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Abstract: We have probed a cosmological model in f(R) gravity, which is a cubic equation in scalar curvature R. The

terms arise due to nonlinear f(R) functions being treated as energy due to curvature-inspired geometry. As a result, we find

the accelerating expansion in the universe, which creates an anti-gravitating negative pressure in it. Some of the physical

parameters are solved using numerical methods. The evolution of the model is examined by the observational Hubble data

(46-data points) and Pantheon data (the compilation of SNIa with 40 binned in the red-shift range 0:014 6 z 6 1:62). Some

important features of the model have been discussed by analyzing various plots of the physical parameters. The plots of the

deceleration parameter q and the Hubble parameter H describe the accelerating expansion in the evolution of the Universe

at the present epoch. The transition from deceleration to acceleration for our model is obtained at redshift ztr ’ 0:6843,

which is in good agreement with KCDM. We have also carried out state finder analysis for our model. At present our model

represents a quintessence dark energy model. The analysis of specific features of the model confirms that our model is

consistent with KCDM at present.
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1. Introduction

The study of origin, evolution, and the large-scale structure

of the universe is the subject matter of cosmology. It is a

well-established fact that our universe is spatially homo-

geneous and isotropic (SHI) at large scale in the units of

Megaparsecs and Giga yrs. A veteran Friedman-Lemaitre-

Robertson-Walker (FLRW) space-time represents the SHI

universe. The solution of the Einstein Field Equations for

FLRW space-time results in a universe that is both

expanding and decelerating, indicating that the galaxies

within it are gradually moving away from us at a dimin-

ishing rate over time. The present-day surveys and obser-

vations [1–5] suggest different types of scenario which tells

us that the various galaxies are moving away from us at a

relatively increasing pace with time. The literature tells us

that cold dark matter of gravitating origin and dark energy

of repulsive anti-gravitating origin are present in abun-

dance in our universe which is responsible for the change

in the mode of the universe.

The cosmological constant once introduced by Einstein

in his field equations to describe a physical static universe

was resurrected in order to explain the acceleration in it

known as KCDM model, which fits best on observational

ground [6–11]. Despite this, it fails in explaining fine-

tuning that vacuum energy is very small compared to

typical particle physics scales [12]. Cosmological tracking

solutions [13, 14] were proposed to overcome the issues

against the KCDM. By that time, a different way of

thinking was developed. It was thought that Dark energy

must arise from the gravitational origin and some nonlinear

term of Ricci scalar R in the form of an arbitrary function

f(R) in the Einstein Hilbert Action to arrive at an alternative

to Einstein’s theory. The name was given f(R) gravity. In

this theory, acceleration is obtained spontaneously from the

gravitational sector.

In 2003, the f ðRÞ ¼ Rþ a
R þ bR2 formalism was first

enunciated by Nojiri and Odintsov [15] to explain the early

inflation and the acceleration in late times. Starobinsky

[16] used a different form of f(R) and developed a cos-

mology without a cosmological constant. Sotiriou and

Liberati [17, 18] presented a Palatini Metric-affine for-

malism of f(R) gravity. It is noteworthy to mention the

work of Srivastava [19] who has developed a model in

f(R) gravity, which represents both early (inflation) and late

acceleration in the Universe. Some remarkable work on
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f(R) and other modified gravity have also been carried out

by many authors, which are stated in [20–30]

In this paper, we have developed a model filled with

perfect fluid in f(R) gravity by taking Rþ aR2 þ bR3 as a

particular form of f(R) . In the background of FLRW space-

time, we have considered two field equations that resemble

Einstein field equations (EFE). The additional terms which

arise due to the nonlinear f(R) function are shifted to the

right-hand side of field equations that are treated as energy

expressions due to curvature-inspired geometry. As a

result, they bring acceleration in the universe and put anti-

gravitating negative pressure in it. The paper is presented

in the following sequence. In section II, we have developed

f(R) field equations for FLRW space-time, then taking a

particular case f ðRÞ ¼ Rþ aR2 þ bR3, we have found

numerical solutions for Hubble, deceleration, and jerk

parameters. In section III, we have used a data set of 46

Hubble points to estimate the present value of matter-en-

ergy parameter ðXmÞ, density ðqmÞ and equation of state

(EoS) parameter for curvature ðxkÞ. On the basis of these

estimated values, we present Error plots for Hubble

parameter and distance modulus. The graphs show that our

theoretical plots fit well with the observed Hubble and

Pantheon data. Moreover, the plots match at par with the

KCDM model. The deceleration parameter q versus red-

shift z plot describes the accelerating universe at the pre-

sent epoch. The transition of red shift for our model is

obtained at ztr ’ 0:6843 causing transient acceleration in

the early and late times, which is in good agreement with

KCDM. In section III, we have also carried out the state

finder analysis for our model. The analysis confirms that

our model lies near KCDM and it fits well on the obser-

vational ground. In the last section, we interpret our work

for our obtained curvature dominated model.

2. Einstein field equations in f(R) -formalism

The general action for f(R) gravity [15] coupled with the

action of a matter field with matter Lagrangian Sm reads

S ¼
Z � 1

16pG
f ðRÞ þ Sm

� ffiffiffiffiffiffiffi�g
p

dx4; ð1Þ

where f(R) is the function of the Ricci scalar R. Here, the

function f ðRÞ ¼ Rþ aR2 þ bR3 is considered for inflation,

which was first proposed by Starobinsky [16]. The function

f(R) can be seen as the origin of the quantum correction on

Friedmann equations. The term R2 of function f(R) is the

natural correction in GR, which provides an inflationary

scenario in the early Universe. Also, the Starobinsky model

shows the best compatibility according to the latest

observations of the Universe [31] and this model serves as

a possible substitute for the scalar field models describing

inflation [30]. Clearly, the function f(R) with negative

exponents of the curvature term is capable of explaining

the current accelerating expansion.

The Einstein Field Equations in f(R) -gravity are given

as:

f 0ðRÞRij �
1

2
f ðRÞgij ¼ Tij � gijhf 0ðRÞ þ rirjf

0ðRÞ; ð2Þ

where we have taken 8pG and velocity of light c as unity.

In this equation, f 0ðRÞ is the differentiation of f(R) with

respect to R and other mathematical symbols have their

usual meaning.

We consider FLRW flat space-time, which is a SHI

filled with perfect fluid given by,

ds2 ¼ dt2 � a2ðtÞðdx2 þ dy2 þ dz2Þ: ð3Þ

The energy-momentum tensor of a perfect fluid is as

follows:

Tij ¼ ðqm þ pmÞuiuj � pmgij; ð4Þ

where qm and pm are the matter density and the pressure of

a perfect fluid. In co-moving coordinates, the four-velocity

vector ui satisfies uiui ¼ 1.

The field equations given by Eq. (2) are solved for

metric Eq. (3) and energy-momentum tensor given by

Eq. (4) are obtained as,

G0
0 ¼ 3

_a2

a2
¼ qm

f 0
þ 1

f 0

�
1

2
ðf � f 0RÞ � 3

_a

a
_Rf 00
�

ð5Þ

and

G1
1 ¼G2

2 ¼ G3
3 ¼ 2

€a

a
þ _a2

a2
¼

� 1

f 0

�
3
_a

a
f 00 _Rþ f 000 _R2 þ f 00 €Rþ Rf 0

2
� f

2

�
;

ð6Þ

where prime and dot stand for differentiation with respect

to R and proper time t respectively. At present, we take

pressure-less fluid as pm ¼ 0.

The field Eqs. (5) and (6) become Einstein field equa-

tions for FLRW space-time when f ðRÞ ¼ R. The equations

of motion (5) and (6) describe the expansion of the uni-

verse, as observed by the negative value of the deceleration

parameter. These equations must also explain the acceler-

ation of the universe, which is achieved by considering an

arbitrary function of the Ricci scalar in f(R) gravity theory.

This results in additional energy density and pressure

terms, labeled as qk and pk, respectively, on the right-hand
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side of the equations, which are a result of curvature

dominance. These terms are assumed to arise from the

additional terms in the G0
0, G

1
1, G

2
2, and G3

3 equations.

The curvature energy qk and curvature pressure pk are

given as follows:

qk ¼
1

2
ðf � Rf 0Þ � 3

_a

a
_Rf 00; ð7Þ

and

pk ¼ 3
_a

a
f 00 _Rþ f 000 _R2 þ f 00 €Rþ Rf 0

2
� f

2
: ð8Þ

More specifically, we can express field Eqs. (5) and (6) in

terms of the Hubble parameter H ¼ _a
a and its derivative _H

as follows:

3H2 ¼ qm þ qk
f 0

; ð9Þ

and

2 _H þ 3H2 ¼ � pk
f 0
: ð10Þ

The purpose of this work is to form a cosmological model

of the universe which fits best on the observational ground.

At present, we have two types of data sets which are

described as follows:

• Hubble observational data set (OHD) There is a data

set of 46 H(z) observational Hubble points in the range

of 0� z� 2:36, which are obtained from cosmic

chronometric technique [32–34].

• Pantheon data Set There is a data set of 1048 SNIa

apparent magnitude measurements which are known as

the Pantheon compilation [35]. This includes 276 SNIa

data set of the Pan-STARRS1 Medium Deep Survey in

the range ð0:03\z\0:65Þ along with SNIa data set

from SDSS, SNLS, and low-z HST samples.

So we express the field Eqs. (9) and (10) in terms of

derivatives of the Hubble parameter with respect to redshift

z instead of time. For this, we use the following transfor-

mation formula for redshift, 1þ z ¼ a0
a , where a0 is the

present value of the scale factor taken as 1. We obtain the

following field Eqs. as per our requirement.

3f 0H2 þ 0:5

�
f þ 6f 0ð2H2 � ð1þ zÞH dH

dz

�
þ

18ð1þ zÞf 00H2

�
3H

dH

dz
� ð1þ zÞ

�
dH

dz

�2

� ð1þ zÞH d2H

dz2

�
¼ qm;

ð11Þ

d3H

dz3
¼ 3Hf 0 � 0:5f � 6f 0H2

6ð1þ zÞ3f 00H3
þ

dH

dz

�
f 0 þ 36f 00H2 � 6ð1þ zÞf 00H2

6ð1þ zÞ2f 00H2

�
þ

dH

dz

� �2�
1

ð1þ zÞH þ 54f 000H

ð1þ zÞf 00

�
þ

dH

dz

� �3��36f 000

f 00
þ 1

H2

�
þ

�
dH

dz

�4�
6ð1þ zÞf 000

f 00H

�
þ d2H

dz2

�
�3� ð1þ zÞ

ð1þ zÞ2
�
þ

�
d2H

dz2

�2�
6ð1þ zÞf 000H

f 00

�
þ

dH

dz

d2H

dz2

�
�36f 000H2 þ 4f 00

f 00H

�
þ
�
dH

dz

�2
d2H

dz2

�
6ð1þ zÞf 000

f 00

�
;

ð12Þ

In obtaining Eqs. (11) and (12), we required the following

expressions for the Ricci scalar R and its time derivative _R
in terms of the Hubble parameter H and its derivative with

respect to redshift z,

R ¼ �6ð _H þ 2H2Þ ð13Þ

¼ 6H
dH

dz
ð1þ zÞ � 2H

� �
; ð14Þ

_R ¼ �6ð €H þ 4H _HÞ ð15Þ

¼ �6 �3H2ð1þ zÞ dH
dz

þ ð1þ zÞ2H dH

dz

� �2

þH2ð1þ zÞ2 d
2H

dz2

 !
;

ð16Þ

and

€R ¼� 24ð1þ zÞ2H2

�
dH

dz

�2

� 18ð1þ zÞH3 dH

dz
� 6ð1þ zÞ2H3 d

2H

dz2

� 24ð1þ zÞ3H2

�
dH

dz

��
d2H

dz2

�
þ 6ð1þ zÞ3H

�
dH

dz

�3

þ 6ð1þ zÞ3H3 d
3H

dz3
:

ð17Þ

3. Numerical solutions and the dynamics of the model

As stated earlier, we want to develop a model which pro-

vides an acceleration in the universe at present. For this

purpose, we consider a particular form

f ðRÞ ¼ Rþ aR2 þ bR3. Previously, some authors [15, 16]

have used second-order nonlinear Ricci scalar to develop

Curvature dominance dark energy 3709



an accelerating universe model. Thus, we were inspired

from the earlier work [19, 20] who have used f(R) -gravity

in developing their model. So, for the given form of f(R),

f 0ðRÞ ¼ 1þ 2aRþ 3bR2, f 00ðRÞ ¼ 2aþ 6bR and

f 000ðRÞ ¼ 6b.

3.1. The deceleration and jerk parameters

The analysis of the model in any theory of gravity is greatly

influenced by the geometrical parameters. Jerk parameter

(j) and deceleration parameter (q) are available in addition

to the Hubble parameter [36, 37]. The rate of change of

acceleration is determined by the jerk parameter. The sign

of j is crucial to determine if the behavior of the Universe

has changed during evolution because the deceleration

parameter is insufficient to account for the full cosmic

dynamics. For models with positive values of j0 and neg-

ative values of q0, there is a shift from deceleration to

acceleration. Flat KCDM models have a constant jerk

j ¼ 1. The accelerating and decelerating behavior of the

universe are shown by the negative and positive signs of

the deceleration parameter, respectively.

The deceleration and jerk parameters q and j are related

to the second and third order of scale factor a respectively

and are defined as:

q ¼ � €a

aH2

¼ �1þ ð1þ zÞ 1
H

dH

dz
;

and

j ¼ a
...

aH3

¼ 1þ 3
_H

H2
þ

€H

H3

¼ 1� 2
ð1þ zÞ

H

dH

dz
þ ð1þ zÞ2

H2

dH

dz

� �2

þð1þ zÞ2

H

d2H

dz2
:

The KCDM model fits best on the observational ground,

which provides us the present value of the deceleration and

jerk parameters as q0 ¼ �0:55 and j0 ¼ 1 [37, 38].

Planck’s latest survey [32] provides us with the present

value of Hubble constant as H0 ’ 67:32Km=sec=Mpc ’
0:07Gyr�1 [39]. From these values, we can estimate the

present values of the first and second derivatives of the

Hubble parameter as ðdH
dz Þ0 ¼ 0:0315 and

ðd2 H
dz2 Þ0 ¼ 0:48825.

The energy parameter Xm is defined as Xm ¼ qm
qc
, where

qc ¼ 8pG
3H2 is the critical density. Its present value is given as

qc0 ¼ 1:88� 10�29h20 gm=cm3, where 0:5\h0\1 [40].

The equation of state (EoS) parameter for curvature-in-

spired pressure and density may be defined as xk ¼ pk
qk
. If

we put the present values of the Hubble parameter and its

derivatives in Eqs. (7), (8) and (11), we get the following

relations among the parameters a, b, Xm0 and xk0 as:

b ¼ 261:437þ 1:55647 a� 17784:8 Xm0 ð18Þ

a ¼ 22:5937þ 32:2766 xk0 � 952:293 Xm0 � 2195:69 xk0 Xm0

0:7þ xk0

ð19Þ

In Fig. 1, we see that the deceleration parameter is

negative at present. This shows that we are living in an

accelerating universe. At approximately ztr ’ 0:6843, the

Fig. 1 Plots of deceleration parameter q and jerk parameter j versus red shift z, respectively, for fixed value of a ¼ 1:0027 and b ¼ �5074:44
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red shift transitions from positive to negative, indicating a

shift from a decelerating universe in the past to an

accelerating universe in present time. As z ! 0 the value

of j tends toward 1, indicating that the jerk parameter is

currently converging toward KCDM.

3.2. Statistical analysis of the parameter

As stated earlier in Section(II), Hubble data set of 46

points indicated as Hobs is used. Since Eq. (12) is a non-

linear third-order differential equation it is not possible to

find its analytical solution. Therefore, we opt to obtain its

numerical solution by providing the initial values of the

first and second derivatives of H. The corresponding values

of the Hubble parameter obtained from Eq. (12) are

referred to as Hth. To obtain more accurate estimates for

the parameters Xm0 and xk0, we employ the Chi-square

test. The Chi-square test is a method employed to achieve

greater accuracy in estimations and is defined as

v2 ¼
X46
i¼1

½HobsðziÞ � HthðziÞ�2

errðziÞ2
; ð20Þ

where errðziÞ denotes the standard error in OHD.

The minimum value of Chi-square is found to be v2 ¼
19:348 for xk0 ¼ �0:44 and Xm0 ¼ 0:25. From the

Eqs. (18) and (19), we get a ¼ 1:0027 and b ¼ �5074:44.

The process is shown in Fig. 2. in which blue dot is the

estimated point ð�0:44; 0:25; 19:348Þ for minimum Chi-

square.

3.3. Distance modulus and apparent magnitude

for SNIa observations:

In this expanding Universe, there are different ways to

measure the distance between two co-moving objects.

Hogg [41] explains the distance measurements in cosmol-

ogy in detail. The distance modulus lðzÞ is defined as

[8, 38]

lðzÞ ¼ m�M ¼ 5LogDlðzÞ þ l0; ð21Þ

where m and M are the apparent and absolute magnitude of

the standard candle respectively. The luminosity distance

DlðzÞ and nuisance parameter l0 are defined as

l0 ¼ 25þ 5Log
	 c

H0



; ð22Þ

and

DlðzÞ ¼ ð1þ zÞH0

Z z

0

1

Hðz�Þ dz�; ð23Þ

respectively.

By carrying numerical integration of tabulated values of

the Hubble parameter, we have been able to find a plot of

distance modulus versus redshift for our model. We have

an error bar plot for 620 supernova data sets which include

580 SNIa union compilation plus 40 binned data from

[21, 42]. It is interesting to see that our theoretical plot

coincides with the corresponding KCDM plot, which is

displayed in Fig 3b.

Fig. 2 Blue and Red dots indicate the present values of Xm0 and xk0 of our model in the Chi-square and Region plots with 1r error respectively
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We have plotted the errors related to the Hubble

parameter and the distance modulus parameter in Fig. 3.

We observed that our model is consistent with KCDM.

3.4. EoS-parameter and Matter energy density

Equation of state (EoS) parameter, xk, for curvature

dominated energy is defined as xk ¼ pk
qk
, where qk and pk

are given by Eqs. (7) and (8) respectively. In xk � z plot,

xk is negative and is equal to �0:44 at present (see Fig. 3).

The curvature-dominated pressure pk becomes negative

from positive at the red-shift transition z ’ 1:65. The EoS

behaves in a certain manner that is if xk 2 ð0; 1Þ, it will be
called the perfect fluid model. If xk ¼ 1, then p ¼ q and is

called a stiff matter field. If xk ¼ 0, then a pressure-less

universe is called as dust field universe but the energy

density is not equal to zero ðq 6¼ 0Þ. If xk\0, it will be

called dark energy, i.e., negative pressure created. It is also

called the dark energy universe. If xk ¼ �1, it is said to be

Lambda cosmology, i.e., K-CDM, i.e., Lambda cold dark

matter model which shows standard dark energy model. If

xk 2 ð0;�1Þ, it is called the Quintessence model [43, 44].

If xk\� 1, it is called Ghost Model or Phantom Model. If

xk ¼ 1
3
, it is a radiation state model.

Therefore, from that, it can be concluded that the

accelerated dark energy model is developed due to negative

pressure.

The numerical values of H, dH
dz and

d2 H
dz2

for red-shift z are

calculated from Eq. (12) and then using Eq. (11), we

evaluate matter density qm. The related plot of qm � z can

be seen in Fig. 4. As per observations, the value of matter-

energy density should be qm0 ¼ Xm0 � qc0 at present. So

putting Xm0 ’ 0:3, qc0 ¼ 1:88� 10�29 � h20 gm=cm
3 and

h0 ’ 0:68 we get qm0 ’ 0:27744� 10�29 gm=cm3, which

is consistent with recent observations. The unit for qm is

gm=cm3.

3.5. Statefinder Analysis

A large number of dark energy cosmological models

have been proposed since it is found that our universe is

accelerating. Based on EoS-parameter xde for dark energy,

the most eminent models KCDM (xde=1), QCDM

(xde � � 1=3� � 1), KCDM (xde is negative and vari-

able), Chaplygin gas energy model and Brain world model

etc. are proposed so far. The references related to these

models can be seen in [45–47]. In the year 2003, Sahni

et al. [25, 30] proposed an analysis to examine the different

categories of established dark energy models. This analysis

is based on deceleration parameter q, jerk parameter r and

snap parameter s, which are defined as

r ¼ a
...

aH3
; s ¼ r � 1

3ðq� 1=2Þ ð24Þ

where q 6¼ 1=2 and focused on two-dimensional s� r and

q� r plots. The temporal evolution of several dark energy

models is defined in this configuration by distinct trajec-

tories in the r � s and r � q planes. The statefinder pair for

KCDM and standard cold dark matter(SCDM) in a spa-

tially flat FLRW backdrop are fr; sg ¼ f1; 0g and f1; 1g
respectively. ðr[ 1; s\0Þ corresponds to Chaplygin gas

model while ðr\1; s[ 0Þ represents quintessence model.

Fig. 3 Plots (a) and (b) show the deviations of our model from KCDM by blue color error bars of observational dataset H(z) and SNIa data

respectively. Red and black lines represent our obtained model and the KCDM, respectively
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We have presented the plots for our model (see Fig. 5).

It is interesting to see that our model approaches to KCDM
from both ends, i.e., from Chaplygin gas to KCDM and

from quintessence to KCDM in s� r plot. In q� r plot, our

model passes nearby KCDM and also passes by the point

(r ¼ 1, q ¼ �1) which corresponds to the steady-state

model (SS). So we can say that our model lies near KCDM.

4. Conclusions

We have probed a cosmological model with the per-

fect fluid-filled universe in f(R) -gravity by taking Rþ
aR2 þ bR3 as a particular form of f(R) function. The field

equations in f(R) gravity are solved for FLRW spatially

homogeneous and isotropic space-time. The terms which

arise due to the nonlinear f(R) function are shifted to the

right-hand side of the field equations that are treated as

energy due to curvature-inspired geometry. As a result, it

produces acceleration and anti-gravitating negative pres-

sure in the universe. The plots show that our theoretical

plots fit well with the observational Hubble and Pantheon

data. Moreover, the plots match at par with the KCDM
model. The deceleration parameter q versus redshift z plot

describes the accelerating universe at the present epoch.

The transition redshift for our model is obtained at

ztr ’ 0:6843, which is in good agreement with KCDM. We

have also carried out the state finder analysis for our model,

which confirms that our model lies near KCDM and it fits

well on the observational ground.

Fig. 4 Plots of matter density qm and EoS-parameter xk versus red-shift, respectively, for fixed value of a ¼ 1:0027 and b ¼ �5074:44

Fig. 5 Plots of s� r and q� r for state finder analysis for fixed value of a ¼ 1:0027 and b ¼ �5074:44
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Appendix

Some useful relations which allow to transform from

higher order derivatives to derivatives w.r.t. red shift z

d

dt
¼ �ð1þ zÞHðzÞ d

dz
; ð25Þ

d2

dt2
¼ ð1þ zÞH

�
H þ ð1þ zÞ dH

dz

�
d

dz
þ ð1þ zÞ2H2 d2

dz2

ð26Þ

d3

dt3
¼ �ð1þ zÞH

�
H2 þ ð1þ zÞ2

�
dH

dz

�2

þ ð1þ zÞH
�
4
dH

dz
þ ð1þ zÞ d

2H

dz2

��
d

dz

� 3ð1þ zÞ2H2

�
H þ ð1þ zÞ dH

dz

�
d2

dz2
� ð1þ zÞ3H3 d3

dz3

ð27Þ
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