

�1=2
;

ð3Þ

where S refers to the process of constant entropy, and a

depends on the parameters # and �b, which are defined

above. The above system (1) can be written in matrix

notation, as

F tðr; t;WÞ þ Grðr; t;WÞ ¼ Hðr; t;WÞ; ð4Þ

where W ¼ ðq; u; p; gÞtr, F ¼ ðq; qu; qe; qgÞtr,
G ¼ ðqu; ðpþ qu2Þ; uðpþ qeÞ; qugÞ,

H ¼ ð� 2qu
r ; gq� 2qu2

r ;� 2uðpþqeÞ
r ;� 4qug

r Þ with ‘‘tr‘‘

denoting the transpose. and e is the total energy defined as

below

e ¼ ð1� #qÞp
ðC� 1Þð1þ �bqÞq

þ Lþ u2

2
; ð5Þ

where Lðp; qÞ represents the energy variation per unit mass

which is positive or negative depending upon the cooling

or heating of dusty gas clouds, respectively. Initially, we

assume that L ¼ 0; i.e, there is no net gain or loss of

energy. The cooling-heating function given in Eq. (1) is

determined as
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L ¼ Cei þ Cg þ CH2
� HCR � Hph þ CH þ A (erg

cm3 s�1Þ; where Cei ¼
10�23nHne

T1=2
0:64e�92=Tþ
�

1:7e�554=Tþ 6:4e413=T þ 2:2e�961=TÞ (iconic cooling),

Cg ¼
1:37� 10�29�n2HT

1=2; T [ 1800

7:33� 10�32�n2HT
1=2ðT � TgÞ; T � 1800K (inelastic collisions)

or

0 (elastic collisions);

8>><
>>:

CH2
¼ 8:45� 10�24nH2

e�502=T

1þ 42

nHT1=2ð1þ 0:1nH2
=nHÞ

� � (H2 cooling),

Table 1 Comparison of the similarity exponent d calculated in this work and those calculated by CCW rule [45]

kp b W b Computed d CCW Rule Computed d CCW Rule

(c ¼ 5=3) (c ¼ 5=3) (c ¼ 7=5) (c ¼ 7=5)

0.2 1.5 100 0.0009 0.715518 0.713829 0.738993 0.736662

0.2 1.5 100 0.0011 0.715511 0.713711 0.738985 0.736485

0.2 1.5 1000 0.0009 0.715525 0.715208 0.739815 0.738742

0.2 1.5 1000 0.0011 0.715519 0.715086 0.739802 0.738559

0.2 1.0 100 0.0009 0.707310 0.706618 0.734538 0.730545

0.2 1.0 100 0.0011 0.707303 0.706513 0.731999 0.730386

0.2 1.0 1000 0.0009 0.708199 0.707831 0.734538 0.732406

0.2 1.0 1000 0.0011 0.708198 0.707724 0.733455 0.732242

0.2 0.5 100 0.0009 0.698838 0.698144 0.725901 0.723482

0.2 0.5 100 0.0011 0.698831 0.698053 0.725895 0.723341

0.2 0.5 1000 0.0009 0.698845 0.699189 0.725599 0.725120

0.2 0.5 1000 0.0011 0.698841 0.699097 0.725909 0.724976

0.4 1.5 100 0.0009 0.744235 0.736863 0.756035 0.755599

0.4 1.5 100 0.0011 0.744225 0.736730 0.755500 0.755414

0.4 1.5 1000 0.0009 0.744295 0.741196 0.766681 0.761823

0.4 1.5 1000 0.0011 0.744292 0.741052 0.766655 0.761617

0.4 1.0 100 0.0009 0.730615 0.725549 0.754545 0.745754

0.4 1.0 100 0.0011 0.730605 0.725439 0.754535 0.745597

0.4 1.0 1000 0.0009 0.730665 0.729050 0.754625 0.750890

0.4 1.0 1000 0.0011 0.730651 0.728934 0.754623 0.750720

0.4 0.5 100 0.0009 0.713020 0.710210 0.738610 0.732693

0.4 0.5 100 0.0011 0.713016 0.710126 0.738601 0.732569

0.4 0.5 1000 0.0009 0.713050 0.712852 0.737515 0.736696

0.4 0.5 1000 0.0011 0.713043 0.712764 0.737508 0.736563

0.6 1.5 100 0.0009 0.759910 0.759561 0.778700 0.773928

0.6 1.5 100 0.0011 0.759905 0.759428 0.778400 0.773757

0.6 1.5 1000 0.0009 0.775482 0.770359 0.793985 0.788784

0.6 1.5 1000 0.0011 0.775475 0.770199 0.793982 0.788564

0.6 1.0 100 0.0009 0.747500 0.746790 0.763455 0.762913

0.6 1.0 100 0.0011 0.747450 0.746684 0.763443 0.762772

0.6 1.0 1000 0.0009 0.757999 0.755053 0.779954 0.774522

0.6 1.0 1000 0.0011 0.757994 0.754930 0.779945 0.774350

0.6 0.5 100 0.0009 0.727151 0.726808 0.756395 0.745745

0.6 0.5 100 0.0011 0.727120 0.726733 0.756388 0.745640

0.6 0.5 1000 0.0009 0.734520 0.732360 0.756802 0.753833

0.6 0.5 1000 0.0011 0.734510 0.732278 0.756795 0.753713
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HCR ¼ 1:6� 10�11FnH 1þ 2ð nH2
nH
Þ ðcosmic ray heatingÞ;

Hph ¼ 4:82� 10�26nHne
T0:6548 ðphoto-ionization heatingÞ;

CH ¼ 3� 10�24

T1=2e�227=TnHne ðhydrogen atom coolingÞ;

A ¼ � 3:8� 10�29

T1=2ðnHÞ2e�23:6=T ðother atomic cooling processesÞ:
Here nH ; ne; and ng denote the hydrogen, electron, and

grain number density, respectively. rr is the radius of the

grains and Tg is the temprature of the radius. F is the

cosmic ray flux and � is the free parameter.

3. Rankine–Hugoniot conditions

The Rankine-Hugoniot jump relation [45] is given by the

following

½F k�V ¼ ½G�; k ¼ 1; 2; 3; 4; ð6Þ

where V and ½Y� ¼ Y � Y0 represent the shock velocity and

jump in variable Y, respectively. The medium ahead of

shock ( i.e upstream condition ) is denoted by the subscript

o while the medium behind the shock (i.e downstream

condition) is denoted by without the subscript. Consider the

shock front r ¼ QðtÞ is moving forward with velocity V

into the inhomogeneous medium which is given by u0 ¼
0; p0 = constant, q0 ¼ q0ðrÞ, g0 ¼ g0ðrÞ.

In view of Eqs.(3) and (6), the boundary conditions just

behind the shock front can be obtained from the following

relations:

qðV � uÞ ¼ q0ðV � u0Þ;
pþ qðV � uÞ2 ¼ p0 þ q0ðV � u0Þ2;

hþ ðV � uÞ2

2
¼ h0 þ

ðV � u0Þ2

2
;

g ¼ g0;

ð7Þ

Here, v ¼ V � u represents the particle speed relative to

the shock speed behind the wavefront, h ¼ eþ p=q denotes

the enthalpy, where e ¼ Lþ ðð1� #qÞpÞ=ððC� 1Þð1þ
�bqÞqÞ is the internal energy per unit mass of the system.

Equations(7)1 and (7)2 imply

v ¼ q0V
q

; p ¼ p0 þ q0V
2 � q20V

2

q
: ð8Þ

Using (9) into (8)3, we obtain the following cubic equation

in density q across the shock

�
2p0 �bð1� #q0Þ þ X

�
q3��

ð2p0 �bð1� #q0Þ þ XÞq0 þH
�
q2

þ
�
Hq0 � ðCþ 1Þð1þ �bq0Þq20V2

�
q

þ ðCþ 1Þð1þ �bq0Þq30V2 ¼ 0;

ð9Þ

where X ¼ ðC� 1Þ �bð1þ �bq0Þð2p0 þ q0V
2Þ and H ¼ ð1þ

�bq0Þ
�
� 2p0Cþ q0V

2ð1� C� 2#q0 þ q0 �bðC� 1ÞÞ
�
:

Rankine-Hugoniot Jump conditions on the basis of

parameter # and b: One can easily solve the Eq.(9) for

density qðQðtÞÞ in terms of flow variables just ahead of the

shock and thereafter other flow variables u(Q(t)), p(Q(t))

and g(Q(t)) at shock front can be obtained from Eqs. (7),

(8) as follows:

Case (i):If # 6¼ 0 and b 6¼ 0 i.e. the mixture is a non-

ideal gas with dust particle. On solving (9), we get the

following boundary conditions at shock front:

q ¼ q0
l
; u ¼ ð1� lÞV ; p ¼ p0 þ ð1� lÞq0V2; g ¼goðQðtÞÞ;

ð10Þ

with

l ¼ 2q0ðXþ 2 �bp0ð1� #q0ÞÞ

H�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 þ 4q20V

2ðCþ 1Þð1þ �bq0ÞðXþ 2 �bp0ð1� #q0ÞÞ
q :

The conditions for strong shocks, in Eqs (10) reduce to

q ¼ q0
l�

; u ¼ ð1� l�ÞV ; p ¼ ð1� l�Þq0V2; g ¼goðQðtÞÞ;

ð11Þ

with

l� ¼ 2 �bq0ðC� 1Þð1þ �bq0Þ

H� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðH�Þ2 þ 4q0 �bðC2 � 1Þð1þ �bq0Þ2

q ;

H� ¼ ð1þ �bq0Þ
�
1� C� 2#q0 þ ðC� 1Þq0 �b

�
:

Case (ii): If # ¼ 0 and b ¼ 0 i.e. the mixture is a ideal gas

(i.e. ideal in the sense that there is no interaction between

the gas molecules ), then C ¼ c; a2 ¼ cp=q and boundary

conditions (10), (11) become:

at shock front,

q ¼ ðcþ 1Þq20V2

ðc� 1Þq0V2 þ 2cp0
; u ¼ 2

ðcþ 1Þ
q0V

2 � cp0
q0V

;

p ¼ 2q0V
2 � ðc� 1Þp0
ðcþ 1Þ ; g ¼ goðQðtÞÞ;

ð12Þ

for strong shock,
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q ¼ðcþ 1Þ
ðc� 1Þ q0; u ¼ 2

ðcþ 1ÞV ;

p ¼ 2

ðcþ 1Þ q0V
2; g ¼ go:

ð13Þ

Case (iii): If # ¼ 0 and b 6¼ 0 i.e. the mixture is a non-ideal

gas, then C ¼ c, a2 ¼ ððcþ 2c �bqþ ðc�
1Þ �b2q2ÞpÞ=ðqð1þ �bqÞÞ and boundary conditions (10)-(11)

become:

at shock front,

q ¼ q0
l1

; u ¼ ð1� l1ÞV ; p ¼ p0

þ ð1� l1Þq0V2; g ¼ goðQðtÞÞ;
ð14Þ

with

l1 ¼
2q0ðX1 þ 2 �bp0Þ

H1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2

1 þ 4q20V
2ðcþ 1Þð1þ �bq0ÞðX1 þ 2 �bq0Þ

q ;

X1 ¼ ðc� 1Þ �bð1þ �bq0Þð2p0 þ q0V
2Þ;

H1 ¼ ð1þ �bq0Þ
�
� 2p0cþ q0V

2ð1� cþ q0 �bðc� 1ÞÞ
�
;

and for strong shocks,

q ¼ q0
l�1

; u ¼ ð1� l�1ÞV ; p ¼ ð1� l�1Þq0V2;

g ¼ goðQðtÞÞ;
ð15Þ

with

l�1 ¼
2 �bq0ðc� 1Þð1þ �bq0Þ

H�
1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðH�

1Þ
2 þ 4q0 �bðc2 � 1Þð1þ �bq0Þ

2
q ;

H�
1 ¼ ð1� cÞð1� �b2q20Þ:

Case (iv): If # 6¼ 0 and b ¼ 0, i.e., the mixture of an ideal

gas with dust particles, then a2 ¼ ðCpÞ=qð1� #qÞ and

boundary conditions (10)-(11) become:

at shock front,

q ¼ ðCþ 1Þq20V2

ðC� 1þ 2#q0Þq0V2 þ 2Cp0
;

u ¼ 2

ðCþ 1Þ
ð1� #q0Þq0V2 � Cp0

q0V
;

p ¼ 2ð1� #q0Þq0V2 � ðC� 1Þp0
ðcþ 1Þ ;

g ¼ goðQðtÞÞ;

ð16Þ

and for strong shock,

q ¼ ðCþ 1Þ
ðC� 1þ 2#q0Þ

q0; u ¼ 2ð1� #q0Þ
ðCþ 1Þ V;

p ¼ 2ð1� #q0Þ
ðCþ 1Þ q0V

2; g ¼ go:

ð17Þ

4. Self-similar solution using lie group invariance

analysis

Similarity method for finding the similarity solutions of

PDEs is usually based on the property that it reduces the

number of independent variables in the model equations to

be reduced by one. In case of multi-dimensional problem

dealing with similarity method by means of one-parameter

Lie group of point transformations reduces one indepen-

dent variable at each step and gives a new equation with

one independent variable less than the previous step. The

obtained new equation at each step must remain invariant

under the Lie group of transformations. One parameter

group of transformations that leaves invariant a given

PDEs, we can construct a solution that is remains

unchanged under the transformation. We study the motion

of converging shock wave in a self-gravitating, interstellar

non-ideal dusty gas cloud by using the similarity method.

‘‘In order to obtain the similarity solutions for the sys-

tem of PDEs (1), we consider one-parameter (�) Lie group

of point transformations (see [21, 23, 29]) under which the

system of PDEs (1) reduces to the system of ODEs in terms

of new variable n, which is called the similarity variable’’.

For simplicity, let us take

r1 ¼ t; r2 ¼ r; u1 ¼ q; u2 ¼ u; u3 ¼ p; u4 ¼ g, and then the

one-parameter (�) Lie group of point transformations for

system (1) is given by

r�l ¼ rl þ � nlrðr1; r2; u1; u2; u3; u4Þ þ Oð�2Þ;

u�n ¼ un þ � nnuðr1; r2; u1; u2; u3; u4Þ þ Oð�2Þ;
ð18Þ

where l ¼ 1; 2; n ¼ 1; 2; 3; 4; and � is a very small

parameter. The functions nlr and nnu are the infinitesimal

generators of Lie group of transformations which will be

determined later.

By using pnl ¼ oun
orl
, the system of Eq. (1) can be written

in the following form

Hkðrl; un; pnl Þ ¼ 0; k ¼ 1; 2; 3; 4;

the system of equations (1) remains unchanged under the

transformation (18), if there exist constants skaðk; a ¼
1; 2; 3; 4Þ such that

LHk ¼ skaHa; ð19Þ

Here, L denotes the Lie derivative and can be defined as
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L ¼ nlr
o

orl
þ nnu

o

oun
þ nnpl

o

opnl
; ð20Þ

with n1r ¼ T; n2r ¼ v; n1u ¼ F; n2u ¼ U; n3u ¼ P; n4u ¼ G and

nnpl is defined as

nnpl ¼
onnu
orl

þ onnu
ouk

pkl �
onir
orl

pni �
onir
ouj

pni p
j
l; ð21Þ

where i ¼ 1; 2; j ¼ 1; 2; 3; 4.
In view of Eqs. (19)-(21), the system (1) implies

nlr
oHk

orl
þ nnu

oHk

oun
þ nnpl

oHk

opnl
¼ skaHa;

k ¼ 1; 2; 3; 4; a ¼ 1; 2; 3; 4:

ð22Þ

Using Eq. (21) into (22), we get a polynomial in pnl . Setting

the coefficients of pnl and the terms free from derivatives of

dependent variables to zero gives system of first-order

linear PDEs in infinitesimal generators T ; v;F;U;P;G

which are given in the Appendix. These first order linear

PDEs are known as determining equations whose consis-

tency gives rise to determining the infinitesimals

T ; v;F;U;P;G as follows:

For convenience, let s ¼ bþ #

T ¼ a1t þ b1; v ¼ ðs22 þ 2a1Þr þ c;

F ¼
0 if s 6¼ 0;

ðs11 þ a1Þq if s ¼ 0;

�
U ¼ ðs22 þ a1Þu;

P ¼
2s22 þ 2a1ð Þp if s 6¼ 0;

2s22 þ s11 þ 3a1ð Þq if s ¼ 0;

�

G ¼ s22gþ d; FLq þ PLp ¼ ð2s22 þ a1ÞL;

ð23Þ

where a1; b1; c; d; k1; s11; s22 are all arbitrary constants. On

the basis of arbitrary constants occurring in the expression

for the infinitesimals generator, there arise two different

possible cases of solutions which is discussed as follows:

Case 1: a1 6¼ 0 and ðs22 þ 2a1Þ 6¼ 0. Let us take the

following translational invariance from (r, t, g) to ð~r; ~t; ~gÞ
defined as

~r ¼ r þ c

s22 þ 2a1
; ~t ¼ t þ b1

a1
; ~g ¼ gþ d

s22
; ð24Þ

under which all the basic equations remain unchanged. On

suppressing the tilde sign, the set of infinitesimal

generators in Eq.(23) can be written as:

The invariant surface condition yields:

vqr þ Tqt ¼ F; vur þ Tut ¼ U;

vpr þ Tpt ¼ P; vgr þ Tgt ¼ G;
ð26Þ

which on integrating together with Eq.(25),

yield the following forms of flow variables q; u; p; g
and L:

q ¼
F̂ðnÞ if s 6¼ 0;

t
1þs11

a1 F̂ðnÞ if s ¼ 0;

(
u ¼ td�1ÛðnÞ;

p ¼
t2d�2P̂ðnÞ if s 6¼ 0;

t
2d�1þs11

a1 P̂ðnÞ if s ¼ 0;

(

g ¼ tðd�2ÞĜðnÞ;

L ¼
p

2d�3
2ðd�1Þ qðgÞ if s 6¼ 0;

p
ð2d�3Þa1

ð2d�1Þa1þs11 qðgÞ if s ¼ 0;

8<
:

ð27Þ

where d ¼ s22þ2a1
a1

. The form of L in terms of arbitrary

function of g is the general form for which similarity

solution exists, where

g ¼
q; if s 6¼ 0;

qp
�ðs11þa1Þ

ðð2d�1Þa1þs11Þ; if s ¼ 0:

(
ð28Þ

The functions Û; P̂; F̂ and Ĝ depend on the similarity

variable n, which is given as

n ¼ r

td
: ð29Þ

let the position of the shock front be n ¼ 1; then the shock

path Q and shock speed V are given as

Q ¼ td; V ¼ dQ
t
: ð30Þ

At the shock, we have the following conditions on flow

variables q; u; p and g

T ¼ a1t; v ¼ ðs22 þ 2a1Þr þ c;

F ¼
0 if s 6¼ 0;

ðs11 þ a1Þq if s ¼ 0;

�
U ¼ ðs22 þ a1Þu;

P ¼
ð2s22 þ 2a1Þp if s 6¼ 0;

ð2s22 þ s11 þ 3a1Þp if s ¼ 0;

�
G ¼ s22gþ d; FLq þ PLp ¼ ð2s22 þ a1ÞL:

ð25Þ
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qjn¼1 ¼
F̂ð1Þ if s 6¼ 0;

t
ð1þs11

a1
Þ
F̂ð1Þ if s ¼ 0;

(
ujn¼1 ¼ tðd�1ÞÛð1Þ;

pjn¼1 ¼
t2ðd�1ÞP̂ð1Þ if s 6¼ 0;

t
ð2d�1þs11

a1
Þ
P̂ð1Þ if s ¼ 0;

(
gjn¼1 ¼ tðd�2ÞĜð1Þ:

ð31Þ

For invariance of jump condition, Eq.(12) yields the

following forms of q0ðrÞ and g0ðrÞ

q0ðrÞ ¼
qc if s 6¼ 0;

qcr
m if s ¼ 0;

(
g0ðrÞ ¼ g0cr

r: ð32Þ

Using Eqs. (31) and (32), the jump conditions (11),

(13), (15) and (17) for strong shock reduce as

follows

F̂ð1Þ ¼

qc
b1

if # 6¼ 0; b 6¼ 0;
qc
b2

if # ¼ 0; b 6¼ 0;

Cþ1
ðC�1þ2#qcÞ

qc; if # 6¼ 0; b ¼ 0;

cþ1
c�1

qc if # ¼ 0; b ¼ 0;

8>>>>><
>>>>>:

Ûð1Þ ¼

dð1� b1Þ if # 6¼ 0; b 6¼ 0;

dð1� b2Þ if # ¼ 0; b 6¼ 0;
2dð1�#qcÞ

Cþ1
; if # 6¼ 0; b ¼ 0;

2d
cþ1

; if # ¼ 0; b ¼ 0;

8>>>><
>>>>:

P̂ð1Þ ¼

qcd
2ð1� b1Þ if # 6¼ 0; b 6¼ 0;

qcd
2ð1� b2Þ if # ¼ 0; b 6¼ 0;

2qcd
2ð1�#qcÞ
Cþ1

; if # 6¼ 0; b ¼ 0;

2qcd
2

cþ1
; if # ¼ 0; b ¼ 0;

8>>>>><
>>>>>:

Ĝð1Þ ¼ g0c

ð33Þ

together with

r ¼ d� 2

d
; m ¼ s11 þ a1

da1
;

b1 ¼
2 �bqcð1þ �bqcÞðC� 1Þ

H�� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðH��Þ2 þ 4qc �bðC2 � 1Þð1þ �bqcÞ

2
q ;

b2 ¼
2 �bqcð1þ �bqcÞðc� 1Þ

H��
1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðH��

1 Þ2 þ 4qc �bðc2 � 1Þð1þ �bqcÞ2
q ;

H�� ¼
�
1� 2#qc � Cþ ðC� 1Þqc �b

�
ð1þ �bqcÞ;

H��
1 ¼ ð1� cÞð1� �b

2
q2cÞ;

ð34Þ

where qc; gc and g0c are some reference constants. In view

of Eq. (28)-(30), (32) and (34), all the flow variables in

Eq. (27) can be written as

q ¼
qcF

�ðnÞ if s 6¼ 0;

q0ðQðtÞÞF�ðnÞ if s ¼ 0;

�
u ¼ VU�ðnÞ;

p ¼ qcV
2P�ðnÞ; if s 6¼ 0;

q0ðQðtÞÞV2P�ðnÞ; if s ¼ 0;

�
g ¼ V

t G
�ðnÞ;

L ¼ p
ð2d�3Þ
2ðd�1Þ qðgÞ; if s 6¼ 0;

p
ð2d�3Þ

ð2ðd�1ÞþdmÞ qðgÞ; if s ¼ 0;

8<
: g ¼

q; if s 6¼ 0;

q p
�dm

ð2ðd�1ÞþdmÞif s ¼ 0;

(

ð35Þ

where F� ¼ F̂
qc
;U� ¼ Û

d ;P
� ¼ P̂

qcd
2 ;G

� ¼ Ĝ
d :

Using Eq. (35) in the system (1) and then using (29),

(30), (32) and (34)1, we get the following system of ODEs

in F�;V�;P� and G� (For simplicity we suppressed asterisk

sign)

for s 6¼ 0:

U � nÞF0 þ F U0 þ 2U

n

� �
¼ 0;

d� 1

d

� �
U þ ðU � nÞU 0 þ P0

F
¼ G

d
;

2
d� 1

d

� �
Pþ ðU � nÞP0

þ
C� # �bq2cF

2 þ 2C �bqcF þ ðC� 1Þ �b2q2cF2
	 


P

ð1� #qcFÞð1þ �bqcÞF
U0 þ 2U

n

� �

þ C� 1Þð1þ �bqcFð ÞFL�
ð1� #qcFÞ

¼ 0;

d� 2

d

� �
Gþ ðU � nÞG0 þ 2UG

n
¼ 0;

ð36Þ

and for s ¼ 0:

ðU � nÞF0 þ F
�
mþ U 0 þ 2U

n

�
¼ 0;

� d� 1

d

�
U þ ðU � nÞU0 þ P0

F
¼ G

d
;

ðU � nÞP0 þ 2
� d� 1

d

�
þ m

�

þc
�
U0 þ 2U

n

��
Pþ ðc� 1ÞFL� ¼ 0;

� d� 2

d

�
Gþ ðU � nÞG0 þ 2UG

n
¼ 0;

ð37Þ

where

L� ¼
q

4d�5
2ðd�1Þ
c d

�d
d�1FP

2d�3
2ðd�1Þ; if s 6¼ 0;

q
ð4d�5Þ

ð2ðd�1ÞþdmÞ
c d

�ð2dþ5dmÞ
ð2ðd�1ÞþdmÞFP

ð2d�3�dmÞ
ð2ðd�1ÞþdmÞ; if s ¼ 0:

8><
>:

The above system of ODEs (36) and (37) together with

boundary conditions is solved numerically in Sect. 5.

Case 2: a1 ¼ 0 and s22 6¼ 0. Let us take the following

translational invariance from (r, t, g) to ð~r; ~t; ~gÞ defined as

~r ¼ r þ cðs22Þ�1; ~t ¼ t; ~g ¼ gþ d

s22
; ð38Þ
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under which all the basic equations remain unchanged. In

view of equation (23) and (26) together with (38), after

suppressing the tilde sign, all the flow variables can be

written as

q ¼
qcF

�ðnÞ; if s 6¼ 0;

q0ðQðtÞÞF�ðnÞ; if s ¼ 0;

�
u ¼ VU�ðnÞ;

p =
qcV

2P�ðnÞ; if s 6¼ 0;

q0ðQðtÞÞV2P�ðnÞ; if s ¼ 0;

(
g ¼ VG�ðnÞ;

L =
pqðgÞ; if s 6¼ 0;

p
2

mþ2qðgÞ; if s ¼ 0;

(
g ¼

q; if s 6¼ 0;

qp
�m
mþ2; if s ¼ 0;

�

q0ðrÞ =
qc; if s 6¼ 0;

qcðr/r0Þm; if s ¼ 0;

�
g0ðrÞ ¼ gc0ðr/r0Þ;

ð39Þ

where m ¼ s11=s22; d ¼ s22=b1;F
� ¼ F̂

qc
;U� ¼ Û

d ;P
� ¼

P̂
qcd

2 ;G
� ¼ Ĝ

d .

Shock can be normalized at n = 1. The shock path Q and

the shock velocity V as follows:

n ¼ re�dt; Q ¼ edt; V ¼ dedt; ð40Þ

Using Eqs. (39) and (40) in the system (1), we get the

system of ODEs in terms F�;V�;P� and G� as follows (For
simplicity we suppressed asterisk sign)

for s 6¼ 0:

ðU � nÞF0 þ F
�
U0 þ 2U

n

�
¼ 0;

U þ ðU � nÞU0 þ P0

F
¼ G

d
;

ðU � nÞP0 þ 2P

þ ðC� �b#q2cF
2 þ 2C �bqcF þ ðC� 1Þ �b2q2cF2ÞP

ð1� #qcFÞð1þ �bqcFÞ

�
U0 þ 2U

n

�

þ ðC� 1Þð1þ �bqcFÞFL�
ð1� #qcFÞ

¼ 0;

Gþ ðU � nÞG0 þ 2GU

n
¼ 0;

ð41Þ

and for s ¼ 0:

ðU � nÞF0 þ F
�
mþ U0 þ 2U

n



¼ 0;

U þ ðU � nÞU0 þ P0

F
¼ G

d
;

Pð2þ mÞ þ ðU � nÞP0 þ cP
�
U0 þ 2U

n

�
þ ðc� 1ÞFL� ¼ 0;

Gþ ðU � nÞG0 þ 2UG

n
¼ 0;

ð42Þ

where

L� ¼
q2cd

�1FP; if s 6¼ 0;

q
4

ð2þmÞ
c d

�ð2þ5mÞ
ð2þmÞ FP

ð2�mÞ
ð2þmÞ; if s ¼ 0:

8<
:

In this case, the boundary conditions for strong shock

remain the same as in Case 1 given by Eq.(33).

5. Imploding shocks

We consider an imploding shock for Case 1 and discuss in

detail. For the existence of an imploding shock, V � a0 in

the neighborhood of implosion. For an imploding shock

collapsing at the center, we assume the origin of time t to

be the instant at which the shock falls at the center so that

t� 0 in (36)-(37). Thus, in this regard, we slightly modify

the expression of similarity variable by setting

Q ¼ ð�tÞd; n ¼ r=ð�tÞd;

so that the intervals of flow variables become 0� r�Q,

�1\t� 0 and 1� n\1. At time t ¼ 0, we observe that

sound speed at any finite radius r and all the flow variables

are bounded and n ¼ 1. For the boundedness of variables

q; p; u and g for t ¼ 0 and finite r, the following boundary

conditions must be satisfied at n ¼ 1:

Uð1Þ

¼ 0;

ðC�# �bF2ð1Þþ2C �bFð1ÞþðC�1Þ �b2F2ð1ÞÞPð1Þ
ð1�#Fð1ÞÞFð1Þð1þ �bFð1ÞÞFð1Þ ¼ 0; s 6¼ 0;

cPð1Þ
Fð1Þ ¼ 0; s ¼ 0;

8<
: Gð1Þ ¼ 0:

ð43Þ
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We rewrite system of equations (36) and (37) in the matrix

form as:

ES0 ¼ N; ð44Þ

where S ¼ ðU;F;P;GÞtr; the matrix E and the column

vector N can be obtained from equations (36) and (37). The

system of equation (44) together with (33) and (43),

constitute a boundary value problem that can be solved for

the flow variables behind the shock. But for this purpose,

first we need to determine the unknown parameter d
appearing in (44), known as the similarity exponent. The

value of d can only be determined by solving a non-linear

eigenvalue problem for imploding shock. We solve the

system (44) for U0;F0;P0 and G0 in the following forms:

U0 ¼ K1

K
; F0 ¼ K2

K
; P0 ¼ K3

K
; G0 ¼ K4

K
; ð45Þ

where K is the determinant of the matrix E and given by:

The determinants Kiði ¼ 1; 2; 3; 4Þ are obtained from K by

replacing the ith column of E by the column vector N.

In the interval ½1;1Þ, we may note that U\n, whereas

Fig. 1 Flow pattern in the region behind the shock front: (a) radial fluid velocity (b) density (c) pressure (d) gravitational force;

c ¼ 7=5;W ¼ 100;b ¼ 0:5; b ¼ 0:0011

K ¼
�ðU � nÞ2

�
ðU � nÞ2 � ðC�# �bq2cF

2þ2C �bqcFþðC�1Þ �b2q2cF2ÞP
Fð1�#qcFÞð1þ �bqcFÞ

�
; if s 6¼ 0;

�ðU � nÞ2
�
ðU � nÞ2 � cP

F

�
¼ 0; if s ¼ 0:

8><
>: ð46Þ
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K ¼
[ 0; at n ¼ 1;

\0; at n ¼ 1;

(
ð47Þ

which shows that 9 a point nc 2 ½1;1Þ at which K ¼ 0,

thus the solutions become singular at nc. In order to

determine a non-singular solution of (44) in the interval

½1;1Þ, we choose the value of the d in such a manner at the

points where K and K1 vanish simultaneously. Without any

difficulty, it can be checked that the determinants K2;K3

and K4 also vanish simultaneously for the points at which

K and K1 are vanish. For the determination of such d, we
introduce a variable Z of the following form

ZðnÞ

¼
ðU � nÞ2 � ðC�# �bq2cF

2þ2C �bqcFþðC�1Þ �b2q2cF2ÞP
Fð1�#qcFÞð1þ �bqcFÞ

; if s 6¼ 0;

ðU � nÞ2 � cP
F ; if s ¼ 0;

8<
:

ð48Þ

whose first derivative is

dZ

dn
¼ K5

K
; ð49Þ

where

Fig. 2 Flow pattern in the region behind the shock front: (a) radial fluid velocity (b) density (c) pressure (d) gravitational force;

c ¼ 7=5;W ¼ 100; kp ¼ 0:4; b ¼ 0:0009

K5

¼
2ðU � nÞðK1 � KÞ � f1K3 þ f1PK2

F � f2PK2 � f1PK2

�
#qc

ð1�#qcFÞ �
�bqc

ð1þ �bqcFÞ

�
; if s 6¼ 0;

2ðU � nÞðK1 � KÞ � cK3

F þ cPK2

F2 ; if s ¼ 0;

8<
:

Propagation of shock waves in a non-ideal gas 3075



and

n ¼
U þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z þ Pf1

p
; if s 6¼ 0;

U þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Z þ cP

F

q
; if s ¼ 0;

8<
:

where f1 ¼

�
C�# �bq2cF

2þ2C �bqcFþðC�1Þ �b2q2cF2

�
ð1�#qcFÞð1þ �bqcFÞF

and

f2 ¼

�
�2# �bq2cFþ2C �bqcþ2ðC�1Þ �b2q2cF

�
ð1�#qcFÞð1þ �bqcFÞF

.

In view of Eq.(48), Eq.(45) becomes

dU

dZ
¼ K1

K5

;
dF

dZ
¼ K2

K5

;
dP

dZ
¼ K3

K5

;
dG

dZ
¼ K4

K5

: ð50Þ

6. Characteristic method

‘‘In the Whitham’s rule [45], the structure of the solution is

unaffected by the characteristics behind the shock. It

inculcates the application of the differential relation which

is true along with a characteristic to the flow variables just

behind the blast wave. The method is useful in writing a

characteristic equation for the characteristics moving along

the direction of shock’’, which results in a differential

equation of the following form:

Dp

Dr
þ qa

Du

Dr

þ 1

uþ a

ðC� 1Þð1þ bqÞqL
1� #q

þ 2a2qu
r

� agq

� �
¼ 0;

ð51Þ

where

D

Dr
¼ o

or
þ ðuþ aÞ�1 o

ot

with characteristic Dr
Dt ¼ uþ a. By using Eq. (51) along

with the Eq. (11) for the strong shock and (4) for the speed

of sound a in the mixture, we get the evolutionary equation

for the shock as follows:

1

V

dV

dr
þ 2W

r
¼ 0; ð52Þ

Fig. 3 Flow pattern in the region behind the shock front: (a) radial fluid velocity (b) density (c) pressure (d) gravitational force;

c ¼ 7=5; 5=3;W ¼ 100; kp ¼ 0:6;b ¼ 1:0
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where

W ¼ ð1�l�ÞðW�Þ2	
l�ð1�l�Þþl�W�


	
2ð1�l�Þþ1�l�

l� W�

, W� ¼

ffiffiffi�r
ðCðl�Þ2�# �bq2

0
þ2C �b

2
q0l

�þðC�1Þ �b2q2
0
Þl�ð1�l�Þ

ðl��#q0Þðl�þ �bq0Þ

�
and l� is same

as in Eq.(11).

We get the following relation after integrating the

Eq.(52),

V 	 r�2W : ð53Þ

As per the Guderley’s hypothesis, the shock location in the

neighborhood of the collapse is given by

Q ¼ Að�tÞd; ð54Þ

where t is the time which is taken to be negative upto the

instant of collapse, A is a constant, which measures the

strength of shock and d is the similarity exponent. By using

Eqs. (53) and (54), we determine the similarity exponent d
as follows

d ¼ 1

1þ 2W
: ð55Þ

7. Numerical results and discussion

Using the Runga-Kutta 4-th order method, we estimate the

value of leading similarity exponent ðdÞ numerically by

solving the system (50) along with the Eq. (33). The entire

computational process is carried out by writing a program

in the software package ‘‘Mathematica 7’’. The exponent d
is calculated in such a way that for a trial value of d, we
integrate the system (50) from the shock, Z ¼ Z½1� to Z ¼
0 and calculate U, F, P, G and K1 at singular point Z ¼ 0.

The value of d is improved by successive approximations

in such a manner that for its final value, the determinant K1

vanishes at Z ¼ 0: For the purpose of numerical integra-

tion, the values of the physical parameters involved in the

computation are taken as c ¼ 7=5; 5=3; (see [46, 47])

Fig. 4 Flow pattern in the region behind the shock front: (a) radial fluid velocity (b) density (c) pressure (d) gravitational force;

c ¼ 7=5; 5=3; kp ¼ 0:6; b ¼ 1:5; b ¼ 0:0009
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kp ¼ 0:2; 0:4; 0:6; b ¼ 0:5; 1:0; 1:5;

W ¼ 100; 1000; b ¼ 0:0009; 0:0011: (see [48])

Table 1 lists the numerical values of similarity exponent

d obtained in Eq.(55) by Whitham’s rule. We see that all

the values of the similarity exponent estimated by using

both the methods are in excellent agreement upto 3 decimal

places. It is worth noting that the value of d is less than 1,

indicating that the shock is constantly accelerating, indeed,

the shock velocity V becomes infinite as Q ! 0. From

Table 1, we observe that the values of d decreases with the

decrement in the values of parameters kp; b and W and with

the increment in value of van der Waals excluded gas

volume b. Consequently, the shock velocity increases and

becomes unbounded as it reaches the center of implosion.

Thus, the shock velocity decreases due to the presence of

the dust particles while the non-ideal parameter b has an

opposite effect on the shock velocity. The values of the

flow variables before collapse and at the instant of collapse

are shown graphically by integrating Eq.(50) along with the

boundary conditions (33) numerically for 1� n\1. The

effects of various parameters kp; b; c; b;W on the flow

velocity, density, pressure and gravitational force are

shown by the typical flow profiles in Figs. 1, 2, 3 and 4.

From Figs. 1a, b, 2a, b, 3a, b and 4a, b, we observe that the

fluid velocity decreases and density increases monotoni-

cally in the region behind the shock as we go nearer to the

axis of collapse, this increase in density may be attributed

to the geometrical convergence or the area contraction of

the shock wave. There is decrement in the velocity behind

the shock wave because of the gas particle passing through

the shock is subjected to a shock compression. Also, it is

clear from the Figs. 1a, 2a, 3a and 4a, that this decrement

in the velocity is further reinforced with the decrement in

kp; b;W and increment in c; b. The increment in density is

also further enhanced with the increment in kp; b;W and

decrement in c; b. From Figs. 1c, 2c, 3c and 4c, we found

complicated behavior of pressure profiles; behind the

shock, pressure profiles exhibit non-monotonic variations.

As we go nearer to the center of collapse, we see that

pressure first increases, attains its maximum value and then

starts decreasing. As the value of dusty gas parameter kp
increases, the particles collide more frequently and in turn

generate high pressure as can be seen in Fig. 1c. From

Figs. 1d, 2d, 3d and 4d, we see that the gravitational force

reduces behind the shock as we go nearer to the center of

implosion. With the increment of kp, gravitational force

increases too (see Fig. 1d). These results describe the

physical phenomena well.

8. Conclusions

In the present paper, an imploding shock wave problem in

an interstellar non-ideal dusty gas clouds has been studied.

By using the method of Lie group of transformation, whole

range of similarity solutions to a problem involving

spherically symmetric flows in an interstellar non-ideal

dusty cloud involving strong converging shocks have been

determined. All invariance properties associated with the

ambient gas are presented and the general form of heating-

cooling function for which the similarity solutions exist is

obtained. The infinitesimal generators of the Lie group

transformations associated with the system of partial dif-

ferential equations are determined by using the invariance

surface conditions. Taking into consideration the constants

arising in the expressions for the infinitesimal generators,

two different cases, involving similarity solutions follow-

ing the power-law and exponential shock paths are

obtained. A detailed study has been made for a particular

case of the collapse of an imploding shock following the

power-law shock path for the spherically symmetric flow.

The similarity exponents are calculated numerically for the

different values of dusty gas parameters and van der Waals

excluded volume. The comparison of the calculated values

of the similarity exponents has been made with those

obtained by the characteristic method. The effects of the

mass fraction of the dust particle, relative specific heat,

ratio of density of dust particle to the density of gas and

van der Waals excluded volume have been shown on the

flow variables. The patterns of all the flow variables in the

flow-field region behind the shock are analyzed

graphically.

In future, the present work can be extended with the

rotational effect and magnetic field effect and the solutions

by using the theory of self-similarity and computational

methods can be obtained.

Appendix

On applying the procedure in (19)-(23) to the system of

PDEs (1), we found the most general group under which

the system is invariant.

The invariance of Eq. (1)1 gives:
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Fq � Tt � uTr ¼ s11; Fu � qTr ¼ s12;

Fp ¼ s13; Fh ¼ s14;

U � vt þ uFq � uvr þ qUq ¼ us11;

F þ uFu þ qUu � qvr ¼ s11qþ s12u

þ s13
ðC� # �bq2 þ 2C �bqþ ðC� 1Þ �b2q2Þp

ð1� #qÞð1þ �bqÞ ;

uFp þ qUp ¼
s12
q

þ s13u; uFg þ qUg ¼ s14u;

2Fu

r
þ 2qU

r
� 2qun

r2
þ Ft þ uFr þ qUr

¼ s11
2qu
r

� s12gþ s14
2gu

r

þ s13
ðC� # �bq2 þ 2C �bqþ ðC� 1Þ �b2q2Þ2up

ð1� #qÞð1þ �bqrÞ

 

þðC� 1Þð1þ �bqÞqLðp; qÞ
ð1� #qÞ

�
:

The invariance of Eq. (1)2 gives:

Uq ¼ s21; Uu � Tt � uTr ¼ s22;

Up �
1

q
Tr ¼ s23; Ug ¼ s24;

uUq þ
1

q
Pq ¼ s21u;

U � vt þ uUu � uvr þ
1

q
Pu ¼ s21qþ us22

þ s23
ðC� # �bq2 þ 2C �bqþ ðC� 1Þ �b2q2Þp

ð1� #qÞð1þ �bqÞ
;

� F

q2
þ uUp þ

1

q
Pp �

1

q
vr ¼

s22
q

þ s23u; uUg þ
1

q
Pg ¼ us24;

� Gþ Ut þ uUr þ
1

q
Pr ¼ s21

2qu
r

� s22gþ s24
2gu

r

þ s23

� ðC� # �bq2 þ 2C �bqþ ðC� 1Þ �b2q2Þ2up
ð1� #qÞð1þ �bqÞr

þ ðC� 1Þð1þ �bqÞqLðp; qÞ
ð1� #qÞ

�
:

The invariance of Eq. (1)3 gives:

Pq ¼ s31; Pu �
ðC� # �bq2 þ 2C �bqþ ðC� 1Þ �b2q2Þp

ð1� #qÞð1þ �bqÞ
Tr ¼ s32;

Pp � Tt � uTr ¼ s33; Pg ¼ s34;

uPq þ
ðC� # �bq2 þ 2C �bqþ ðC� 1Þ �b2q2Þp

ð1� #qÞð1þ �bqÞ
Uq ¼ s31u;

Fð�2# �bqþ 2C �bþ ðC� 1Þ2 �b2qÞp
ð1� #qÞð1þ �bÞ

þ P
ðC� # �bq2 þ 2C �bqþ ðC� 1Þ �b2q2Þ

ð1� #qÞð1þ �bÞ

þ F
ðC� # �bq2 þ 2C �bqþ ðC� 1Þ �b2q2Þp

ð1� #qÞð1þ �bÞ
� #

ð1� #qÞ �
�b

ð1þ �bqÞ

�
þ uPu

þ ðC� # �bq2 þ 2C �bqþ ðC� 1Þ �b2q2Þp
ð1� #qÞð1þ �bÞ

�
Uu � vr

�

¼ s31qþ s32uþ

s33
ðC� # �bq2 þ 2C �bqþ ðC� 1Þ �b2q2Þ

ð1� #qÞð1þ �bÞ
;

U � vt þ uPq � uvr þ
ðC� # �bq2 þ 2C �bqþ ðC� 1Þ �b2q2Þ

ð1� #qÞð1þ �bÞ
Up

¼ s32
q

þ s33u;

uPg þ
ðC� # �bq2 þ 2C �bqþ ðC� 1Þ �b2q2Þ

ð1� #qÞð1þ �bÞ
Ug ¼ s34u;

2Fpuð�2# �bqþ 2C �bþ ðC� 1Þ �b2qÞ
ð1� #qÞð1þ �bÞr

þ 2uPðC� # �bq2 þ 2C �bqþ ðC� 1Þ �b2q2Þ
ð1� #qÞð1þ �bÞr

þ 2uFpðC� # �bq2 þ 2C �bqþ ðC� 1Þ �b2q2Þ
ð1� #qÞð1þ �bÞr

� #

ð1� #qÞ �
�b

ð1þ �bqÞ

�

ðC� # �bq2 þ 2C �bqþ ðC� 1Þ �b2q2Þp
ð1� #qÞð1þ �bÞ

� 2U
r

� 2uv
r2

�
þ ðC� 1ÞFLð2 �bqþ 1Þ

ð1� #qÞ

þ ðC� 1Þð1þ �bqÞðLqF þ LpPÞ
ð1� #qÞ þ ðC� 1ÞFLð1þ �bqÞq#LF

ð1� #qÞ

þ ðC� # �bq2 þ 2C �bqþ ðC� 1Þ �b2q2Þp
ð1� #qÞð1þ �bÞ

Ur

¼ s31
2qu
r

� s32g

þ s33

� 2upðC� # �bq2 þ 2C �bqþ ðC� 1Þ �b2q2Þ
ð1� #qÞð1þ �bÞr

þ ðC� 1Þð1þ �bqÞL
ð1� #qÞ

�

þ s34
2gu

r
:
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The invariance of the Eq. (1)4 gives:

Gq ¼ s41; Gu ¼ s42;

Gp ¼ s43; Gg � Tt � uTr ¼ s44;

uGq ¼ us41; uGu ¼ s41qþ s42u

þ s43
ðC� # �bq2 þ 2C �bqþ ðC� 1Þ �b2q2Þ

ð1� #qÞð1þ �bÞ
;

uGp ¼
s42
q

þ us43; U � vt þ uGg � unr ¼ s44u;

� 2guv
r2

þ 2uG

r
þ 2gU

r
þ Gt þ uGr

¼ s41
2qu
r

� s42g

þ s43

� 2upðC� # �bq2 þ 2C �bqþ ðC� 1Þ �b2q2Þ
rð1� #qÞð1þ �bÞ

þ s44
2ug

r
þ ðC� 1Þð1þ �bqLÞ

ð1� #qÞ

�
:
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