
ORIGINAL PAPER

Viscous holographic dark energy cosmological model in general
relativity

M Vijaya Santhi1* , T Chinnappalanaidu1, N S L Sudha Rani2, Daba Meshesha Gusu3 and M Nagavalli4

1Department of Applied Mathematics, College of Science and Technology, Andhra University, Visakhapatnam 530003, India

2Department of Humanities and Sciences, Teegala Krishna Reddy Engineering College, Hyderabad 500097, India

3Department of Mathematics, Ambo University, Ambo, Ethiopia

4Department of Basic Science and HSS, College of Engineering for Women, Andhra University, Visakhapatnam, India

Received: 13 December 2021 / Accepted: 17 October 2022 / Published online: 21 November 2022

Abstract: In this article, we analyze Marder-type space-time in the framework of general relativity theory, with viscous

holographic dark energy. To solve the field equations, we use the shear scalar ðrÞ is proportional to the expansion scalar ðhÞ
which leads to a relation between metric potentials and hybrid expansion law (HEL) proposed by Akarsu et al. (J Cosmol

Astropart Phys 01:022, 2014). Also, we determine the cosmological parameters, namely the deceleration parameter(q), jerk

parameter (j), statefinder parameters ðr � sÞ, equation of state parameter (xde) and xde � x0
de plane for the obtained model.

The derived model supports the accelerating behavior of the Universe along with the null, weak and dominant energy

conditions that are obeyed by violating strong energy condition as per the present accelerated expansion.
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1. Introduction

Researchers are always keen to study the early evolution of

the Universe. Current cosmological observations have

revealed that our current Universe is experiencing rapid

expansion. The main reason for this cosmic acceleration is

an exotic force with tremendous negative pressure called

‘dark energy’(DE). Dark energy which is defined as the

exotic negative pressure causing the accelerated expansion

of the Universe [1, 2] is attracting the attention of several

researchers in recent years. The cosmological analysis of

these observations suggests that the Universe consists of

about 70% DE, 30% dust matter (cold dark matter plus

baryons), and negligible radiation. It is a widely accepted

idea that dark energy leads to the ultimate-rapid expansion

of the Universe. However, the nature of such a DE is still a

source of debate. Several theoretical models have been

proposed to explain this late-time acceleration of the

Universe. The most obvious theoretical candidate for DE is

the cosmological constant [3], which has the equation of

state (EoS) xde ¼ �1. However, it suffers from a cosmo-

logical constant (CC) problem (fine-tuning problem) and a

cosmic coincidence problem [4–6]. Both of these problems

are related to DE density. Two ways have been suggested

to explain this mysterious concept. One way is to construct

dark energy models, and the other one is to modify the

geometrical part of Einstein’s field equations which is

known as modified gravity theory to study the corre-

sponding anisotropic dark energy cosmological models. In

the literature, various kinds of research on DE patterns

have appeared to explain this mysterious concept of DE. In

particular, Arun et al. [7] have discussed reviews of the

different possible candidates for DM including exotic

candidates and their possible detection and, also, cover the

different models for DE and the possibility of unified

models for DM and DE. Significant dynamical DE models

among them are scalar field models such as quintessence

[8], Phantom [9], tachyon field [10], quintom [11], Chap-

lygin gas [12], k�essence [13, 14], agegraphic dark energy

[15, 16] and holographic DE model [17] have been pro-

posed to explain the nature of DE phenomenon.

Among the various dynamic dark energy models, in

particular, the HDE model has become a convenient

technique in recent times to study the dark energy mystery.*Corresponding author, E-mail: gv.santhi@live.com
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In recent years, considerable interest has been noticed in

the study of the holographic dark energy (HDE) model to

explain the recent phase transition of the Universe as well

as a viable candidate to explain the problems of modern

cosmology. The HDE models explain the recent acceler-

ated expansion as well as the coincidence problem of the

Universe [18, 19]. The concept of HDE is based on the

holographic principle proposed by ’t Hooft [20] and found

its roots in the quantum field theory. According to the

holographic principle, the short-distance (ultraviolet) cut-

off is related to the long-distance (infrared) cut-off L due to

a limit determined by the formation of the black hole [17].

The infrared (IR) cut-off is relevant to the large-scale

structure, and the UV cut-off is relevant to the vacuum

energy of the cosmos, i.e., Hubble horizon, particle hori-

zon, event horizon, Ricci scalar, etc. In the development of

the holographic principle, this is crucial if a black hole

forms and then evaporates [21]. When the vacuum energy

of a black hole is less than the mass of the black hole, the

IR cut-off L is chosen by saturating the inequality, resulting

in the obtained vacuum energy being known as holographic

dark energy (HDE) [22]. However, the HDE event horizon

model is not compatible with the age of some old high

redshift objects [23]. To avoid this problem, a new HDE

model was proposed by Granda and Oliveros [24] which

contains a new IR cut-off and the local quantities of the

Hubble and the time derivative of the Hubble scale.

Recently, Hatkar et al. [25] have discussed viscous holo-

graphic dark energy in Brans–Dicke theory of gravitation.

Very recently, Singh and Srivastava [26] have studied new

holographic dark energy model with bulk viscosity in

f(R, T) gravity.

Universe evolution involves a sequence of dissipative

processes. Bulk viscosity, shear viscosity, and heat trans-

port are included in these processes. To be more realistic,

the perfect fluid Universe is just an approximation of the

viscous Universe. Misner [27] was the first to use the

viscosity concept in cosmology. The origin of the bulk

viscosity in a physical system can be traced to deviations

from the local thermodynamic equilibrium [28, 29]. In a

cosmological fluid, the bulk viscosity arises at any time

when a fluid expands ( or contracts) too rapidly so that the

system does not have enough time to restore the local

thermodynamic equilibrium [30]. In Weinberg [31], the

theoretical concept of bulk viscosity in cosmology has been

discussed which provides insight into the nature of bulk

viscosity. Within the context of early inflation, it has been

known since a long time ago that an imperfect fluid with

bulk viscosity can produce an accelerated expansion

without the need for a cosmological constant or some other

inflationary scalar field [32, 33]. An accelerating Universe

can be achieved with the right viscosity coefficient. At the

late time, since we do not know the nature of the

Universe’s contents (dark matter and dark energy compo-

nents) very clearly, the bulk viscosity is reasonable and can

play a role as a dark energy candidate. Therefore, it is

natural to consider the bulk viscosity in an accelerating

Universe. It has been shown that inflation and recent

acceleration can be explained using the viscous behavior of

the Universe and play an important role in the phase

transition of the Universe [34–41]. The concept of viscous

DE has been discussed extensively in the literature

[42–44]. Feng and Li [45] have shown that the age problem

of the Ricci dark energy can be alleviated using the bulk

viscosity, and Chakraborty and Chattopadhyay have stud-

ied in ref [46] cosmology of a generalized version of

holographic dark energy in the presence of bulk viscosity

and its inflationary dynamics through slow roll parameters

in the general theory of relativity. Several authors worked

on the general theory of relativity with different metrics

[47–50]. (We have simply mentioned a few of them.)

The small anisotropies observed in the cosmological

observations such as microwave background radiation

(Dunkley et al. [51]) and large-scale structures (Tegmark

et al. [52]) indicate that a pure Friedmann–Robertson–

Walker model could not explain all the properties of the

Universe. It is therefore natural to consider anisotropic

cosmological models which are useful to describe the early

Universe. Anisotropic Universe means the physical prop-

erties of the Universe have different values when measured

in different directions. However, in the early stages of the

evolution of the Universe, it is generally accepted that the

Universe is homogeneous and anisotropic. For this reason,

homogeneous and anisotropic models must be studied. We

prefer the Marder-type space-time in a scalar–tensor theory

because it is a homogeneous and anisotropic space-time (a

nice metric to explain anisotropy at the beginning of the

Universe) and provides a transition from anisotropic to

isotropic. Using t !
R
AðtÞdt coordinate transformation,

Marder-type Universe transforms to Bianchi type I Uni-

verse model. Bianchi-type models are anisotropic and

spatially homogeneous and have been extensively used to

investigate cosmological models to describe the early

stages of the evolution of the Universe in the presence of

various physical distributions of matter. This indicates that

these models are more a realistic picture of past eras in the

history of the Universe. Recently, the investigation of the

magnetized string distribution in the Marder-type Universe

with the cosmological term in f(R, T) theory was done by

Cihan Kömürcü and Aktas [53]. Some other authors have

discussed this Marder-type cosmological model given in

the literature [54–59].

By the above works, we focus our attention on the

Marder-type cosmological model with viscous holographic

dark energy (VHDE) in the framework of the general
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theory of relativity. This paper is organized as follows: In

Sect. 2, we obtain metric and field equations. In Sect. 3, we

derive the solution of the Marder-type models. In Sect. 4,

we investigate the cosmological parameters and their

physical discussion is presented. We summarize the results

in the last section.

2. Metric and field equations

We consider the spatially homogeneous and anisotropic

Marder-type space-time is as follows

ds2 ¼ b21dx
2 þ b22dy

2 þ b23dz
2 � b21dt

2; ð1Þ

where b1, b2 and b3 are functions of time t only. As our

intention is to study the behavior of physical parameters

which are useful in finding the solution of the field

equations for Marder-type space-time given by Eq. (1).

• The volume V and average scale factor a(t) of the

Marder-type space-time are defined as

V ¼ ½aðtÞ�3 ¼ b21b2b3: ð2Þ

• The anisotropic parameter Ah is given by

Ah ¼
1

3

X3

i¼1

Hi � H

H

� �2

; ð3Þ

where H1 ¼
_b1
b1
, H2 ¼

_b2
b2
, H3 ¼

_b3
b3

are directional Hub-

ble’s parameters and H ¼ _a
a is the Hubble’s parameter.

Here and after an overhead dot denotes differentiation with

respect to cosmic time t.

• The expansion scalar ðhÞ is given by

h ¼ ui;i ¼
1

b1

2 _b1
b1

þ
_b2
b2

þ
_b3
b3

� �

: ð4Þ

• The shear scalar ðr2Þ is given by

r2 ¼ 1

2

X3

i¼1

H2
i �

h2

3

 !

: ð5Þ

The field equations of Einstein general theory of relativity

are

Gij ¼ �Tij; ð6Þ

where Gij ¼ Rij � 1
2
Rgij is an Einstein tensor, and Tij is the

energy–momentum tensor. Also, the conservation equation

is given by

Tij
;j ¼ 0: ð7Þ

The energy–momentum tensor for a viscous holographic

dark energy is taken as,

Tij ¼ Tm
ij þ Th

ij : ð8Þ

Here Tm
ij and Th

ij represent matter and viscous holographic

dark energy tensors given by

Th
ij ¼ �Ph þ qhð ÞUh

i U
h
j þ �Phgij; ð9Þ

& Tm
ij ¼qmU

m
i U

m
j ; ð10Þ

where qm is the energy density of the matter, �Ph and qh,
respectively, represent the pressure and energy density of

the viscous holographic dark energy; Ui denotes the co-

moving velocity vector of the matter and viscous holo-

graphic dark energy satisfying UiU
i ¼ �1. VHDE pressure

satisfies the relation �Ph ¼ Ph � 3fH with f ¼ f0 þ f1H,

where f0 and f1 are positive constants, and H is the Hubble

parameter.

Now with the help of Eq. (8), the field Eq. (6) for the

metric in Eq. (1) can be written as

1

b21

€b2
b2

þ
€b3
b3

þ
_b2 _b3
b2b3

�
_b1 _b2
b1b2

�
_b1 _b3
b1b3

� �

¼� �Ph; ð11Þ

1

b21

€b1
b1

þ
€b3
b3

�
_b1
2

b21

� �

¼� �Ph; ð12Þ

1

b21

€b1
b1

þ
€b2
b2

�
_b1
2

b21

� �

¼� �Ph; ð13Þ

&
1

b21

_b1 _b2
b1b2

þ
_b2 _b3
b2b3

þ
_b3 _b1
b3b1

� �

¼qm þ qh: ð14Þ

Also, the energy conservation equation leads to

_qm þ
_b1
b1

þ
_b2
b2

þ
_b3
b3

� �

qm ¼0; ð15Þ

& _qh þ
_b1
b1

þ
_b2
b2

þ
_b3
b3

� �

qh þ �Phð Þ ¼0: ð16Þ

3. Solution of the field equations

The field Eqs. (11)–(14) are a system of four independent

equations with six unknown variables: b1, b2, b3, qh, qm
and �Ph. Therefore, we consider the following additional

conditions to solve the above set of equations:

• The shear scalar ðrÞ is proportional to the expansion

scalar ðhÞ, which leads to a relationship between the

metric potentials (Collins et al. [60]). That is

b1 ¼ ðb2b3Þn; ð17Þ

where n 6¼ 1 is a positive constant and preserves the ani-

sotropic character of the space-time.

• We consider hybrid expansion law (HEL) of the scale

factor a(t), given by (Akarsu et al. [61])
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aðtÞ ¼ tmetl; ð18Þ

where m and l are positive constants. The above form of

the scale factor is more generalized as it is the product of

both exponential and power functions of cosmic time t. The

main purpose of choosing this scale factor is that the

smooth transition from the early deceleration phase to the

late time inflation of the Universe can be observed in the

model. Also, this preferred average scale factor leads to a

time-dependent deceleration parameter. Santhi et al.

[62, 63], Mishra et al. [64], Yadav et al. [65], Santhi et al.

[66], Singh et al. [67], Santhi and Naidu [68], Yadav et al.

[69] are some of the authors who have investigated various

DE models in different theories by taking this HEL.

From Eqs. (12) and (13), we have

b2 ¼ c21b3; ð19Þ

where c21 6¼ 1 is a positive constant.

Now from Eqs. (2), (17), (18) and (19), we obtain the

metric potentials as

b1 ¼ tmetlð Þ
3n
nþ1 ; ð20Þ

b2 ¼ c1 tmetlð Þ
3

2nþ2 ; ð21Þ

& b3 ¼
tmetlð Þ

3
2nþ2

c1
: ð22Þ

The energy density of the matter is given by

qm ¼ j1 tmetlð Þ
�6n�3
nþ1 ; ð23Þ

where j1 is an integration constant.

The energy density of the viscous holographic dark

energy is given by

qh ¼
�4ðnþ 1Þ2j1t2 tmetlð Þ

�6n�3
nþ1 þ36 tmetlð Þ

�6n
nþ1 l1t þ m1ð Þ2 1

4
þ n

� �

4 nþ 1ð Þ2t2
:

ð24Þ

The pressure of the viscous holographic dark energy is

given by

The bulk viscosity is given by

f ¼ lf1 þ f0ð Þ þ f1
m
t
: ð26Þ

In all the discussions and graphical representations of our

Marder VHDE cosmological model, we constraint the

following constants: m ¼ 0:44; 0:55; 0:66;

l ¼ 0:055; 0:065; 0:075; j1 ¼ 0:1; n ¼ 0:011; f0 ¼ 0:025;

f1 ¼ 0:95. The nature of the energy density of matter (qm)
and the energy density of VHDE (qh) versus cosmic time

(t) is plotted in Figs. 1 and 2. We can observe that the

trajectories of the energy density of matter (qm) and energy

density of VHDE (qh) vary in the positive region and

decrease with time (t) for different values of m and l, which
indicates the expansion of the Universe. Also, from Fig. 3,

we can observe that the total pressure (p) is negative and

increasing with time (t) for different values of m and l.
However, the negative pressure indicates the phenomenon

of the accelerated expansion of the Universe, and thus,

Fig. 3 indicates the acceleration of the Universe. From

Fig. 4, we observe that the trajectories of bulk viscosity are

varying in the positive region and decreasing against cos-

mic time t.

Now, the metric (1) can be written as

ds2 ¼ tmetlð Þ
6n
nþ1dx2 þ c1 tmetlð Þ

3
2nþ2

� �2
dy2

þ tmetlð Þ
3

2nþ2

c1

 !2

dz2 � tmetlð Þ
6n
nþ2dt2:

ð27Þ

Thus, the metric (27) represents a spatially homogeneous

and anisotropic Marder-type VHDE cosmological model in

general relativity with the following properties along with

the physical parameters given in the next sections which

are important in the discussion of cosmology.

Time t(Gyr)
10 20 30 40 50 60 70 80

ρ
m

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08 ν=0.44; μ=0.055;
ν=0.55; μ=0.065;
ν=0.66; μ=0.075;

12 14 16 18 20 22 24

×10-4

1

2

3

4

5

6

Fig. 1 Plot of energy density of matter versus cosmic time t (Gyr)

�Ph ¼
2 tmetlð Þ

�6n
nþ1 3n

2
� 15

8

� �
m2 þ n2 þ 3lt þ 2ð Þn� 15

4
tlþ 1

� �
mþ 3

2
t2 n� 5

4

� �
l2

� �

nþ 1ð Þ2t2
: ð25Þ
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• The volume (V), average scale factor (a(t)), mean

Hubble parameter (H), expansion scalar ðhÞ of the

Marder-type space-time are given by

V ¼ t3met3l
� �

; ð28Þ

aðtÞ ¼ tmetlð Þ; ð29Þ

H ¼ lþ m
t
; ð30Þ

& h ¼ 3 lþ m
t

� �
tmetlð Þ

�3n
nþ1: ð31Þ

• The shear scalar ðr2Þ is given by

r2 ¼
3 � nþ 1ð Þ2 tmetlð Þ

�6n
nþ1þ3n2 þ 3

2

� �
lþ m

t

� �2

2 nþ 1ð Þ2
: ð32Þ

• The anisotropic parameter Ah is given by

Ah ¼
2n� 1ð Þ2

2ðnþ 1Þ2
: ð33Þ

From Eq. (33), we observe that Ah 6¼ 0, which represents

the Marder-type cosmological model is always anisotropic

throughout the evolution of the Universe except n ¼ 1
2
. We

have plotted volume (V) versus cosmic time (t) in Fig. 5,

and we observe that the trajectory of the volume is

monotonically increasing against cosmic time (t), which

indicates the spatial volume (V) increases exponentially

and shows the spatial expansion of the Universe. Also, it

can be observed from Eqs. (28)–(32), at the initial epoch

(i.e., at t ¼ 0), the spatial volume (V) and the average

scale factor a(t) become zero and increase with the cosmic

time, which indicates the volume of an expanding

Universe. It is also observed that the Hubble parameter H

and shear scalar (r) diverge at the initial epoch and attain

constant value at late times, whereas the expansion scalar

(h) of the model vanishes at late times and diverges at the

initial epoch. The plot of the expansion scalar ðhÞ and

Hubble’s parameter (H) is given in Fig. 6. It can be seen

Time t(Gyr)
10 20 30 40 50 60 70 80

ρ
h

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1 ν=0.44; μ=0.055;
ν=0.55; μ=0.065;
ν=0.66; μ=0.075;

12 14 16 18 20 22 24

0.015

0.02

0.025

0.03

0.035

Fig. 2 Plot of energy density of VHDE versus cosmic time t (Gyr)

Time t(Gyr)
10 20 30 40 50 60 70 80

pr
es

su
re

 (P
h)

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1
ν=0.44; μ=0.055;
ν=0.55; μ=0.065;
ν=0.66; μ=0.075;

12 14 16 18 20 22 24

-0.04

-0.03

-0.02

Fig. 3 Plot of total pressure of VHDE versus cosmic time t (Gyr)

Time t(Gyr)
10 20 30 40 50 60 70 80

ξ

0.1

0.2

0.3

0.4

0.5

0.6

0.7
ν=0.44; μ=0.055;
ν=0.55; μ=0.065;
ν=0.66; μ=0.075;

Fig. 4 Plot of bulk viscosity of VHDE versus cosmic time t (Gyr)

Time t(Gyr)
10 20 30 40 50 60 70 80

V
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e 

(V
)

×109

1

2

3

4
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7

8
ν=0.55; μ=0.065;

Fig. 5 Plot of volume V versus cosmic time t (Gyr)
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that both are decreasing functions of time and become

constant at late times. Thus, it is concluded from these

observations that the model starts its expansion with zero

volume and it continues to expand up to an infinitely large

volume concerning cosmic time (t).

4. Some other important cosmological parameters

Here, we examine expanding behavior of the Universe

through well-known cosmological parameters like decel-

eration parameter (q), jerk parameter (j), EoS parameter

(xde), squared sound speed ðv2s Þ, energy conditions, density

parameters, i.e., Xm; Xvhde & X and cosmological planes

such as ðr � sÞ, ðr � qÞ, & xde � x0
de for constructed ani-

sotropic VHDE model.

• Deceleration Parameter: As we know that cosmogra-

phy is efficient as it permits to test of any cosmological

model which does not contradict the cosmological

principles. The modification of the general theory of

relativity evidently changes the dependence of scale

factor a(t), but it does not affect the relation between

the kinematical characteristics. The dynamics of the

Universe are described by Einstein’s equations. It is

also observed that if a is constant, the scaling factor is

proportional to time t, and the deceleration term is zero,

when the Hubble term is constant the DP is also

constant and equal to �1. In most of the cases, the

deceleration term changes with time. The cosmological

models may change whether they expand or contract or

accelerate or decelerate. This means that both the

Hubble parameter and the DP can change the sign

during evolution. As we believe that we live in an

expanding Universe and the nature of the Universe

varies with the following conditions:

(a) H[ 0, q[ 0 ) Expanding and decelerating

Universe.

(b) H[ 0, q\0 ) Expanding and accelerating

Universe.

(c) H[ 0, q ¼ 0 ) Expanding Universe with zero

deceleration.

The deceleration parameter is given by

q ¼ d

dt

1

H

� �

� 1 ¼ m

ðmþ ltÞ2
� 1: ð34Þ

It is a dimensionless quantity that measures the rate of the

cosmos’ expansion. It indicates decelerated expansion,

depending on its sign (in case of positive sign) or

accelerated expansion (in case of negative sign), whereas

the marginal inflation occurs at q ¼ 0 and q ¼ �1 current

Universe shows de-Sitter expansion. The model shows

accelerated expansion for �1� q\0 and a super-

exponential expansion for q\� 1. We have plotted the

deceleration parameter (q) versus cosmic time (t) in Fig. 7

and we observe that the trajectories of the deceleration

parameter give a nice transaction from early deceleration to

the present accelerated phase for three different values of m
and l. The present value of the deceleration parameter (q)

for our obtained model is q � �0:6939;�0:7373 and

�0:7703 which is consistent with the astrophysical

observational data given by Cunha [70] (SNIa), Xu et al.

[71] ðSNIaþ BAOþ HðzÞÞ, Santos et al. [72]

ðSNIaþ BAO=CMBþ HðzÞÞ, Haridasu et al. [73] ðCC þ
SNIaþ BAOþ R18Þ as follows:

q ¼� 0:73 ðSNIaÞ;
q ¼� 0:658þ0:061

�0:057 ðSNIaþ BAOþ HðzÞÞ;
q ¼� 0:54þ0:07

�0:05 ðSNIaþ BAO=CMBþ HðzÞÞ;
&q ¼� 0:57þ0:05

�0:05 ðCC þ SNIa þ BAOþ R18Þ:

• Jerk Parameter: Jerk parameter in cosmology is

defined as the dimensionless third derivative of scale

factor with respect to time and is given by

j ¼ a
...

aH3
¼ 1� 3m

ðmþ ltÞ2
þ 2m

ðmþ ltÞ3
: ð35Þ

In modern cosmology, the general assumption is the jerk

parameter can describe the transition of the Universe from

the decelerating to accelerating phase. This transition of the

Universe arises for various models with a positive value of

the jerk parameter and negative value of the deceleration

parameter (Chiba and Nakamura [74]; Visser [75]).

Here, we have plotted the graph for the jerk parameter with

respect to cosmic time(t) as shown in Fig. 8a and b for

Time t(Gyr)
10 20 30 40 50 60 70 80

H
 a

nd
 θ

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
Hubble parameter (H)
Expansion Scalar (θ)

Fig. 6 Plot of Hubble parameter and expansion scalar versus cosmic

time t (Gyr)
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three different values of m and l. We can observe that the

trajectories of the jerk parameter vary in the positive region

throughout the evolution and finally equal to one. This

shows that our model is consistent with the recent obser-

vations (i.e. KCDM model has a constant jerk parameter

and is equal to unity). Also, we observe that the nature of

the jerk parameter completely depends on m and l.
• Statefinder diagnostics: To differentiate many candi-

dates of dark energy, Sahni et al. [76] proposed a new

geometrical diagnostic named the statefinder pair

fr; sg, where r is generated from the scale factor a(t)

and its derivatives with respect to the cosmic time (t) up

to the third order and s is a simple combination of r and

the deceleration parameter q. The statefinder parame-

ters are given as,

r ¼ a
...

aH3
¼ 1� 3m

ðmþ ltÞ2
þ 2m

ðlþ ltÞ3
;

s ¼ r � 1

3ðq� 1
2
Þ
¼ 2ð2m� 3mðmþ ltÞÞ

3ð2m� 3ðmþ ltÞ3Þ
:

ð36Þ

Due to their total dependence on the scale factor these

parameters have geometrical diagnostic. The statefinder

diagnostic is a useful tool in modern-day cosmology and is

being used to serve the purpose of distinguishing different

dark energy models [77–79]. In this setup, different tra-

jectories in r � s and r � q planes define the temporal

evolution for various dark energy models. Using this pair

one can describe the well-known regions as follows:

ðr; sÞ ¼ ð1; 0Þ indicates KCDM limit, ðr; sÞ ¼ ð1; 1Þ shows
CDM limit, while s[ 0 and r\1 represent the region of

phantom and quintessence dark energy eras. In the r � s

and r � q planes, the departure of any dark energy model

from these fixed points is analyzed. The plots of diagnostic

pairs (r, s) and (r, q) for our model are shown in Figs. 9
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and 10. From Fig. 9, we observe that the statefinder

parameter curve passes the point, ðr; sÞ ¼ ð1; 0Þ, which

corresponds to the KCDM model. The r � s plane also

provides the regions of Chaplygin gas ðr[ 1; s\0Þ,
quintessence and phantom ðr\1; s[ 0Þ eras. Figure 10

demonstrates the evolution of our model with r � q plane.

In this diagnostic plane, the dotted line in the middle

depicts the evolution of the standard KCDM cosmological

model and also divides the plane into two equal halves

where the quintessence dark energy model exists in the

lower half, while the Chaplygin gas dark energy models

exist in the upper half. Also, it can be seen that the profile

starts from the region q[ 0 and r[ 1, which corresponds

to the SCDM Universe then followed by the region r\1

and q\0 and finally approaches to the de-Sitter phase

(i:e:; r ¼ 1; q ¼ �1).

• EoS Parameter: To obtain EoS parameter we will use

the following equation

xde ¼
�Ph

qh
: ð37Þ

Here, �Ph and qh represent pressure and DE density of

VHDE, respectively. EoS parameter is used to categorize

the decelerated and accelerated phases of the Universe. The

DE-dominated phase has following eras:

(i) xde ¼ 0 corresponds to non-relativistic matter.

(ii) �1\xde\ �1
3
quintessence.

(iii) xde ¼ �1 cosmological constant.

(iv) xde\� 1 phantom.

From 37, the EoS parameter of the model as

The EoS parameter of the VHDE model (27) is given in

Eq. (38). In Fig. 11, we investigate the evolution of the

EoS parameter xde in terms of cosmic time t with

different values of m and l for model (27). The

trajectories of the EoS parameter for model (27) are

started from the quintessence phase and turn toward the

phantom region by crossing vacuum dominated era

(phantom divide line xde ¼ �1) of the Universe for all

the values of m and l. This is called quintom-like nature

of the Universe for our obtained model. It can be seen

that the results for the EoS parameter of our obtained

model are consistent with the 2018 Planck

collaboration data (Aghanim et al., [80]), where the

limits on the EoS parameter are given as follows:

xde ¼� 1:56þ0:60
�0:48 ðPlanck þ TT þ lowEÞ;

xde ¼� 1:58þ0:52
�0:41 ðPlanck þ TT ;EE þ lowEÞ;

xde ¼� 1:57þ0:50
�0:40

ðPlanck þ TT ; TE;EE þ lowE þ lensingÞ;
&xde ¼� 1:04þ0:10

�0:10

ðPlanck þ TT ; TE;EE þ lowE þ lensingþ BAOÞ:

• xde � x0
de plane: The xde � x0

de plane analysis is used

to study the dynamical properties of dark energy

models which is first proposed by [81], where ð0Þ
prime indicates derivative with respect to ln a. This

approach has been applied on the quintessence model

which leads to two types of its planes, i.e., the area

belongs to the region ðxde\0; x0
de [ 0Þ corresponds

to the thawing region, while the area under the region

ðxde\0; x0
de\0Þ implies the freezing region. By

taking the derivative of Eq. (38) with respect to ln a,

we obtain the expression for x0
de as

xde ¼
� 8 3n

2
� 18

8

� �
m2 þ 3 n� 5

4

� �
lt þ nþ 1ð Þ2

� �
mþ 3

2
n� 5

4

� �
l2t2

� �
tmetlð Þ

3
nþ1

� �

�36 lt þ mð Þ2 tmetlð Þ
3

nþ1 nþ 1
4

� �
þ 4j1 nþ 1ð Þ2t2

� � : ð38Þ

r
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x0
de ¼

N

16 nþ 1ð Þ �9 lt þ mð Þ2 1
4
þ n

� �
tmetlð Þ

3
nþ1þj1ðnþ 1Þ2t2

� �2
t

� � :

where N ¼ N 11 þN 12 þN 13 þN 14; where

N 11 ¼ �192etl
�

3n

2
� 15

8

� �

mþ nþ 1ð Þ2
� �

m2t2þ6m

þ
�

m
9n

2
� 45

8

� �

m

�

þ nþ 1ð Þ2
�

t6mþ3 þ 9

2
t6mþ4mþ t6mþ5l
� �

n� 5

4

� �

l

�

l

�

N 12 ¼ nþ 1

2

� �

nþ 1ð Þ2j1 tmetlð Þ
�6n�3
nþ1

þ g3m2
�

5n2 � 25n

4

� �

mþ n2 þ 3n

2
� 5

8

� �

nþ 1ð Þ
�

l2t2þ6m þ gm 15n2 � 75n

4

� �

m

�

þ n2 þ 3n

2
� 5

8

� �

nþ 1ð Þ
�

l3t6mþ3

þ 3gm2lt1þ6m

��
5n2

2
� 25n

8

�

m2

þ n2 þ 3n

2
� 5

8

� �

nþ 1ð Þm
�

þ 3gm2lt1þ6m 1

9
nþ 1ð Þ3

þ g
15

2
mn n� 5

4

� �

l4t4þ6m þ g
3n

2
n� 5

4

� �

l5t5þ6m

þ 3n

2
� 15

8

� �

mþ nþ 1ð Þ2
� �

m3t6m nmþ n

3
þ 1

3

� �

N 13 ¼ 192

�
3n2

2

15n

8

� �

m3

þ
�
�5

8
þ n3 þ 9tl

2
þ 5

2

� �

n2

þ �45t2l2

8
þ 7tl

8
þ 1

� �

n

� 5tl
8

þ 1

3

�

mþ 3n

2
n� 5

4

� �

l3t3
�

N 14 ¼ �9 lt þ mð Þ2 1

4
þ n

� �

tmetlð Þ
6

nþ1

�

þ tmetlð Þ
3

nþ1t2j1 nþ 1ð Þ2
�

g ¼ 1728e6tl
1

4
þ n

� �

tmetlð Þ
�6n
nþ1

9
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

ð39Þ

From Fig. 12, we observe that the trajectories of xde � x0
de

plane vary in the freezing region for all values of m and l.
Observational data suggest that the expansion of the

Universe in the freezing region is relatively accelerating.

It is concluded that xde � x0
de plane analysis for the present

scenario gives consistent results with the accelerated

expansion of the Universe. The evolution of trajectories

of xde � x0
de plane confirms that there is more acceleration

of the cosmic expansion and our models remain in freezing

region ðxde\0;x0
de\0Þ which obeys the following

observational data (Ade et al., [82]; Hinshaw et al., [83]).

xde ¼� 1:13þ0:24
�0:25;

x0
de\1:32(Planck + WP + BAO);

xde ¼� 1:34þ0:18
�0:18;

x0
de ¼0:85� 0:7(WMAP + eCAMB+BAOþ H0Þ;

xde ¼� 1:17þ0:13
�0:12;

x0
de ¼0:85þ0:50

�0:49(WMAP+eCAMB+BAO þ H0 þ SNeÞ:

• Squared speed of sound: We now consider and study

an important quantity considered in cosmology in order

to check the stability of any DE model and it is known

as the squared speed of sound, it is denoted with v2s and

this parameter is useful in discussing the stability of DE
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models depends upon its sign. The models with v2s [ 0

are stable, whereas models with v2s\0 are unstable. The

squared speed of the sound is defined as follows:

v2s ¼
_�Ph

_qh
¼ N 2

N 3

:

N 2 ¼
3n2

2
� 15n

8

� �

m3 þ 9n

2
n� 5

4

� �

lt

�

þ n2 þ 3n

2
� 5

8

� �

ðnþ 1Þ
�

m212 tmetlð Þ
�6n
nþ1

þ 12 tmetlð Þ
�6n
nþ1

9n

2
n� 5

4

� �

l2t2
�

þ n2 þ 3n

2
� 5

8

� �

ðnþ 1Þlt þ ðnþ 1Þ3

3

!

m

þ 3n

2
n� 5

4

� �

l3t3

N 3 ¼ ð�1Þ6 lt þ mð Þj1 nþ 1ð Þ2t2 nþ 1

2

� �

tmetlð Þ
�6n�3
nþ1

� 54 lt þ mð Þ 1

4
þ n

� ���

t2l2 þ 2tlmþ m2

þ m
3

�

nþ m
3

�

tmetlð Þ
�6n
nþ1

9
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

:

ð40Þ

squared speed of sound expression for model (27) is given

in Eq. (40). In Fig. 13, we analyze the squared speed of

sound for model (27) in terms of cosmic time t for different

values of m and l. It is observed that the trajectories of v2s
are in the negative region for all values of m and l, which
give unstable behavior of the Universe.

• Energy conditions: There are various types of energy

conditions(EC’s) at the astrophysical level and

cosmological level, which came from Raychaudhuri

equations [84]. Generally, in the study of energy

conditions, the energy–momentum tensor plays a vital

role, so, in the present discussion, we have defined

energy–momentum tensor in terms of normal pressure
�Ph and normal energy density qh; thereby, all four EC’s
can be written as, null energy condition(NEC), weak

energy condition(WEC), dominant energy condi-

tion(DEC) and strong energy condition(SEC). The

main purpose of these energy conditions is to check

the expansion of the Universe. Several authors have

worked on these energy conditions, particularly Salti

et al. [85], Sahoo et al. [86], Hegazy and Rahaman [87],

Kumar and Singh [88], Bhar et al. [89], Mishra et al.

[90, 91], Aziz et al. [92], Mollah and Singh [93]. These

conditions put extra constraints on the viability of the

constructed cosmological model and are defined as

WEC: qh � 0

NEC: qh þ �Ph � 0
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DEC: qh � �Ph � 0

SEC: qh þ 3 �Ph � 0

Here, WEC, NEC, DEC and SEC denote weak energy

condition, null energy condition, dominant energy

condition and strong energy condition, respectively.

For the constructed model, we have examined the

behavior of these energy conditions, as shown in

Fig. 14. It is observed that WEC, NEC and DEC are

well satisfied throughout the cosmic evolution, whereas

SEC is violated at late times, which represents an

accelerating Universe. Also, we have observed that the

DEC dominates the NEC, and for the obtained model,

this is an interesting observation.

• Density parameters: Generally, most of the authors

suggest that the total density parameter is approxi-

mately equal to 1 i.e. X � 1. It is still important to

know whether X is greater than 1, less than 1 or exactly

equal to 1 as it reveals the ultimate destiny of the

Universe. If X[ 1, the Universe is closed, and

eventually, it will stop its expansion and recollapse. If

X\1, then the Universe is open and will continue to

expand forever, if X ¼ 1 then the Universe is flat and

has enough material to stop the expansion, but it is not

enough to recollapse it. The expression for dimension-

less density parameters is defined as

Xvhde ¼
qh
3H2

;

Xm ¼ qm
3H2

;

& X ¼ Xvhde þ Xm:

ð41Þ

The density parameter of VHDE, matter and total density

for model (27) is, respectively, given by

Xvhde ¼
�4ðnþ 1Þ2j1t2 tmetlð Þ

�6n�3
nþ1 þ36 tmetlð Þ

�6n
nþ1 l1t þ m1ð Þ2 1

4
þ n

� �

12 nþ 1ð Þ2t2 lþ m
t

� �2 ;

ð42Þ

Xm ¼ j1 tmetlð Þ
�6n�3
nþ1

3 lþ m
t

� �2 : ð43Þ

X ¼
�4ðnþ 1Þ2j1t2 tmetlð Þ

�6n�3
nþ1 þ36 tmetlð Þ

�6n
nþ1 l1t þ m1ð Þ2 1

4
þ n

� �

12 nþ 1ð Þ2t2 lþ m
t

� �2

þ j1 tmetlð Þ
�6n�3
nþ1

3 lþ m
t

� �2 :

ð44Þ

From Fig. 15, we analyze the behavior of the density

parameter of VHDE (Xvhde), matter (Xm) and total density

(X) against cosmic time t for model (27), for the different

values of m and l, respectively. We observe that the tra-

jectory of density parameters of VHDE (Xvhde), matter

(Xm) and total density (X) for model (27) is positive and

decreasing against cosmic time and approaches to a value

less than one at late time and also we observe that for this

model (27), the total density (X) initially dominates both

VHDE and matter density parameters.

5. Conclusions

In this paper, we have studied the viscous holographic dark

energy model with Marder-type space-time in the frame-

work of Einstein’s general theory of gravity. The field

equations of viscous holographic dark energy have been

solved by using hybrid expansion law, which is a combi-

nation of power and exponential functions, which leads to a

varying deceleration parameter. We have investigated

well-known cosmological parameters such as deceleration

parameter (q), jerk parameter (j), EoS parameter ðxdeÞ,
xde � x0

de plane, r � s plane, r � q plane, squared speed of

sound and density parameters i:e:;Xm; Xvhde & Xð Þ.
The following are conclusions:

The model is free from initial singularity and the model

starts its expansion with zero volume and it continues to

expand up to infinitely large volume concerning cosmic

time. In fact, this leads to inflation of the Universe. It is

observed that the dynamical parameters of our model

diverge at the initial epoch and attain constant volume at

late times. The average anisotropy parameter ðAhÞ is con-
stant and does not vanish ði:e:; Ah 6¼ 0Þ, and hence, our

model is anisotropic throughout the evolution of the Uni-

verse. The DP for our constructed model (27) gives a nice

transaction from the early deceleration to the present

accelerated phase for three different values of m and l
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which is shown in Fig. 7. It can be seen that from (34), the

present value ði:e:; at t0 ¼ 13:8GyrÞ of DP is obtained as

�0:73 for m ¼ 0:55, l ¼ 0:065, which matches the modern

observational data of SNeIa and indicates the present value

of DP lies within the range �1� q\0 (i:e:q � �0:73 at

t0 ¼ 13:8Gyr). We observe that the jerk parameter and

statefinder parameters are time dependent and it can be

seen that the value of the jerk parameter is positive

throughout the evolution. Here, we plotted the graph of the

jerk parameter with respect to cosmic time(t) as shown in

Fig. 8a and b for three different values of m and l. We can

observe that the trajectories of the jerk parameter vary in

the positive region throughout the evolution and finally

equal to one. This shows that our model is consistent with

the recent observations (i.e., KCDM model has a constant

jerk parameter and is equal to unity). The r � s plane

corresponding to our model (27) is shown in Fig. 9. It is

observed that the constructed model of the Universe starts

evolving from quintessence and phantom regions and then

reaches the KCDM model ðr ¼ 1; s ¼ 0Þ and finally pass-

ing through the Chaplygin gas region. Figure 10 shows the

time evolution of the r � q trajectories in the r � q plane.

Here, the signature change from positive to negative in q

clearly explains the phase transition of the Universe. We

observe that initially, the VHDE model approaches to the

SCDM model and de-Sitter phase of the Universe in future.

The energy density of matter qm and energy density of

VHDE are always positive and decrease with cosmic time t

(Ref Figs. 1 and 2). However, the total pressure (p) of the

model is negative and increases with cosmic time (t) (Ref

Fig. 3). The negative value of pressure could contribute to

the present accelerated expansion of the Universe. From

Fig. 4, we observe that the trajectories of bulk viscosity are

varying in the positive region and decreasing against cos-

mic time t. The evolution of EoS parameter ðxdeÞ has also
been observed graphically. It shows that xde evolves from

the quintessence phase to the phantom phase by crossing

vacuum dominated era (phantom divide line xde ¼ �1) of

the Universe for all the values of m and l. This is called

quintom-like behavior of the Universe. We study xde �
x0

de plane for different values of m and l as given in Fig. 12.

From Fig. 12, we observe that the trajectories of xde � x0
de

plane vary the in freezing region for all values of m and l,
and such feature of the model is in good agreement with

observational data. We analyze the squared speed of sound

for model (27) graphically against cosmic time(t) in Fig. 13

for different values of m and l. It is observed that the tra-

jectories of v2s are in the negative region for all values of m
and l, which give unstable behavior of the Universe. All

the energy conditions except SEC are well satisfied

throughout the evolution of the Universe. SEC is violated

at late times in our model due to negative pressure. It is

observed that the density parameters of VHDE (Xvhde),

matter (Xm) and total density (X) of the model (27) are

positive and decreasing against cosmic time and approa-

ches to a number less than one at late times and also we

observe that for this VHDE model, the total density (X)
initially dominates both VHDE and matter density

parameters.

Finally, we may conclude that all the above results of

the obtained model are in good agreement with the recent

cosmological observations.
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