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Abstract: We generate charged anisotropic exact models to the Einstein–Maxwell field equations for static spacetime with

a conformal Killing vector. The Einstein–Maxwell field equations are solved to generate a realistic stellar model with

physical significance. The generated model satisfies important physical requirements. The interior and exterior metrics

match smoothly at the stellar surface, the surface red shift and the compactification parameter are within the suggested

limits, regularity is obeyed, the energy conditions are satisfied, the sphere is stable, and the natural physical forces are

balanced. The class of exact solutions generated in our model regains several models found by various researchers in the

past. These include the models of Buchdahl, Vaidya and Tikekar, Durgapal and Bannerji, amongst other well-known

solutions. The existence of a conformal Killing vector provides a geometric basis for many astrophysical objects.
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1. Introduction

Compact stellar objects such as white dwarfs and neutron

stars are formed in gas and dust clouds during their evo-

lution. The gravitational collapse of massive stars happens

when there is insufficient pressure leading the spheres to

exhaust all the nuclear fuel required to balance the nuclear

force with the gravitational force of attraction [1]. This

situation can change the physical behaviour of compact

stellar objects. It has been found in [2–4] that the subse-

quent gravitational collapse is influenced by the presence

of an electric charge, pressure anisotropy, shear stress, and

dimensionality of spacetime. Investigations of Naidu and

Govender [5] obtained different temperature profiles when

two initially static spheres with the same masses and radii

but different pressures undergo the collapsing process.

Investigating the behaviour of compact stars provides

information about the existence of gravitational interac-

tions in extreme internal matter density and strong gravity.

To do this, the Einstein–Maxwell field equations for

charged matter distribution are investigated to find exact

solutions related to gravitating objects.

The existence of unequal pressure in many astrophysical

compact objects is an important phenomenon to consider

when investigating the behaviour of these highly gravitat-

ing stellar objects. A comprehensive understanding of

anisotropic matter is necessary when formulating physi-

cally realistic models of compact fluid spheres. In general

relativity, the effect of anisotropic pressure on gravitational

mass and surface red shift has been extensively investi-

gated [6, 7]. The existence of anisotropic pressure within

relativistic fluid spheres is due to the presence of strong

gravity and extreme internal matter density [8, 9]. It has

been found in [9] that pressure anisotropy on compact stars

affects the stability of these objects. Ruderman [10]

observed anisotropic behaviour in the nuclear matter when

the density is of higher order ([ 1015g=cm
3
). Weber [11]

identified variations of magnetic field intensity within fluid

spheres due to the existence of pressure anisotropy. Usov

[12] observed that the presence of pressure anisotropy in

relativistic bodies can cause strong electric fields. Dev and

Gleiser [13] generated spherical models describing the

effect of pressure anisotropy on the structure and properties

of compact fluid spheres. Phase transitions and pion con-

densations in astrophysical bodies can be the source of

pressure anisotropy as well [14, 15]. Recently, several

spherically symmetric exact models describing the effect of
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pressure anisotropy on the matter variables have been

generated [16–23].

In generating exact solutions to the nonlinear Einstein–

Maxwell field equations, a number of approaches have

been employed by various researchers. One can find an

equation of state relating the matter density with the

pressure of the fluid sphere [20, 24–27]. The technique of

embedding lower dimensions into a higher dimensional

manifold has been utilized by various researchers [28–31].

Investigations in [32–34] utilized the gravitational decou-

pling approach to find exact solutions to the field equations.

One can choose a form of the gravitational potential on

physical considerations to predict the behaviour of the

matter variables [35–37]. The group theoretical approach

on the spacetime manifold has also been adopted in several

treatments [38–41].

In this investigation, we assume that the spacetime

manifold admits conformal symmetry. The conformal

symmetry provides a deeper insight into studying the

geometry of spacetime manifold while taking into account

the nonlinear effects of gravity in compact star objects.

This gives the basics for adopting this approach for the

current investigation. Recently, this approach has been

adopted by several researchers for different kinds of sym-

metries [23, 42–47]. In particular, the conformal Killing

vector (CKV) is imposed on the spacetime manifold to

restrict the gravitational potentials for the purpose of

solving the Einstein–Maxwell field equations. This

approach is useful in generating astrophysical models with

physical applications that can predict the internal structure

and behaviour of compact star objects. The CKV restricts

the gravitational metric potentials while conformally pre-

serving the metric of spacetime. The CKV provides an

equation relating the gravitational potentials which can be

solved with the Einstein–Maxwell field equations to gen-

erate physically realistic models. Several recent exact

models admitting CKV in static spherically spacetime have

been generated by various researchers [21, 36, 48–51]. It is

our hope that the approach followed in the current work

will generate astrophysical models with physical

significance.

2. The mathematical field equations

The gravitational line element for the matter distribution in

spherically symmetric spacetime modelling the interior of

the relativistic star is given in Schwarzschild coordinates as

ds2 ¼ �e2mðrÞdt2 þ e2kðrÞdr2 þ r2ðdh2 þ sin2 hdU2Þ; ð1Þ

where mðrÞ and kðrÞ are functions of radial coordinate only

defining the static gravitational metric potential functions.

The exterior Reissner–Nordstrom spherical line element

for the charged gravitating star model is given by

ds2 ¼� 1 � 2M

r
þ Q2

r2

� �
dt2 þ 1

1 � 2M
r þ Q2

r2

� � dr2

þ r2ðdh2 þ sin2 hdU2Þ;

ð2Þ

where M defines the total mass of the compact star object in

radial distance r, and Q is the electric charge quantity. The

highly nonlinear Einstein–Maxwell field equations are the

appropriate equations when investigating highly dense

gravitating stellar bodies. We consider these equations for

charged anisotropic fluid spheres. These equations are

defined with a comoving, unit and timelike fluid 4-velocity

vector ua given by ua ¼ e�vda0. The associated energy

momentum tensor describing the charged anisotropic

matter distribution is given in the form

Tab ¼ diag �q� E2

2
; pr �

E2

2
; pt þ

E2

2
; pt þ

E2

2

� �
; ð3Þ

where the quantities E, q, pr, and pt represent the electric

field intensity, energy density, radial pressure, and the

tangential pressure, respectively. For anisotropic spheres,

the matter content experiences unequal pressures in radial

and tangential directions ðpr 6¼ ptÞ.
Using (1) and (2), with the energy momentum equation

(3), the Einstein–Maxwell field equations for charged

anisotropic stars are given by

e�2k 2k0

r
� 1

r2

� �
þ 1

r2
¼8pqþ E2

2
; ð4aÞ

e�2k 2m0

r
þ 1

r2

� �
� 1

r2
¼8ppr �

E2

2
; ð4bÞ

Table 1 Numerical values for the central pressure, central and surface density, C0, Ccrit , surface red shift, and mass-radius ratio for a ¼ 0:050,

b ¼ 2:750, c ¼ 5:500, d ¼ 0:0014, R ¼ 3:500, A ¼ 0:075, B ¼ 1:050, and h ¼ 3:550

pr; ptðMeV=fm
3Þ qcðMeV=fm

3Þ qsðMeV=fm
3Þ C0 Ccrit zs l

0.00115 0.00362 0.00051 1.44624 1.33415 5.01270 0.48120
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e�2k m00 þ m0
2 � m0k0 þ m0 � k0

r

� �
¼ 8ppt þ

E2

2
; ð4cÞ

e�k Er2ð Þ0

4pr2
¼ r; ð4dÞ

where r is the quantity defining the charge density. The

primes ð0Þ mean that the respective functions are differ-

entiated with respect to the radial coordinate r. We are

considering geometrized units where the speed of light is

taken as unity (8pG ¼ c ¼ 1).

The equation for the pressure anisotropy D describing

the difference in pressures, that is D ¼ pt � pr, is obtained

by subtracting equation (4b) from (4c) and given by

8pD ¼ e�2k m00 þ m0
2 � m0k0 � m0 þ k0

r

� �
þ 1 � e�2k

r2
� E2:

ð5Þ

When D ¼ 0, that is pt ¼ pr, the matter distribution

becomes isotropic. In addition, E ¼ 0 and D ¼ 0 describe

perfect fluid neutral spheres.

The equation defining the mass function for a charged

sphere with radius r, as given in [36, 52], is defined as

MðrÞ ¼ 4p
Z r

0

qðxÞ þ E2

8p

� �
x2dx: ð6Þ

3. Exact anisotropic model with conformal symmetry

3.1. Conformal symmetry

The Einstein–Maxwell field equations (4) are highly non-

linear and difficult to solve. To explore exact solutions to

these equations, we assume that the spacetime manifold

admits conformal symmetry. This helps to simplify these

equations. This approach places additional restrictions on

the gravitational potentials by adding an extra differential

equation which has to be solved in addition to the existing

Einstein–Maxwell field equations (4). The conformal

Killing vector generates constants of the motion while

conformally preserving the metric of spacetime. For the

existence of the conformal Killing vector, we have the

requirement

LXgab ¼ 2ngab; ð7Þ

where gab is the metric tensor field, n is the conformal

factor and LX is the Lie derivative operator along the vector

field X. The conformal Killing vector X and the conformal

factor n can either be static or non-static. For our

investigation, we follow the treatments in [23, 44, 46]

where both the conformal Killing vector and conformal

factor are non-static. From the symmetry assumption, we

have, respectively, the conformal Killing vector and the

conformal factor as

X ¼a t; rð Þ o
ot

þ b t; rð Þ o

or
; ð8aÞ

n ¼nðt; rÞ: ð8bÞ

In consequence to the conformal Killing equation (7), the

associated Weyl tensor integrability condition is given by

LXC
a
bcd ¼ 0; ð9Þ

where Ca
bcd are the components of the Weyl tensor. For the

integrability condition (9), the Killing equation (7)

simplifies to

m00 þ ðm0Þ2 � m0k0 � m0 � k0

r
þ 1

r2
¼ e2kð1 þ kÞ

r2
; ð10Þ

where k is a constant. Equation (10) is highly nonlinear but

has been integrated in general [43, 53, 54], with solution

given by

em ¼

Ar exp
ffiffiffiffiffiffiffiffiffiffiffi
1 þ k

p Z
ek

r
dr

� �

þ Br exp �
ffiffiffiffiffiffiffiffiffiffiffi
1 þ k

p Z
ek

r
dr

� �
; 1 þ k[ 0;

Ar

Z
ek

r
dr þ Br; 1 þ k ¼ 0;

Ar exp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 1 þ kð Þ

p Z
ek

r
dr

� �

þ Br exp �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 1 þ kð Þ

p Z
ek

r
dr

� �
; 1 þ k\0;

:

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

ð11Þ

where A and B are constants. When k ¼ 0, we have the

conformally flat spacetime, otherwise k 6¼ 0.

3.2. New anisotropic solution

We need to find the matter variables and gravitational

potentials that describe realistic fluid spheres. We observe

that equation (11) relates the gravitational potentials em and

ek. This indicates that when the potential ek is specified on

physical grounds, then we can find the corresponding

potential em. Specification is made to the extent that

equation (11) can be integrated. The choice of the potential

ek should be finite and free from a central singularity. To

get the solution to system (4), we consider the gravitational

potential ek and electric field E with the forms
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ek ¼
c 1 þ 2ar2

R2

� �
c� bdr2

; ð12Þ

E2 ¼ a2r2

bþ R2r2ð Þ2
; ð13Þ

respectively, where a, b, c, d and R are constants, with

c� bdr2; bþ R2r2 6¼ 0 and R being a curvature parameter

for the geometry of spacetime. We observe from our choice

in (12) that at the stellar centre (r ¼ 0), the potential

ek ¼ 1. This requirement is necessary for a finite, contin-

uous and regular metric potential function. It can also be

noted that the electric field (13) gives E ¼ 0 at the stellar

centre, which is a physical realistic requirement.

In the present investigation, we consider the cases

1 þ k[ 0, with k ¼ 0 describing the conformally flat

geometry, and 1 þ k\0, with k ¼ �2 for the non-confor-

mally flat case. For both cases, with equation (11) and the

choice of the potential (12), the corresponding gravitational

metric potential em becomes

em ¼ Ar2h

ðc� bdr2ÞH
þ Bðc� bdr2ÞH

h
; ð14Þ

where h is a positive constant of integration and

H ¼ 2acþ bdR2

2bdR2
:

The quantities A and B are constants. We observe from (14)

that for some parameters, em � 0 at the stellar centre, which

is a physical requirement. This indicates that the resulting

gravitational potential em is also regular and finite at the

stellar centre.

Using equations (12) - (14) together with the system (4),

the matter variables become

r ¼ aR2 c� bdr2ð Þ 3bþ r2R2ð Þ
4pc 2ar2 þ R2ð Þ bþ r2R2ð Þ2

; ð15aÞ

q ¼ 1

8p
� a2r2

2 bþ r2R2ð Þ2
þ c� bdr2ð ÞR4F1

c2r2 2ar2 þ R2ð Þ3
þ 1

r2

" #
;

ð15bÞ

pr ¼
1

8p
�1

r2
þ a2r2

2 bþ r2R2ð Þ2
þ c� bdr2
� �2

cþ 2acr2

R2

� ��2
"

� 2 2acF2 þ F3ð Þ
c� bdr2ð ÞR2F4

þ 1

r2

� �	
;

ð15cÞ

pt ¼
1

8p
�a2r2

2 bþ r2R2ð Þ2
þ 1

c2 2ar2 þ R2ð Þ3F4

8a3c2r4F4

�"

þ4a2cr2R2 F5 þ F6ð Þ þ 2aR4 F7 � F8ð Þ þ F9 þ F10ð ÞR6
�

;

ð15dÞ

D ¼pt � pr; ð15eÞ

where for simplicity we have set

F1 ¼ 2a 3cr2 þ bdr4
� �

� c� 5bdr2
� �

R2
� �

;

F2 ¼ Ah2r2 � B c� bdr2
� �1þ 2ac

bdR2

� �
;

F3 ¼ �bBdðc� bdr2Þ1þ 2ac
bdR2 þ Ah2 2c� bdr2

� �� �
R2;

F4 ¼ Ah2r2 þ B c� bdr2
� �1þ 2ac

bdR2

� �
;

F5 ¼Ah2r2ð5c� 2bdr2Þ;

F6 ¼B c� bdr2
� � 2ac

bdR2 c2 þ bcdr2 � 2b2d2r4
� �

;

F7 ¼Ah2r2 4c2 � 2bcdr2 þ b2d2r4
� �

;

F8 ¼B c� bdr2
� � 2ac

bdR2 4c3 � 10bc2dr2 þ 5b2cd2r4 þ b3d3r6
� �

;

F9 ¼� bBd c� bdr2
� � 2ac

bdR2 4c2 � 9bcdr2 þ 5b2d2r4
� �

;

F10 ¼Ah2 4c2 � 8bcdr2 þ 5b2d2r4
� �

:

Using (13) and (15b), the mass function (6) simplifies to

MðrÞ ¼ 1

8
� b2d2rR4

a2c2
� rR4ð2acþ bdR2Þ2

a2c2ð2ar2 þ R2Þ2
þ 2bdrR4ð2acþ bdR2Þ

a2c2ð2ar2 þ R2Þ

"

þ a2br

R4ðbþ r2R2Þ þ
2a2r

R4
�

3a2
ffiffiffi
b

p
arctan rR=

ffiffiffi
b

p� �
R5

þ 4r

#
:

ð16Þ

4. Known solutions

We have generated a new conformal symmetry class of

exact solutions that reduces to several models found by

various researchers in the past. The class of exact solutions

generated represents compact star models with astrophys-

ical significance. Some charged and uncharged astrophys-

ical models regained for certain parameter settings are

outlined in the following cases.

4.1. Case I: a ¼ b ¼ c ¼ R ¼ 1, d ¼ �1

For these values, the gravitational potential ek becomes

1658 J W Jape et al.



ek ¼ 1 þ 2r2

1 þ r2
:

This form of the gravitational potential is a particular form

of the neutral anisotropic models generated in [55–57], and

charged super dense star models generated in [58]. The

corresponding metric function em for this case becomes

em ¼ Ahr2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ r2

p
þ B

h
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ r2

p :

4.2. Case II: a ¼ 0, c ¼ d ¼ 1, R 6¼ 0

This case reduces the gravitational potential ek to

ek ¼ 1

1 � br2
:

This is a particular form of the charged anisotropic

conformal model generated in [36]. The gravitational

potential function em for these values simplifies to

em ¼ Ahr2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � br2

p þ B
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � br2

p

h
:

4.3. Case III: a ¼ 0, b ¼ c ¼ d ¼ 1, R 6¼ 0

For this case, the gravitational potential ek takes the form

ek ¼ 1

1 � r2
:

This case regains the particular uncharged conformal

model generated in [59]. The metric potential function em

reduces to

em ¼ Ahr2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � r2

p þ B
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � r2

p

h
:

4.4. Case IV: c ¼ 1, d ¼ 0, R ¼
ffiffiffi
2

p

These parameter values reduce the metric potential func-

tion to the form

ek ¼ 1 þ ar2:

This gravitational potential function was adopted in the

charged models generated in [60, 61] using a linear

equation of state, while [62] generated a realistic

uncharged stellar model using a polytropic equation of

state. The metric function em for these values becomes

em ¼ Ar2h2 þ B

h
:

4.5. Case V: a ¼ 1
2
, b ¼ d ¼ R ¼ 1, c ¼ 2

For the set of the specified parameter values, the gravita-

tional potential function ek takes the form

ek ¼ 2 1 þ r2ð Þ
2 � r2

:

This is a particular form of the choice adopted in the

neutral astrophysical models generated in [63–66], charged

isotropic fluid spheres generated in [67], and anisotropic

compact star models generated in [68]. The second

gravitational potential em for this case reduces to

em ¼ Ar2h 2 � r2
� ��3=2þB 2 � r2ð Þ3=2

h
:

4.6. Case VI: a ¼ 1
2
, c ¼ 1, d ¼ 0

For the given parameter values, the gravitational metric

potential function ek reduces to

ek ¼ 1 þ r2

R2
:

This potential regains the particular choice adopted in

[26, 69] for the neutral anisotropic stellar models using a

linear equation of state describing quark stars. We observe

that the gravitational potential em for the specified values

takes the form

em ¼ Ar2h2 þ B

h
:

4.7. Case VII: c ¼ 1, d ¼ 0

This case reduces the metric function ek to the form

ek ¼ 1 þ 2ar2

R2
:

This particular form of the gravitational potential was also

used in the neutral stellar model generated in [70]. The

gravitational potential em for this case simplifies to

em ¼ Ar2h2 þ B

h
:

4.8. Case VIII: a ¼ R ¼ 2, c ¼ 1, d ¼ 0

For these parameter values, the gravitational potential

function ek takes the form

ek ¼ 1 þ r2:

This particular form regains the choice of the potential

adopted in the charged anisotropic conformal model

generated in [44], the uncharged models found in

[71–73], where the equations of state were extracted

from the field equations. The gravitational potential em for

the specified values reduces to
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em ¼ Ar2h2 þ B

h
:

4.9. Case IX: c ¼ 1, d ¼ �1, R ¼
ffiffiffi
2

p

We observe that these values simplify the gravitational

potential ek to the form

ek ¼ 1 þ ar2

1 þ br2
:

This gravitational potential regains the charged models

generated in [74, 75] using a quadratic equation of state,

and linear and quadratic equations of state for the core and

envelope, respectively, in [76] using a quadratic equation

of state, and [77] for the uncharged anisotropic embedding

solution. The second gravitational potential function em for

this case reduces to

em ¼ Ahr2

1 þ br2ð Þ
�aþb

2

þ B 1 þ br2ð Þ
�aþb

2

h
:

We observe from the cases I-IX that the gravitational

metric potentials satisfy ek ¼ 1 and em � 0 at the stellar

centre. This behaviour indicates that the metric functions

are finite and regular at the centre of the fluid sphere. These

cases show that our generalized model is physical and

realistic as it regains several models with astrophysical

significance.

5. Analysis of the physical conditions

We investigate several requirements for the physical

acceptability of a realistic model. We give a physical

analysis of the conditions that the gravitational potentials

and matter variables need to satisfy. These physical con-

ditions include regularity, bounds on the surface red shift

and mass-radius ratio, stability, equilibrium, and energy

conditions for the behaviour of the energy momentum

tensor. The graphs on the profiles of the gravitational

potentials and matter variables were obtained using the

Python Programming Language. The various mathematical

equations were checked using the Mathematica software

package.

5.1. Junction conditions

Formulation of anisotropic conformal models requires a

smooth matching of the interior solution to the exterior at

the boundary of the stellar object. This is achieved when

the corresponding coefficients of the metrics (1) and (2) are

compared at the boundary junction r ¼ Rb, that is,

e2mðRbÞ ¼ 1 � 2M

Rb
þ Q2

Rb
2

� �
; ð17aÞ

e2kðRbÞ ¼ 1 � 2M

Rb
þ Q2

Rb
2

� ��1

: ð17bÞ

The quantity Q2

Rb
2 ¼ E2Rb

2. It is also required the radial

pressure vanishes at the boundary. We observe from Fig. 1

Fig. 1 Profile of the radial

pressure pr against radial

coordinate r. For plotting the

graph, the following numerical

values of the free constants have

been specified: a ¼ 0:050,

b ¼ 2:750, c ¼ 5:500,

d ¼ 0:014, R ¼ 3:500,

A ¼ 0:075, B ¼ 1:050, and

h ¼ 3:550
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that the radial pressure vanishes even before reaching the

boundary point. Similar profiles were generated in

[60, 78, 79]. Using the gravitational potentials (12) and

(14), the mass function (16), together with the electric field

intensity (13), the matching conditions in system (17)

simplify to

0 ¼ A2h2

c� bdRb
2

� �2H
� a2

bþ R2Rb
2

� �2

 !
Rb

4

þ bd 2acþ bdR2ð Þ
ð2aRb

2 þ R2Þ

�
� 2acþ bdR2ð Þ2

2 2aRb
2 þ R2

� �2
� b2d2

2

!
R4

2a2c2

þ b

2 bþ Rb
2R2

� �þ 1

 !
a2

2R4
�

3a2
ffiffiffi
b

p
arctan RbR=

ffiffiffi
b

p� �
4RbR5

þ
B2 c� bdRb

2
� �2H

h2
þ 2ABRb

2;

ð18aÞ

0 ¼
c� bdRb

2
� �2

c2 1 þ 2aRb
2

R2

� �2
� a2Rb

4

bþ R2Rb
2

� �2

þ bd 2acþ bdR2ð Þ
ð2aRb

2 þ R2Þ
� 2acþ bdR2ð Þ2

2 2aRb
2 þ R2

� �2

 

� b2d2

2

�
R4

2a2c2
þ b

2 bþ Rb
2R2

� �þ 1

 !
a2

2R4

�
3a2

ffiffiffi
b

p
arctan RbR=

ffiffiffi
b

p� �
4RbR5

;

ð18bÞ

where H is given by equation (14). The matching at the

boundary junction for the generated model (15) is provided

by the system of equations (18). We have explicitly

expressed the junction conditions (18) in terms of the

constants a, b, c, d, R, Rb, h, A, and B. It is observed that

there are sufficient free parameters to satisfy conditions

(18).

5.2. Mass-radius ratio and surface red shift

From the mass equation (16), the mass-radius ratio defining

the compactification parameter l is given by

lðrÞ ¼MðrÞ
r

¼ 1

8

2a2

R4
� b2d2R4

a2c2
� R4ð2acþ bdR2Þ2

a2c2ð2ar2 þ R2Þ2

"

þ 2bdR4ð2acþ bdR2Þ
a2c2ð2ar2 þ R2Þ

þ a2b

R4ðbþ r2R2Þ �
3a2

ffiffiffi
b

p
arctan rR=

ffiffiffi
b

p� �
rR5

þ 4

#
:

ð19Þ

The expression for the surface red shift zs is given by

Fig. 2 Behaviour of the mass

MðM�Þ against radial

coordinate r. For plotting the

graph, the following numerical

values of the free constants have

been specified: a ¼ 0:050,

b ¼ 2:750, c ¼ 5:500,

d ¼ 0:014, and R ¼ 3:500
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zs ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � 2MðrÞ
r

q � 1

¼� 1 þ 2
ffiffiffiffiffiffiffiffiffiffi
a2R5

p
�2a4Rþ b2d2R9

c2
� a4bR

bþ r2R2

�

� 2bdR9 2acþ bdR2ð Þ
c2 2ar2 þ R2ð Þ

þR9 2acþ bdR2ð Þ2

c2 2ar2 þ R2ð Þ2
þ

3a4
ffiffiffi
b

p
arctan rR=

ffiffiffi
b

p� �
r

!�1
2

:

ð20Þ

It is observed from Fig. 2 that the mass of the sphere

increases toward the boundary of the stellar object. We also

observe from Fig. 3 that the mass-radius ratio (compactness

factor l) increases with an increase in radial coordinate. It

attains its maximum value at l ¼ 0:4812. This value is

within the bound required for anisotropic matter distribu-

tion, that is, M
r ¼ l� 0:587 [6, 63, 80]. The behaviour of

the surface red shift inside the star is shown in Fig. 4. We

observe that its value increases with the increase in radial

coordinate r with maximum value attained at zs ¼ 5:0127.

For realistic charged anisotropic compact spheres, the

value of the surface red shift should not exceed 5.211

[48, 63, 81]. This requirement is satisfied as illustrated in

Fig. 4.

5.3. Behaviour of the pressure anisotropy, charge

density, and electric field intensity

We observe from Fig. 5 that the pressure anisotropy D
increases from the centre to some point toward the surface

and then starts to decrease. It is zero at the stellar centre

and nonzero elsewhere, meaning that pr and pt are not

equal except at the stellar centre. Similar profiles of pres-

sure anisotropy have been generated in [55, 75]. The

electric field E is zero at the stellar centre, sharply increases

to some points toward the boundary and then starts to

decrease (Fig. 6). The charge density is positive with a

maximum value at the centre while decreasing toward the

stellar boundary (Fig. 7). Similar profiles to these quantities

are observed in [50, 76, 82, 83]. These behaviours are

required for any physically relativistic fluid sphere.

5.4. Regularity conditions

Any physical realistic conformal model needs to satisfy the

following conditions for regularity [23, 36, 81, 84]:

(i) It is required that the gravitational metric potential

functions ek and em to be increasing functions and free

from a central singularity. These values are supposed

to be ek ¼ 1 and em � 0 at the stellar centre. This

requirement is satisfied as illustrated in Figs. 8 and 9.

(ii) The matter density q needs to be positive with

maximum value at the stellar centre. It is also

required to decrease toward the boundary of the

Fig. 3 Behaviour of the mass-

radius ratio M
r ¼ l against radial

coordinate r. For plotting the

graph, the following numerical

values of the free constants have

been specified: a ¼ 0:050,

b ¼ 2:750, c ¼ 5:500,

d ¼ 0:014, and R ¼ 3:500
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sphere. This behaviour is satisfied as indicated in

Fig. 10.

(iii) The regularity conditions also require that if there are

unequal pressures in radial and tangential directions,

then their values must be equal and maximum at the

centre of compact stars. This property is shown in

Figs. 1 and 11.

Fig. 4 Behaviour of the surface

red shift zs against radial

coordinate r. For plotting the

graph, the following numerical

values of the free constants have

been specified: a ¼ 0:050,

b ¼ 2:750, c ¼ 5:500,

d ¼ 0:014, and R ¼ 3:500

Fig. 5 Profile of the pressure

anisotropy D against radial

coordinate r. For plotting the

graph, the following numerical

values of the free constants have

been specified: a ¼ 0:050,

b ¼ 2:750, c ¼ 5:500,

d ¼ 0:014, R ¼ 3:500,

A ¼ 0:075, B ¼ 1:050, and

h ¼ 3:550
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5.5. Conditions for the energy momentum

For any physically charged anisotropic solution, the energy

momentum tensor should satisfy the following conditions

[82, 85, 86]:

(i) The null energy condition (N.E.C) requiring the

matter density q� 0.

(ii) The weak energy condition (W.E.C) for the energy

flow within the sphere demanding q� pr; q� pt � 0.

(iii) The weak dominant energy condition (W.D.E.C)

requiring q� 3pr; q� 3pt � 0, and

Fig. 6 Profile of the electric

field E2 against radial

coordinate r. For plotting the

graph, the following numerical

values of the free constants have

been specified: a ¼ 0:050,

b ¼ 2:750, and R ¼ 3:500

Fig. 7 Profile of the charge

density r against radial

coordinate r. For plotting the

graph, the following numerical

values of the free constants have

been specified: a ¼ 0:050,

b ¼ 2:750, c ¼ 5:500,

d ¼ 0:014, and R ¼ 3:500
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(iv) The strong energy condition (S.E.C) demanding

q� pr � 2pt � 0. The conformal symmetry class of

exact solutions generated in this work satisfies all

these conditions throughout the stellar interior as

illustrated in Figs. 10, 12, 13 and 14.

5.6. Stability through adiabatic index

For a relativistic anisotropic star, the stability is associated

with the adiabatic index C defining the ratio between two

specific heats. Stability requires the adiabatic index to be

greater than 4
3

[28, 87, 88]. For charged anisotropic fluid

Fig. 8 Profile of the

gravitational potential ek against

radial coordinate r. For plotting

the graph, the following

numerical values of the free

constants have been specified:

a ¼ 0:050, b ¼ 2:750,

c ¼ 5:500, d ¼ 0:014, and

R ¼ 3:500

Fig. 9 Profile of the

gravitational potential em against

radial coordinate r. For plotting

the graph, the following

numerical values of the free

constants have been specified:

a ¼ 0:050, b ¼ 2:750,

c ¼ 5:500, d ¼ 0:014,

R ¼ 3:500, A ¼ 0:075,

B ¼ 1:050, and h ¼ 3:550
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spheres, the function defining the adiabatic index is given

by

C[
4

3
þ 4 pt � prð Þ

3rp0r

� �
max:

ð21Þ

[30, 48]. It has been observed in [89, 90] that some

instabilities within anisotropic compact stars can be present

due to the relativistic corrections of the adiabatic index. To

overcome this, [91] provided a strict condition on the

critical value of the adiabatic index to have a

stable structure. The relativistic anisotropic critical value

of the adiabatic index Ccrit depends on the compactification

parameter and amplitude of the Lagrangian displacement

from equilibrium. This critical value is given by

Fig. 10 Profile of the matter

density q against radial

coordinate r. For plotting the

graph, the following numerical

values of the free constants have

been specified: a ¼ 0:050,

b ¼ 2:750, c ¼ 5:500,

d ¼ 0:014, and R ¼ 3:500

Fig. 11 Profile of the tangential

pressure pt against radial

coordinate r. For plotting the

graph, the following numerical

values of the free constants have

been specified: a ¼ 0:050,

b ¼ 2:750, c ¼ 5:500,

d ¼ 0:014, R ¼ 3:500,

A ¼ 0:075, B ¼ 1:050, and

h ¼ 3:550
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Ccrit ¼
4

3
þ 19

21
l; ð22Þ

where l is the compactness factor. For the anisotropic case,

it is required that C�Ccrit [92, 93]. We observe from

Fig. 15 that the stability requirement is satisfied as the

adiabatic index values are greater than 4
3

throughout the

interior of the compact star.

5.7. Physical forces for equilibrium condition

The total forces within the stellar interior need to balance at

equilibrium. This is to say that the physical forces have to

sum up to zero for equilibrium. For charged anisotropic

spheres, this condition is given by the Tolman–Oppen-

heimer–Volkoff (TOV) equation

Fig. 12 Behaviour of the weak

energy condition against radial

coordinate r. For plotting the

graph, the following numerical

values of the free constants have

been specified: a ¼ 0:050,

b ¼ 2:750, c ¼ 5:500,

d ¼ 0:014, R ¼ 3:500,

A ¼ 0:075, B ¼ 1:050, and

h ¼ 3:550

Fig. 13 Behaviour of the weak

dominant energy condition

against radial coordinate r. For

plotting the graph, the following

numerical values of the free

constants have been specified:

a ¼ 0:050, b ¼ 2:750,

c ¼ 5:500, d ¼ 0:014,

R ¼ 3:500, A ¼ 0:075,

B ¼ 1:050, and h ¼ 3:550
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�Mg qþ prð Þ
r2

ek�m � dpr
dr

þ rekq
r2

þ 2D
r

¼ 0; ð23Þ

[25, 82, 94], where q
r2 ¼ E is the electric field intensity

while Mg ¼ r2v0em�k

2
is the effective gravitational mass. With

these definitions, equation (23) reduces to

�m0 qþ prð Þ
2

� dpr
dr

þ rEek þ 2D
r

¼ 0: ð24Þ

The first, second, third and fourth terms of the left hand

side of equation (24) stand for the gravitational force ðFgÞ,
hydrostatic force ðFhÞ, electric force ðFeÞ and anisotropic

force ðFaÞ, respectively. For the generated model, the

explicit forms for these different forces are given by

Fig. 14 Behaviour of the strong

energy condition against radial

coordinate r. For plotting the

graph, the following numerical

values of the free constants have

been specified: a ¼ 0:050,

b ¼ 2:750, c ¼ 5:500,

d ¼ 0:014, R ¼ 3:500,

A ¼ 0:075, B ¼ 1:050, and

h ¼ 3:550

Fig. 15 Profile of the adiabatic

indexes C, Ccrit against radial

coordinate r. For plotting the

graph, the following numerical

values of the free constants have

been specified: a ¼ 0:050,

b ¼ 2:750, c ¼ 5:500,

d ¼ 0:0014, R ¼ 3:500,

A ¼ 0:075, B ¼ 1:050, and

h ¼ 3:550
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Fa ¼
2D
r

¼ 2 pt � prð Þ
r

; ð25aÞ

Fe ¼rEek ¼ a2r 3bþ r2R2ð Þ
4p bþ r2R2ð Þ3

; ð25bÞ

Fh ¼� dpr
dr

; ð25cÞ

Fg ¼� r 2ac Ah2r2 � B c� bdr2
� �1þ 2ac

bdR2

� ���h

þ �bBd c� bdr2
� �1þ 2ac

bdR2

�

þAh2 2c� bdr2
� ��

R2
�

4a2cr2 Ah2r2
��

�B c� bdr2
� �1þ 2ac

bdR2

�

þ2aR2 B c� bdr2
� �2þ 2ac

bdR2þAh2r2 5c� bdr2
� ��

þ bBd c� bdr2
� �1þ 2ac

bdR2

�

þAh2 2cþ bdr2
� ��

R4
��

� 8c2p Ah2r2
��

þB c� bdr2
� �1þ 2ac

bdR2

�2

� 2ar2 þ R2
� �3

��i
:

ð25dÞ

The TOV equation (24) implies that the sum of these

forces becomes zero so that

Fg þ Fh þ Fe þ Fa ¼ 0: ð26Þ

The behaviour of these physical forces are illustrated in

Fig. 16.

6. Conclusions

In this article, we have considered a charged anisotropic

model of a compact fluid sphere that admits conformal

symmetry. The conformal Killing vector is used to provide

an equation relating the gravitational potentials. This

equation, with the choice of one of these potentials on

physical grounds, is simultaneously solved with the Ein-

stein–Maxwell field equations to generate a realistic exact

model with astrophysical significance. The conformal class

of exact solution was examined for conformally flat (k ¼ 0)

and non-conformally flat (k 6¼ 0) cases. We have provided

a detailed physical analysis of the matter variables and

gravitational potentials to examine the physical accept-

ability for the generated class of exact solutions. The

gravitational potentials are regular and well behaved

throughout the stellar interior. We have generated a real-

istic stellar model in which the surface red shift and mass-

radius ratio are within acceptable limits. The energy con-

ditions and stability through the adiabatic index are satis-

fied as well. The physical forces describing the behaviour

of the body at an equilibrium point are balanced. Moreover,

real data have been used to obtain the values of some

physical parameters that characterized the solution as

indicated in Table 1. It is observed that the surface red shift

values go up to 5.01270 which is physically realistic as for

anisotropic models this value can go up to 5.211 as out-

lined in [80]. The compactness factor was found to be

0.48120. The values in Table 1 are physically reasonable.

We have also regained several charged and uncharged

models found by various researchers as outlined in Sect. 4.

Fig. 16 Behaviour of the

physical forces against radial

coordinate r. For plotting the

graph, the following numerical

values of the free constants have

been specified: a ¼ 0:050,

b ¼ 2:750, c ¼ 5:500,

d ¼ 0:014, R ¼ 3:500,

A ¼ 0:075, B ¼ 1:050, and

h ¼ 3:550
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These include well-known models generated in

[56, 57, 63, 64]. The analysis given shows that conformal

symmetry contributes to understanding the structure and

properties of relativistic compact spheres. It is interesting

to observe that a variety of known solutions found under

different assumptions, possess a conformal symmetry and

are contained in our generalized family of exact solutions

with a conformal Killing vector. Other exact solutions may

be obtained by considering different forms for the gravi-

tational potential ek and electric field intensity E with

conformal symmetry.
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