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Abstract: This article examines the dynamics of gravitational collapse in f ðR; T ;QÞ gravity, where Q ¼ RabT
ab. We

consider self-gravitating anisotropic cylindrical geometry whose interior is filled with dissipative matter configuration and

match it with exterior cylindrically symmetric spacetime at the hypersurface through junction conditions. We employ the

Misner–Sharp and Müler–Israel–Stewart formalisms to derive the dynamical as well as transport equations corresponding

to the modelRþ U
ffiffiffiffi

T
p

þWQ, where U and W are arbitrary coupling constants. We then establish some relations between

these equations through which the impact of effective matter variables, heat dissipation and the bulk viscosity on the

collapse rate is studied. Further, we express the Weyl scalar in terms of the effective matter sector. We also obtain the

conformal flatness by applying some restrictions on the considered model and taking dust configuration into the account.

Finally, we investigate various cases to check whether the modified corrections increase or decrease the collapse rate.

Keywords: f(R; T ;RabT
ab; Gravitational collapse; Self-gravitating structures

1. Introduction

Cosmological observations reveal that our universe is

originated by the expansion of superheated matter and

energy. Cosmologists explored that a considerable portion

of this unfathomable universe is made up of stars, planets

and galaxies. The most appealing and promising phe-

nomenon in the structural formation of these celestial

objects is the gravitational collapse. The pioneer work of

Chandrasekhar [1] on this phenomenon helps scientists to

understand its importance in the field of relativistic astro-

physics. He found that a star remains stable until its

external pressure and internal force of attraction (due to its

mass) are counterbalanced by each other. The dynamics of

dust collapse has been discussed by Oppenheimer and

Snyder [2], from which they found that such collapse

eventually results in a black hole. Misner and Sharp [3]

studied spherical geometry coupled with anisotropic fluid

and checked how the collapse rate is affected by pressure

anisotropy. The Misner–Sharp technique has been

employed by Herrera and Santos [4] to investigate the

collapsing rate of a sphere and found that the energy

dissipates in the form of heat/radiations. Herrera et al. [5]

analyzed the impact of anisotropy on the collapse of

cylindrically symmetric matter source. Sharif and his col-

laborators [6] studied the dynamics of uncharged and

charged spherical/cylindrical systems and deduced that the

collapse rate is reduced in the presence of electric charge.

As the process of gravitational collapse is highly dissi-

pative, the effects of heat dissipation in this phenomenon

cannot be ignored [7, 8]. Chan [9] explored the collapsing

phenomenon for a radiating compact object and revealed

that the shear viscosity increases anisotropy of the fluid

distribution. Di Prisco et al. [10] studied anisotropic matter

configuration and disclosed that the explosion in the

internal region of spherical geometry causes the formation

of singularity. Nath et al. [11] examined the collapsing rate

by employing matching criteria between quasi-spherical

Szekeres and charged Vaidya spacetimes as interior and

exterior geometries, respectively. They concluded that the

formation of naked singularity is supported by electric

charge. Herrera et al. [12] discussed self-gravitating vis-

cous dissipative fluid and found that the dissipative

parameters decrease the force of gravity that eventually

decreases the collapsing rate.

Cylindrical gravitational waves exist and support

cylindrically symmetric self-gravitating structures whose
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study yields significant consequences. Such geometrical

objects prompted many researchers to explore their dif-

ferent fundamental characteristics. The study of these

structures was pioneered by Bronnikov and Kovalchuk

[13]. Wang [14] studied four-dimensional cylinder and

determined exact solutions to the field equations corre-

sponding to a massless scalar field. He found that collapse

of such object may result in the black hole. Guha and

Banerji [15] studied the dynamics of cylindrical anisotropic

geometry, experiencing heat dissipation and undergoing

the gravitational collapse, and derived the solutions for the

matter source. In stellar evolution, the Weyl tensor plays a

significant role that helps to measure the curvature of

geometrical structure. The gravitational collapse of a

sphere has been discussed by Penrose [16] by formulating a

relation between state variables and the Weyl tensor. Sharif

and Fatima [17] represented the Weyl tensor in terms of

matter variables, anisotropy and coefficient of shear vis-

cosity for cylindrical configuration and discussed the col-

lapsing rate. They found conformal flatness condition

corresponding to the homogeneous energy density.

The current accelerated expansion of the universe is

considered as the most fascinating phenomenon in the field

of cosmology and astrophysics for the last couple of years

[18, 19]. This expansion was claimed to be triggered by an

obscure form of force having immense repulsive effects,

known as dark energy. The study of such cosmic nature in

the theory of general relativity (GR) faces some deficien-

cies like cosmic coincidence and fine-tuning problem. In

this context, scientists developed several modifications to

GR to address such issues appropriately. To study cos-

mological outcomes at large scales, the simplest possible

generalization of GR was attained by replacing the Ricci

scalar with its generic functional, named f ðRÞ theory [20].

Different modified f ðRÞ models have been investigated

through multiple approaches and the obtained results are

found to be physically feasible [21]–[24].

The idea of matter–geometry coupling was initially

presented by Bertolami et al. [25] to study the appealing

nature as well as composition of the universe. They ana-

lyzed the impact of such interaction in f ðRÞ framework by

engaging the geometrical term in the fluid Lagrangian. This

interaction was recently generalized by Harko et al. [26] at

action level, who introduced f ðR; T Þ gravity, T being

trace of the energy–momentum tensor ðEMTÞ. The gravi-

tational theories involving such a matter term results in its

non-vanishing divergence. This theory produces several

astonishing results corresponding to self-gravitating struc-

tures [27–30]. However, the f ðR; T Þ gravity fails to entail

the coupling effects on compact bodies at some point; thus,

one needs to overcome this issue. Haghani et al. [31], in

this regard, generalized the functional by inserting an

additional term Q, that represents contraction of EMT with

the Ricci tensor Rab. They considered three different

models in f ðR; T ;QÞ gravity and studied their respective

cosmological applications for high-density regime as well

as pressureless matter fluid case.

Sharif and Zubair [32] studied the thermodynamical

laws for the black hole by adopting the models Rþ kQ
and Rð1þ kQÞ along with matter Lagrangian in terms of

energy density as well as pressure. The energy bounds are

also addressed in this scenario, from which they concluded

that only positive values of the model parameter k satisfy

weak energy conditions [33]. The flat FLRW spacetime

was considered to check the behavior of this extended

theory for different cosmological models [34]. They

reconstructed the modified gravitational action and also

described de Sitter universe solutions corresponding to the

perfect fluid distribution. Baffou et al. [35] performed

stability analysis in this modified gravity for two particular

cases and concluded that both models present stability

through some perturbation functions. Yousaf et al. [36]

performed orthogonal decomposition of the Riemann ten-

sor on the effective EMT corresponding to static/non-static

spherical structures and computed some scalars to discuss

the structural evolution of these bodies. The evolutionary

patterns for cylindrical spacetime have also been discussed

in modified scenario [37]. We also studied charged/un-

charged sphere and obtained several physically accept-

able anisotropic solutions through different schemes

[38, 39].

The extensive discussion on the collapsing phenomenon

has been done in various modified backgrounds. The

numerical simulations were employed to study the collapse

of spherical body in f ðRÞ framework from which an unu-

sual increment in the density of fluid has been found [40].

In this context, Shamir and Fayyaz [41] analyzed the

dynamics of a self-gravitational cylindrical geometry

whose interior is filled with anisotropic dissipative fluid.

They found the collapse as the crucial element to examine

the rapid acceleration. The dynamical equations have been

used to investigate the behavior of anisotropic gravitating

source in f ðR; T Þ scenario [42]. Bhatti et al. [43] discussed

the collapsing rate of dissipative anisotropic matter distri-

bution with/without involving the effects of radiation

density and coefficient of shear viscosity in f ðR; T ;QÞ
framework. Sharif et al. [44] studied the celestial objects

coupled with perfect/anisotropic configurations with/with-

out the heat dissipation in different modified theories and

examined the influence of correction terms on the col-

lapsing rate.

This article addresses the dynamics of cylindrical

geometry involving the impact of principal stresses and the

dissipation flux in f ðR; T ;RabT
abÞ theory. The paper is

structured in the following format. We define some
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elementary terms related to the collapse and the extended

theory and formulate the corresponding equations of

motion and non-vanishing dynamical identities for Rþ
U
ffiffiffiffi

T
p

þWQ in Sect. 2. Moreover, the C-energy and the

junction conditions are calculated through Darmois criteria.

Section 3 formulates the dynamical equations and then

couples them with the acceleration of the fluid. We further

construct several dynamical forces in modified gravity in

Sect.4 to study their impact on the collapsing rate. Sec-

tion 5 explores some interesting relations between the

effective state parameters and the Weyl scalar. The last

section summarizes all of our findings.

2. f ðR; T ;RabT
abÞ theory

The modified Einstein–Hilbert action for the f ðR; T ;QÞ
gravity (with j ¼ 8p) has the following form [34]

S ¼
Z

f ðR; T ;QÞ
16p

þ LM

� �

ffiffiffiffiffiffiffi�g
p

d4x; ð1Þ

where LM is the Lagrangian corresponding to the matter

density. Implementing the principle of least action in

Eq. (1) provides

Gab ¼ T
ðEFFÞ
ab ¼ 1

fR � LMfQ
8pT ab þ T

ðDÞ
ab

� �

; ð2Þ

where T
ðEFFÞ
ab and T ab are termed as the effective and usual

anisotropic matter EMT. Also, Gab is the Einstein tensor.

The modified corrections are represented by T
ðDÞ
ab , which

has the form

T
ðDÞ
ab ¼ fT þ 1

2
RfQ

� �

T ab

þ R

2

f

R
� fR

� �

� 1

2
rcrd

	

fQT
cd



�

� LMfT ggab �
1

2
h
	

fQT ab




� 2fQRcðaT
c
bÞ þ rcrða½T c

bÞfQ�
�
	

gabh�rarb




fR

þ 2
	

fQR
cd þ fT g

cd

 o2LM

ogabogcd
;

ð3Þ

where fR ¼ of ðR;T ;QÞ
oR , fT ¼ of ðR;T ;QÞ

oT and fQ ¼ of ðR;T ;QÞ
oQ .

Also, the mathematical expression of the D’Alembert

operator is h � 1
ffiffiffiffiffi�g

p oa
	

ffiffiffiffiffiffiffi�g
p

gabob



and rc indicates the

covariant derivative. Generally, the matter Lagrangian can

be taken in terms of energy density or pressure; thus, we

consider it as LM ¼ �l for the case of anisotropic matter

distribution, which results in o2LM
ogabogcd

¼ 0 [31].

To discuss the collapse of dynamical cylinder, we take

line element representing the interior geometry as

ds2 ¼�A2dt2 þ B2dr2 þ C2d/2 þ dz2; ð4Þ

where A ¼ Aðt; rÞ and B ¼ Bðt; rÞ are dimensionless,

while C ¼ Cðt; rÞ has the dimension of r. The EMT

portraying anisotropic dissipative fluid is given as:

T ab ¼
	

lþ Pr



UaUb þ Prgab

þ
	

P/ � Pr



KaKb þ
	

Pz � Pr



SaSb

þ 1aUb þ 1bUa �
	

gab þ UaUb




aX;

ð5Þ

where Pr; P/ and Pz are the principal pressures and l is the

energy density. Also, a and X are the coefficient of bulk

viscosity and the expansion scalar, respectively. The four

velocity (Ua), four vectors (Ka and Sa), heat flux 1a and X
are defined as:

Ua ¼ �Ad0a ; Ka ¼ Cd2a ; Sa ¼ d3a ;

1a ¼ 1Bd1a ; X ¼ Ua
;a;

ð6Þ

satisfying the following relations

UaU
a ¼ �1; KaK

a ¼ 1; SaS
a ¼ 1;

UaK
a ¼ 0 ¼ SaK

a ¼ UaS
a:

ð7Þ

Due to the interaction of matter components and geometry

in this extended theory, the EMT has non-disappearing

divergence, i.e., raT
ab 6¼ 0. This exerts an extra force in

the gravitational field that triggers the non-geodesic motion

of test particles. Consequently, we have

raT ab ¼
2

2fT þRfQ þ 16p

�

ra
	

fQR
caT cb




þrb
	

LMfT



� Gabra	fQLM



� 1

2
rbT

cd
	

fT gcd þ fQRcd




� 1

2

�

raðRfQÞ þ 2rafT


T ab

�

:

ð8Þ

The trace of modified field equations is given by

3rcrcfR � T ðfT þ 8pÞ

þR fR � T

2
fQ

� �

þ 1

2
rcrcðfQT Þ

þ rarcðfQT acÞ � 2f þ ðRfQ þ 4fT ÞLM

þ 2RacT
acfQ � 2gbd fT g

ac þ fQR
acð Þ o2LM

ogbdogac
¼ 0:

The disappearance of fQ from the field equations provides

the gravitational effects of f ðR; T Þ theory, whereas the

f ðRÞ gravity can be achieved for fT ¼ 0 ¼ fQ.

We adopt a standard model of the form
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f ðR; T ;QÞ ¼ f1ðRÞ þ f2ðT Þ þ f3ðQÞ
¼ Rþ U

ffiffiffiffi

T
p

þWQ:
ð9Þ

It is noteworthy that the gravitational model produces

physically acceptable results by taking different choices of

the model parameters (involving in that model) within their

noticed range. For U ¼ 0, this model was used to analyze

isotropic systems and some acceptable values ofW have been

acquired for which the systems show stable behavior

[32, 33]. The quantitiesR; T andQ of themodel (9) become

R ¼ � 2

A3B3C

�

A3BC00 �AB3 €C

�AB2C €B þA2BCA00 �A3B0C0 þ B3 _A _C

þA2BA0C0 �AB2 _B _C þ B2C _A _B �A2CA0B0
�

;

T ¼ �lþ Pr þ P/ þ Pz � 3aX;

Q ¼ � 1

A3B3C

�

l
�

AB2C €B �A2BCA00

þA2CA0B0 �A2BA0C0 þAB3 €C

� B2C _A _B � B3 _A _C


þ 21AB
�

AB _C0 � BA0 _C �A _BC0

þ
	

Pr � aX

�

B2C _A _B �AB2C €B þA2BCA00 �AB2 _B _C

�A3B0C0 �A2CA0B0 þA3BC00

þ
	

P/ � aX

�

A3BC00 �A3B0C0

þA2BA0C0 �AB2 _B _C �AB3 €C þ B3 _A _C


�

;

where : ¼ o
ot and

0 ¼ o
or.

The corresponding field equations are

1

1þWl
8plþ lðDÞ

A2

� �

¼ B0C0

B3C
� C00

B2C
þ

_B _C

A2BC
; ð10Þ

1

1þWl
8pPr � fXþ PðDÞr

B2

� �

¼
_A _C

A3C
�

€C

A2C
þ A0C0

AB2C
; ð11Þ

1

1þWl
8pP/ � fXþ

P
ðDÞ
/

C2

 !

¼
_A _B

A3B
þ A00

AB2
�

€B

A2B
�A0B0

AB3
;

ð12Þ

1

1þWl
8pPz � fXþ PðDÞz

� �

¼
_A _C

A3C
�

€B

A2B
�

€C

A2C
þ

_A _B

A3B
þ A00

AB2

þ C00

B2C
þ A0C0

AB2C
�A0B0

AB3
� C0B0

B3C
�

_B _C

A2BC
;

ð13Þ

1

1þWl
8p1� 1ðDÞ

AB

� �

¼
_C0

ABC
�

_BC0

AB2C
� A0 _C

A2BC
; ð14Þ

where f ¼ 8pa. These equations describe how gravity and

matter components bend spacetime. The second term on

the left-hand side of the above equations

	

lðDÞ; PðDÞr ; P
ðDÞ
/ ; PðDÞz and 1ðDÞ




appears due to the mod-

ification of gravity, and their values are provided in

‘‘Appendix A’’. The quantities 8plþ lðDÞ

A2

� �

,
�

8pPr � fXþ PðDÞ
r

B2

�

,

�

8pP/ � fXþ PðDÞ
/

C2

�

,

8pPz � fXþ PðDÞz

	 


and 8p1� 1ðDÞ

AB

� �

depict the effective

energy density, effective principal pressures and the

effective heat flux, respectively.

The C-energy within the interior geometrical structure

(4) can be determined as [45]

~mðt; rÞ ¼ LÊ ¼ L

8
ð1� L�2rar̂rar̂Þ; ð15Þ

where Ê is the total gravitational energy per specific length

of the cylinder and r̂ ¼ .L symbolizes the circumference

radius. The terms . and L are the areal radius of the

cylinder and specific length, respectively, whose

mathematical expressions are .2 ¼ gð1Þbg
b
ð1Þ and

L2 ¼ gð2Þbg
b
ð2Þ. Also, the Killing vectors are defined as

gð1Þ ¼ o
o/, gð2Þ ¼ o

oz. Equation (15), after some

manipulation, yields the mass as

~m ¼ L

8

�

1�
�

C0

B

�2

þ
� _C

A

�2�

: ð16Þ

The 3D hypersurface R splits the geometry into the interior

and exterior regions. The interior region is defined in

Eq. (4), while the exterior spacetime is taken as:

ds2 ¼ 2MðvÞ
R

dv2 � 2dvdR þ R2 d/2 þ k2dz2
	 


; ð17Þ

where v is the retarded time. Also, M and R symbolize the

mass and radius of the exterior region. We utilize Darmois

junction conditions [46] whose fundamental forms are

given by

• The continuity of the metric coefficients of the interior

and exterior spacetimes holds at the hypersurface.

• There is no difference between the extrinsic curvature

corresponding to both geometries at R that equals the

radial pressure to the heat flux for the case of dynamical

fluid distribution.

Since the collapse of a self-gravitating object is associated

with the matter sector; thus, we only require to employ the

second fundamental form that yields, after some manipu-

lation, in this modified theory as

M� ~mR
¼
L

8
; 8pPr � fXþ PðDÞr

B2
R
¼8p1�

1ðDÞ

AB
: ð18Þ

It is observed that the least satisfactory definition of the C-

energy produces the difference between masses of both
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regions by L
8
, which disappears in the case of spherical

spacetime. The other equation equals the effective radial

pressure and effective heat flux at the boundary R. This
guarantees the fulfillment of the condition of vanishing

radial pressure at the boundary only if the heat flux along

with modified corrections disappears, i.e., 8p1� 1ðDÞ

AB ¼ 0.

3. Dynamics of the cylindrical star

Initially, Misner and Sharp formulated some dynamical

quantities to study the evolution of spherical geometry. The

proper radial and temporal derivatives were used to com-

pute the velocity and acceleration of the considered col-

lapsing source. These equations have later been used in the

study of spherical as well as cylindrical spacetimes [47].

The dynamical equations in this scenario are:

T
ðEFFÞb
a;b Ua ¼

	

8pT b
a þ T ðDÞb

a




;b
Ua ¼ 0; ð19Þ

T
ðEFFÞb
a;b 1a ¼

	

8pT b
a þ T ðDÞb

a




;b
1a ¼ 0: ð20Þ

Equations (19) and (20) yield, respectively, as

1

A2

�

8plþ lðDÞ

A2

�:

þ
_B

A2B

�

8plþ lðDÞ

A2
þ 8pPr � fXþ PðDÞr

B2

�

þ 1

AB

�

8p1� 1ðDÞ

AB

�0

þ
_C

A2C

�

8plþ lðDÞ

A2
þ 8pP/ � fXþ

P
ðDÞ
/

C2

�

þ 1

AB

�

8p1� 1ðDÞ

AB

��

2A0

A
þ C0

C

�

¼ 0;

ð21Þ

B

A

�

8p1� 1ðDÞ

AB

�:

þA0

A

�

8plþ lðDÞ

A2
þ 8pPr � fXþ PðDÞr

B2

�

þ
�

8pPr � fXþ PðDÞr

B2

�0

þ C0

C

�

8pPr þ
PðDÞr

B2
� 8pP/ �

P
ðDÞ
/

C2

�

þ B

A

�

8p1� 1ðDÞ

AB

��

2 _B

B
þ

_C

C

�

¼ 0:

ð22Þ

These equations play a significant role in the study of

variations arising in the stellar evolution. Our goal is to

discuss the dynamics of the collapsing source; thus, the

definitions of proper radial as well as temporal derivatives

are [3, 47]

Dr ¼
1

C0
o

or
; Dt ¼

1

A

o

ot
: ð23Þ

The radius of an astrophysical object decreases

continuously during the collapse as gravity dominates the

outward pressure. Consequently, the velocity of interior

fluid turns out to be negative, i.e.,

U ¼ DtðCÞ ¼
_C

A
\0: ð24Þ

Using this equation in C-energy (16), we have

C0

B
¼ 1þU2 � 8 ~m

L

� �1
2

¼ x: ð25Þ

The C-energy of the current cylindrical configuration

yields after applying the definition of Dt as

Dtð ~mÞ ¼ � CL

4ð1þWlÞ 8pPr � fXþ PðDÞr

B2

� �

U

�

þ 8p1� 1ðDÞ

AB

� �

x

�

;

ð26Þ

which demonstrates that how the total energy varies with

time. This equation also indicates how the collapsing

phenomenon is influenced by the radial pressure, the

expansion scalar as well as heat flux and modified cor-

rections. As U is negative; thus, the factor

8pPr � fXþ PðDÞ
r

B2

� �

U on the right-hand side of the above

equation becomes positive, which guarantees that the total

energy of the system increases. The other entity

8p1� 1ðDÞ

AB

� �

x confirms the reduction of total energy as

heat dissipates from the source.

Next, in order to discuss the variation of energy between

the adjoining cylindrical surfaces, we employ the definition

of Dr in Eq.(16) and combine it with Eqs. (10) and (14) as

Drð ~mÞ ¼
CL

4ð1þWlÞ 8plþ lðDÞ

A2

� ��

þ 8p1� 1ðDÞ

AB

� �

U

x

�

:

ð27Þ

The collapse rate of the current setup is also affected by the

effective energy density. The term 8plþ lðDÞ

A2

� �

in the

above equation ultimately increases the total energy of the

matter source. The next entity, 8p1� 1ðDÞ

AB

� �

U
x, reveals that

the heat energy dissipates from the system, as the fluid has

negative velocity. The acceleration of the collapsing source

can be calculated by taking proper temporal derivative of

U as
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DtðUÞ ¼ � C

1þWl

�

8pPr � fXþ PðDÞr

B2

�

� ~m

C2
þ xA0

AB
þ L

8C2
	

1þU2 � x2



:

ð28Þ

One can get the value of A0

A from Eq. (22) as

A0

A
¼ � 1

8plþ lðDÞ

A2 þ 8pPr � fXþ PðDÞ
r

B2

� �

�

B

A

�

8p1� 1ðDÞ

AB

�:

þ
�

8pPr � fXþ PðDÞr

B2

�0

þ C0

C

�

8pPr þ
PðDÞr

B2
� 8pP/ �

P
ðDÞ
/

C2

�

þ B

A

�

8p1� 1ðDÞ

AB

��

2 _B

B
þ

_C

C

��

:

ð29Þ

Inserting this value in Eq. (28), we have

DtðUÞ
�

8plþ lðDÞ

A2
þ 8pPr � fXþ PðDÞr

B2

�

¼ �
�

~m

C2
� L

8C2

�

1þU2

�

þ C

1þWl

�

8pPr � fXþ PðDÞr

B2

��

�

8plþ lðDÞ

A2
þ 8pPr � fXþ PðDÞr

B2

�

� x2

C

��

8pPr þ
PðDÞr

B2
� 8pP/ �

P
ðDÞ
/

C2

�

þ L

8C

�

8plþ lðDÞ

A2
þ 8pPr � fX

þ PðDÞr

B2

��

� x

�

1

B

�

8pPr � fXþ PðDÞr

B2

�0

þDt

�

8p1� 1ðDÞ

AB

�

þ 1

A

�
�

8p1� 1ðDÞ

AB

��

2 _B

B
þ

_C

C

��

:

ð30Þ

The left side of this equation represents the Newtonian

force as the product of acceleration (DtU), and the term
�

8plþ lðDÞ

A2 þ 8pPr � fXþ PðDÞ
r

B2

�

(refers to the inertial

mass density) appears. On the other hand, the same term

also arises in the first term on the right side, which now

presents the gravitational mass density. Thus, the equiva-

lence of these both masses leads to the fulfillment of the

equivalence principle. The second curly bracket determines

the impact of gravitational mass density and effective

stresses in r as well as / directions on the collapse rate. The

role of gradient of effective radial pressure and the

expansion scalar in this scenario can be manifested through

the entity

�

8pPr � fXþ PðDÞ
r

B2

�0
. Also, the last two terms

containing the heat flux and modified corrections can well

describe hydrodynamics of the cylinder.

4. Transport equations

As the EMT (5) involves the heat flux, the transport

equations in this regard are very useful tool to analyze the

structural evolution of compact geometry. They also dis-

close how some physical quantities such as mass, heat and

momentum are evaluated during the collapse. The diffusion

process is supported by the following transport equation

given as:

.habUc�1b;c þ �1a ¼ �ghab s;b þ sab
	 


� 1

2
gs2

.Ub

gs2

� �

;b

�1a;
ð31Þ

where �1 ¼ 8p1� 1ðDÞ

AB

� �

and hab ¼ gab þ UaUb are the

projection tensor. Also, g; .; s and ab (i.e., a1 ¼ A0

A) are

mathematical symbols of the thermal conductivity,

relaxation time, temperature and acceleration,

respectively. After some simplification, Eq. (31) produces

BDt 8p1� 1ðDÞ

AB

� �

¼ � gs0

.
� gs

.
A0

A

� �

� gs2B
2A.

.
gs2

� �:

8p1� 1ðDÞ

AB

� �

� B

2A

3 _B

B
þ

_C

C
þ 2A

.

 !

8p1� 1ðDÞ

AB

� �

:

ð32Þ

This equation becomes after inserting the value of A0

A as

BDt 8p1� 1ðDÞ

AB

� �

¼ � gs2B
2A.

.
gs2

� �:

8p1� 1ðDÞ

AB

� �

� B

2A
8p1� 1ðDÞ

AB

� �

�
�

3 _B

B
þ

_C

C
þ 2A

.

�

� gsB
.x

�

DtðUÞ � L

8C2

	

1þU2 � x2



þ ~m

C2
þ C

1þWl

�

8pPr � fXþ PðDÞr

B2

��

� gs0

.
;

ð33Þ

which demonstrates how much variation takes place in heat

energy with the passage of time. This equation also

explains the impact of temperature, thermal conductivity
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and relaxation time on the self-gravitating systems.

Eliminating Dt 8p1� 1ðDÞ

AB

� �

from Eqs. (30) and (33), we

obtain

DtðUÞ
�

8plþ lðDÞ

A2
þ 8pPr � fXþ PðDÞr

B2
� gs

.

�

¼ �
�

~m

C2
� L

8C2

�

1þU2

�

þ C

1þWl

�

8pPr � fXþ PðDÞr

B2

��

�

8plþ lðDÞ

A2
þ 8pPr � fXþ PðDÞr

B2
� gs

.

�

�
�

1� gs
.

�

8plþ lðDÞ

A2
þ 8pPr � fXþ PðDÞr

B2

��1�

þ x2

�

gsL

8.C2
� L

8C2

�
�

8plþ lðDÞ

A2
þ 8pPr � fXþ PðDÞr

B2

�

� 1

C

�

8pPr þ
PðDÞr

B2
� 8pP/ �

P
ðDÞ
/

C2

��

� x

�

� gs0

.B
þ 1

B

�

8pPr � fXþ PðDÞr

B2

�0

þ 1

2

� _B

AB
þ

_C

AC
� 2

.
� gs2

A.

�

.
gs2

�:�

�
�

8p1� 1ðDÞ

AB

��

:

ð34Þ

We can rearrange this equation as

DtðUÞ
�

8plþ lðDÞ

A2
þ 8pPr � fXþ PðDÞr

B2

�

	

1� H



¼ �F grav

	

1� H



þ F hyd þ x2

�

gsL

8.C2
� L

8C2

�

8plþ lðDÞ

A2

þ 8pPr � fXþ PðDÞr

B2

�

� 1

C

�

8pPr þ
PðDÞr

B2
� 8pP/ �

P
ðDÞ
/

C2

��

;

ð35Þ

where

H ¼ gs
.

�

8plþ lðDÞ

A2
þ 8pPr � fXþ PðDÞr

B2

��1

; ð36Þ

F grav ¼
�

8plþ lðDÞ

A2
þ 8pPr � fX

þ PðDÞr

B2

��

~m

C2
� L

8C2
U2 þ 1
	 


sþ C

1þWl

�

8pPr � fXþ PðDÞr

B2

��

;

ð37Þ

F hyd ¼� x

�

1

B

�

8pPr � fXþ PðDÞr

B2

�0

þ 1

2

� _B

AB
þ

_C

AC
� 2

.
� gs2

A.

�

.
gs2

�:�

�
�

8p1� 1ðDÞ

AB

�

� gs0

.B

�

:

ð38Þ

Equation (35) explains how the collapse rate is affected by

different forces, comprising Newtonian (F newtn), hydro-

dynamical (F hyd) and gravitational (F grav) forces. It is

known that energy always dissipates (in the form of radi-

ation, convection and conduction) from higher to lower

energy state of the system. The energy of a star is dissi-

pated through radiations, if photons acquire it from the

higher phase of that object. On the other hand, when

photons do not possess all the energy, it will be dissipated

by convection. The hot gasses in this phenomenon move to

the upper zone and thus radiate energy, whereas cooler

gases attain energy by traveling toward the hot zone. There

occur continuous collisions of atoms inside an object due to

which every atom transfers its energy to the nearest one,

and thus energy dissipates in the form of conduction.

Equation (35) involves an entity ð1� HÞ that

acknowledges the equivalence principle, while the gravi-

tational mass density and the term ðHÞ [defined in Eq. (36)]
are inversely proportional to each other. This relation

provides the fact that the gravitational force and the

quantity ð1� HÞ are strongly affected by each other,

leading to the following different cases.

• The entity ð1� HÞ remains positive only for H\1,

which results in the negative gravitational force (i.e.,

repulsive force) due to the appearance of minus sign in

the first term on the right side of Eq. (35). Conse-

quently, the collapse rate diminishes.

• The rate of the cylindrical collapse increases for the

case when H[ 1, i.e., ð1� HÞ\0.

• Finally, if we consider H ¼ 1, the gravitational as well

as inertial forces disappear and we have from Eq.(35)

as
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x2

�

gsL

8.C2
� L

8C2

�

8plþ lðDÞ

A2
þ 8pPr � fXþ PðDÞr

B2

�

� 1

C

�

8pPr þ
PðDÞr

B2
� 8pP/ �

P
ðDÞ
/

C2

��

¼ x

�

� gs0

.B

þ 1

B

�

8pPr � fXþ PðDÞr

B2

�0
þ 1

2

�

8p1� 1ðDÞ

AB

�

�
� _B

AB
þ

_C

AC
� 2

.
� gs2

A.

�

.
gs2

�:��

:

ð39Þ

This equation expresses the involvement of temperature,

thermal conductivity, the bulk viscosity and the modified

corrections in the collapsing phenomenon. The equilibrium

position of the collapsing cylinder is supported by the

hydrodynamical force (given on left side of the above

equation), and hence, the collapse rate is reduced.

5. Relation between the Weyl scalar and effective

physical quantities

In this section, we develop some relations between effec-

tive physical variables and the Weyl scalar.

(C2 ¼ CcadbC
cadb, where Ccadb is the Weyl tensor.) This

scalar can be expressed as a linear combination of the

Kretchmann scalar (R ¼ RcadbR
cadb; Rcadb is the Riemann

tensor.), the Ricci tensor (Rab) and the Ricci scalar as [10]

C2 ¼ R� 2RabR
ab þ 1

3
R2: ð40Þ

The scalar R can be manipulated as

R ¼ 4

A4B4C4
C4
	

R0101

2 þ B4

	

R0202

2 þA4

	

R1212

2

n

�
A2B2

	

R1202

2

2

)

:

ð41Þ

For the considered spacetime (4), the Ricci scalar, nonzero

components of the Riemann tensor and the Ricci tensor in

terms of the Einstein tensor are

R ¼ �2

�

G11

B2
þ G22

C2
� G00

A2

�

;

R0101 ¼ G22
	

ABC

2

; R0202 ¼ G11
	

ABC

2

; R1212 ¼ G00
	

ABC

2

;

R0212 ¼ G01
	

ABC

2

; R00 ¼ A2

�

G11

B2
þ G22

C2

�

; R01 ¼ G01;

R11 ¼ B2

�

G00

A2
� G22

C2

�

; R22 ¼ C2

�

G00

A2
� G11

B2

�

:

These values provide the scalar R (41) as

R ¼ 4

A4B4C4
B4C4G2

00 þA4C4G2
11 þA4B4G2

22

�

�4A2B2C4G2
01



:

ð42Þ

Inserting these equations in Eq. (40), the Weyl scalar takes

the form as

C2 ¼ 4

3A4B4C4
�

B4C4G2
00

þA4C4G2
11 þA4B4G2

22 þA2B2C4G00G11

þA2B4C2G00G22 �A4B2C2G11G22



:

ð43Þ

Using this equation and the field Eqs. (10–12) yields
ffiffiffi

3
p

C

2
¼
��

1

1þWb

�

8plþ lðDÞ

A2

þ 8pPr þ
PðDÞr

B2
� 8pP/ �

P
ðDÞ
/

C2

��2

� 1

1þWb

��

8pPr � fXþ PðDÞr

B2

�

�

8pP/ � fXþ
P
ðDÞ
/

C2

�

þ
�

8pPr þ
PðDÞr

B2
þ 2fX� 24pP/ �

3P
ðDÞ
/

C2

�

�

8plþ lðDÞ

A2

���
1
2

:

ð44Þ

The necessary and sufficient condition for a spacetime to

be conformally flat is the energy density homogeneity. We

check the validity of this result in the present modified

gravity. For this, we have considered the standard model

(9). We take the case when R ¼ R0 and f2ðT Þ as well as
f3ðQÞ are treated as constants; thus, Eq. (44) is left with
ffiffiffi

3
p

C

2
¼
��

8p

�

lþ Pr � P/ � C0

16p

��2

�
�

8pPr þ 2fX� 24pP/ � C0

�

�
�

8pl� C0

2

�

�
�

8pPr � fXþ C0
2

�

�

8pP/ � fXþ C0

2

��
1
2

;

ð45Þ

where C0 ¼ U
ffiffiffiffiffiffi

T 0

p
þWQ0 is a constant term. This

equation depicts that inhomogeneity in the energy density

of the fluid is induced due to the presence of the bulk

viscosity and the principal pressures. The above relation

also says that inhomogeneity in the system (during

evolution) is increased by the tidal forces [16]. The only

possibility to obtain conformally flat spacetime is the
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consideration of dust matter distribution, which gives in the

absence of bulk viscosity as

ffiffiffi

3
p

C ¼ 16p

�

l� C0

16p

�

)
ffiffiffi

3
p

C0 ¼ 16pl0: ð46Þ

We observe from this equation that homogeneous energy

density (i.e., l0 ¼ 0) implies conformally flat spacetime

(C ¼ 0 through regular axis condition) and vice versa, and

hence, the required condition is obtained.

6. Conclusions

Our cosmos comprises an abundance of astronomical sys-

tems whose structural formation is highly influenced by an

appealing phenomenon, named as the gravitational col-

lapse. The study of gravitational waves through multiple

observations has prompted several astrophysicists to

investigate the collapsing rate of self-gravitating geome-

tries in GR and other extended theories [48]. This article is

based on the formulation of dynamical description of the

cylindrical fluid distribution to investigate the changes that

are gradually produced within the system in the back-

ground of f ðR; T ;RabT
abÞ gravity. The effect of heat

dissipation and principal pressures (such as Pr; P/ and Pz)

on the interior geometry has been considered. We have

formulated two dynamical equations through Misner–

Sharp formalism to examine the variations in the total

energy with respect to radial as well as temporal

coordinates.

We have constructed the transport equation as well as

some fundamental forces (such as the gravitational,

hydrodynamical and Newtonian) and then coupled them

with dynamical equations to analyze the impact of modi-

fied gravity on the collapse rate. The entity H is found to be

in direct relation with temperature as well as thermal

conductivity and inversely related to gravitational mass

density. In the following, we summarize our results.

• The entity H will be less as compared to GR for

positive effect of the modified corrections. This leads to

the increment in the term ð1� HÞ as well as the

gravitational force. However, the appearance of minus

sign ultimately diminishes the collapse rate.

• The rate of cylindrical collapse may increase for the

case when the effect of correction terms is negative.

• One cannot say anything about the decrement/incre-

ment in the collapsing rate when the corrections of this

modified gravity involved in H have opposite signs.

The relevance of density inhomogeneity and the Weyl

scalar has also been developed. By implying some

constraints on the considered modified model, it has been

shown that the homogenous density and the conformal

flatness of the current setup imply each other. It is worth

mentioning here that the tidal forces involving in the Weyl

tensor produce more inhomogeneity in the fluid during the

evolutionary process. All these results can be recovered in

GR for U ¼ 0 ¼ W.

Appendix A

The modified corrections in Eqs. (10)–(14) are

lðDÞ ¼ �
A2
	

U
ffiffiffiffi

T
p

þWQ



2

þW

�

l

�

4 _A2

A2
�A02

B2
þAA00

B2
þ 3 _A _B

AB
�AA0B0

B3

þ 3 _A _C

AC
þAA0C0

B2C
� 2€C

C
� 2 €B

B

�

þ _l

� _C

2C
þ

_B

2B

�

� l0
�

2AA0

B2
�A2B0

2B3

þ A2C0

2B2C

�

� l00A2

2B2
þ Pr

�

4A2B02

B4
�A2B00

B3
þ

_B2

B2

�

�
_Pr _B

2B

� 5P0rA
2B0

2B3

þ P00rA
2

2B2
� P/

� _C2

C2
�A2C02

B2C2

�

�
_P/ _C

2C
þ
P0/A

2C0

2B2C
� 1

�

2A _C0

BC
� 2 _AB0

B2

þ 2 _A0

B
� 4 _AA0

AB
� 2A0 _B

B2
� 2A _BC0

B2C
� 2A0 _C

BC
� 2A0 _B

B2

�

� 2 _1A0

B
� 210 _A

B

�

;
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PðDÞr ¼ B2

2

��

U
ffiffiffiffi

T
p þWR

�

Pr þ U
ffiffiffiffi

T
p

þWQþ Ul
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�
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A
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A

�

;

P
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/ ¼ C2

2

��

U
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T
p þWR

�
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ffiffiffiffi

T
p
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ffiffiffiffi

T
p

�
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�
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�
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