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Abstract: The evolution of the self-generated magnetic fields during the transportation of inhomogeneous fast electron

beams with Gaussian and super-Gaussian density profiles in cylindrical specially engineered targets is studied. The analysis

is based on a fluid model for electron beam, and we consider the low-density core with a high-density cladding structure for

cylindrical targets. Gaussian and super-Gaussian density distributions of the electron beam generate the spatial extent of

magnetic fields, while their magnitude decreases greatly at the boundaries, compared to the homogeneous distributions.
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1. Introduction

Fast electron beam with an inhomogeneous density profile

generated by the laser-over-dense target interaction. One of

the most attractive applications of the high-energy elec-

trons produced and accelerated during the interaction

between a high power short laser pulse and a solid target is

related to the fast ignition scenarios (FIS) [1, 2]. A fast

ignition is an alternative form to inertial confinement

fusion (ICF). In this scheme, the pre-compressed fuel

ignites using a high-power laser. This array can lead to

higher gains than that conventional ignition [3]. Fast

ignition (FI) inertial confinement fusion is a variant of

inertial fusion in which a DT fuel pellet (*10–20 l m at its

core) is first compressed to a high density and then ignited

by a fast electron beam (FEB). This FEB is generated by an

ultra-intense laser pulse at the edge of the pellet (which is

usually *50 lm away from the dense core), through some

different mechanisms [4]. These energetic relativistic

electrons can propagate through a bulk solid and transfer

their energy to a dense core during various mechanisms

[1, 2]. When FEB propagates through dense plasma, it will

drive a background plasma electron return current which

coincides spatially with the fast electron current and can-

cels the fast electron current to a good approximation [5].

The physics of the fast electron generation and trans-

portation through over-dense plasmas and the coupling

efficiency of short-pulse energy into the compressed core

are an important issue for FIS. A wide range of experi-

mental results has confirmed the characteristic fast electron

divergence angles [6]. Therefore, the possibility of colli-

mating a relativistic electron beam (REB) with the com-

pressed core size to overcome the limitations of the

coupling efficiency imposed by the transverse angular

distribution of a fast electron beam, is a fundamental

demand for a FI-viable point design.

Investigating how to control fast electron transportation

and improve the coupling into the compressed core has

attracted great attention. Various ideas and considerable

works have been presented, which results include: fast

electron self-collimation by resistively generated magnetic

fields (due to beam profile or resistivity gradients) [7],

electrostatic confinement by a vacuum gap (double-cone

target) [8], imposed axial magnetic fields [9], the use of

two consecutive laser pulses [10], and so on.

Theoretical and numerical calculations, to the best of

our knowledge, revealed that a structure with a density

gradient (a target of a low-density core–high-density-

cladding structure) in a transverse direction to the flow

velocity of a fast electron beam is able to produce a

spontaneous interface magnetic field that can reach as high

as hundreds of mega-Gauss. This method was first devel-

oped by Hong-bo-Cai et al. [11]. The results of studies

have indicated that this scheme (applying a target structure
*Corresponding author, E-mail: m-niroozad@phd.araku.ac.ir;

niroozadmona@gmail.com

Indian J Phys (April 2023) 97(4):1285–1293

https://doi.org/10.1007/s12648-022-02479-w

� 2022 IACS

http://crossmark.crossref.org/dialog/?doi=10.1007/s12648-022-02479-w&amp;domain=pdf
https://doi.org/10.1007/s12648-022-02479-w


with a density gradient in a transverse direction to the flow

velocity of a fast electron beam) can collimate the fast

electron beams as well as more effectively couple the fast

electron energy to the compressed core [12].

In previous studies, the magnetic field generation in

such a structure has been analyzed in the case of trans-

portation of fast electrons with homogeneous density pro-

file [11, 13]. We will now, however, investigate the more

general cases where the inhomogeneous density distribu-

tions for fast electron beams are considered since these

distributions fit well the profile obtained in simulations and

experimental works [14–16].

This paper is structured as follows: The theoretical

model (coupled Maxwell and electron fluid equations) and

governing equations of the evolution of a beam-plasma

system are presented in Section 2. Section 3 is dedicated to

the calculations of self-generated magnetic fields for

transporting fast electrons with Gaussian and super-Gaus-

sian density profiles. Section 4 provides the results as well

as a comparison between the self-generated magnetic field

for fast electron beams with Gaussian and homogeneous

density profiles. This section continues through a detailed

discussion on the inhomogeneous density profiles propa-

gating through the structured targets. Finally, a brief con-

clusion is given in Section 5.

2. Analytical model

Passing the fast electron beam through the plasma gener-

ates electric fields and a return current of background

electrons. The self-generated magnetic field is calculated

using a ‘‘rigid beam’’ approach proposed by Davies et al

[14, 15].

The cylindrical beam with radial heterogeneity propa-

gates with an average velocity v0 along the z axis. The ions

are supposed to be immobile and form a charge-neutral-

izing background. Assumptions are since a spontaneous

generated magnetic field can develop in a very short time,

we neglect the collision term, the plasma density is much

higher than the electron beam (np � nb), background

plasma flow is non-relativistic, the plasma electrons are

cold (the flow velocity is much higher than the electron

thermal velocity; then, the energy transfer from the flow to

the background plasma is weak, i.e., the electron thermal

temperature of the background plasma is hard to increase in

such a short time (* pulse duration of the flow, e.g.,

*100fs[17])), the background electrons can be treated as a

single non-relativistic cold collision-less fluid.

The electron fluid equations, together with the Maxwell

equations, comprise a complete system of equations

describing the system response to the fast electron beam

propagation [11, 13, 18]. The continuity equation and the

non-relativistic electron fluid equation are written as:

on

ot
þr� nveð Þ ¼ o ð1Þ

ope
ot

þ ve � rð Þpe
� �

¼ �e Eþ 1

c
ve � B

� �
ð2Þ

where �e; ve; pe ¼ mve;m;EandB are the electron charge,

the flow velocity of the background electrons, the

momentum of the background electrons, the electron rest

mass, the electric and magnetic fields, respectively.

Maxwell’s equations for the self-generated electric and

magnetic fields, E and B, are given by

r� B ¼ 4p
c

�enpe=mþ J0ð Þ ð3Þ

r � E ¼ � 1

c

oB

ot
ð4Þ

where J0 is the fast electron current. For long beams, with a

pulse length of lb � v0=xp, the displacement current ( 1
c
oE
ot )

is much less than the electron current (of the order

v0=xplb
� �2 � 1), so the displacement current term is

neglected[19], and v0and xp are the fast electron beam

velocity and background plasma frequency. By the curl of

Eq. (2) and using Eq. (4) we have

oX

ot
�r� ve �Xð Þ ¼ 0

which can be rewritten in the form:

oX
ot

þ ve � rð ÞX ¼ �X r � veð Þ þ X � rð Þve ð5Þ

where X ¼ r� pe � eB=c is the generalized vorticity.

Equation (5) governs the evolution of generalized vorticity

in plasma. The equation shows that the generalized

vorticity is transported with the electrons, also if at initial

times X ¼ 0, then it will be zero at all times[18]. Thus the

self-generated magnetic fields B related to curl of the

electron flow momentum pe[13, 18]:

B ¼ c

e
r� pe ð6Þ

Equation (6) can be expressed as follows:

Bu rð Þ ¼ � c

e

opez rð Þ
or

ð7Þ

Using Eqs. (6) and (3), we obtain the self-generated

magnetic field for the collision-less plasmas:
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B ¼ mc

e2
1

n
r� J0 �

1

n2
rn� J0

� �
� mc2

4pe2
r

� 1

n
r� B

� �
ð8Þ

The first term of Eq. (8) generates a magnetic field that

pushes the fast electrons toward regions of higher fast

electron current density, and the second term guides the

fast electrons toward regions of lower density. The third

term describes the interaction of the self-generated

magnetic field with the plasmas of the multilayered

target. In the present case, in which the fast electron

beam is transported to the engineered structure target with

an inhomogeneous current density profile, two mechanisms

can generate a magnetic field, which are as follows:

(1) A structure with a density gradient in a transverse

direction (perpendicular) to the flow velocity of a fast

electron beam ðrn� J0Þ.
(2) A spatial variation in the density of propagating fast

electron current ðr � J0Þ.

3. Magnetic fields generating by fast electron beams

with Gaussian and super-Gaussian density profiles

in cylindrical targets

The self-generated magnetic field is calculated for a

cylindrical target structure with a low-density core and

high-density cladding. Figure 1 shows three regions of the

target. The core of the target is regarded as annular with

inner radius r1 and outer radius r2. The plasma electron

densities n1,n2;n3 and ion densities of the background

plasma for three different regions are:

ni1 o\r\r1
ni2 r1\r\r2
ni3 r2\r\r3

8<
: ð9Þ

Also, the densities of the fast electron beam for three

regions are nb1;nb2, and nb3, respectively. The quasi-

neutrality condition is satisfied for each region as follows:

nj ¼ zjnij � nbj j ¼ 1;2;3ð Þ ð10Þ

where nj is the background electron density and zj is the

charge state for the j-th region.

In cylindrical geometry, the flow velocity of the back-

ground electrons is obtained from Eqs. (2-8). The velocity

just depends on r.

mc2

4pe2
d2vez rð Þ
dr2

þ 1

r

dvez rð Þ
dr

� �
¼ nvez rð Þ þ nbv0 ð11Þ

Consider the propagation of a fast electron beam with

inhomogeneous density profile in the low-density core (the

main core) along the z-axis. The density distribution of the

fast electron beam is assumed to be Gaussian for l ¼ 1 or

super-Gaussian for l[ 1 that is given by:

nb2 ¼ n0exp � 2
r � k1
r2 � r1

� �� �2l" #
ð12Þ

where k1 ¼ r2 þ r1ð Þ=2, and r is the radial distance. The

maximum value of the density is defined n0. The tail of the

density function affects the first and third regions. In fact,

in this section, beams with more realistic distributions are

considered. This density function is a better description of

reality.

We can rewrite Eq. (11) as:

d21
d2vez rð Þ
dr2 þ 1

r
dvez rð Þ
dr

h i
� vez rð Þ þ v01nb1

n1

h i
¼ 0 o\r\r1

d22
d2vez rð Þ
dr2 þ 1

r
dvez rð Þ
dr

h i
� vez rð Þ½ � ¼ v02n0

n2
exp � r�k1ð Þ

r2�r1
2ð Þ

� �2l" #
r1 � r� r2

d23
d2vez rð Þ
dr2 þ 1

r
dvez rð Þ
dr

h i
� vez rð Þ þ v03nb3

n3

h i
¼ 0 r[ r2

ð13Þ

where dj ¼ c=xpj is the collisionless electron skin depth

and xpj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pnje2=m

p
j ¼ 1;2;3ð Þ is the electron plasma

frequency for the background plasma in the j-th region.

Equation (13) is homogeneous modified Bessel equa-

tions (for the first and third regions) and the inhomoge-

neous modified Bessel equation for the second region

which their solutions are as follows [20]:

vez rð Þ ¼

c1Io
r
d1

	 

� v01nb1

n1
o\r\r1

c2u1 rð ÞIo r
d2

	 

þ c3u2 rð ÞKo

r
d2

	 

r1 � r� r2

c4Ko
r
d3

	 

� v03nb3

n3
r[ r2

8>>><
>>>:

ð14Þ

where Io r=dj
� �

and Ko r=dj
� �

are the zero order of the

modified Bessel functions. The constants c1,c2,c3,c4 and

functions u1 rð Þ,u2 rð Þ are reported in Appendix. The con-

stants ci are determined from the boundary conditions.Fig. 1 The sketch of the low-density core–high-density-cladding

target structure in cylindrical geometry.
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A spontaneous magnetic field will be obtained by sub-

stituting Eq. (14) into Eq. (7),

where the prime on the function u rð Þ is derivative relative

to r.

4. 4-Effects of the electron beam density distribution

on magnetic fields

Figure 2 depicts the density profile of a fast electron beam

with Gaussian density distribution vs. radius (the Gaussian

profile was chosen because it is the most probable shape of

the distribution for generated fast electrons [21]). The

density profile is normalized by the critical density nc, with

the order of nc 	 1019cm�3ð Þ.
Figure (3a)and (b) shows the normalized magnetic fields

by Bo ¼ mecxp2=e. The quantity of Bo can be as high as

several tens of mega-Gauss. The numerical parameters

used for collimating magnetic field calculations in this

model based on the simulation parameters [19] are:

v02 	 c; nb1 ¼ nb3 

0; nb2
n2


 0:5; n1 ¼ n3


 40n2; d2 	 0:5� 10�6m;

r1 ¼ 8� 10�6m;r2 ¼ 15� 10�6m.

Figs. 3 The magnetic field generated by the homoge-

neous fast electron beam has a maximum magnitude at the

interfaces and then decreases rapidly. Numerical compar-

ison of the magnetic fields at interfaces for the homoge-

neous beam density Bh and the Gaussian beam density BG

shows that BG is 60-100 times smaller than Bh. However,

the magnetic fields BG act over longer distances and extend

throughout the main core. In fact, the width of the colli-

mating magnetic field increases. Electron beams with the

Fig. 2 The Gaussian electron beam density of the middle layer for r1 ¼ 8� 10�6m,r2 ¼ 15� 10�6, and n0 
 1nc.

Bu rð Þ ¼ mc

e

� C1

d1
I1

r
d1

	 

o\r\r1

�c2 u01 rð ÞIo r
d2

	 

þ

u1 rð ÞI1 r
d2

	 

d2

2
4

3
5� c3½u02 rð ÞKo

r
d2

	 

�

u2 rð ÞK1
r
d2

	 

d2

� r1 � r� r2

c4
d3
K1

r
d3

	 

r[ r2

8>>>>>><
>>>>>>:

ð15Þ
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homogeneous density generate strong azimuthal magnetic

fields with steep gradients form at the interfaces of the

layers and penetrate the inner region, which is over a

characteristic skin depth [11]. In the Gaussian electron

beam, two terms of density jump and inhomogeneous

propagation of fast electrons contribute to the generation of

magnetic field.

As mentioned, when the fast electron beam with a

Gaussian density distribution in radius flows into the target

structure, the self-generated fields at interfaces are very

smaller than that produced by the transportation of electron

Fig. 3 The normalized self-

generated magnetic field as a

function of the radius, for the

propagation of a fast electron

beam with a) homogeneous

density profile and b) Gaussian

density profile.
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beams with homogeneous density profile in the dense core.

This is because, during the transportation of a beam with

Gaussian density distribution, very few fast electrons are

located at the boundary regions compared to the homoge-

neous distribution. This leads to reducing the fast electron

current density in the vicinity of the interfaces. Since the

non-parallel density gradient term to the flow velocity of a

fast electron beam ðrn� J0Þ plays a dominant role in

generating the magnetic field at the boundary regions, the

effect of the mentioned term on the production of the

magnetic field decreases significantly. The effect of non-

parallel density gradient on the generation of magnetic field

and the guidance of fast electrons only present at the

interfaces of a low-density core with a high-density clad-

ding. The gradient in the fast electron current density,

however, results in the magnetic field inside the inner layer.

Collimation of the fast electrons is affected by the

extended magnetic field. This is because the ability of a

guiding structure to confine fast electrons depends on the

ratio of the fast electron Larmor radius rL ¼ cvf me=eBu
� �

to the generated azimuthal magnetic field width Lr. The

confinement condition of the fast electrons along the

guiding structure is expressed as [22, 23]:

BuLr �
cvfme

e
1� coshdð Þ ð16Þ

where Bu is the azimuthal magnetic flux density, vf is the

fast electron velocity, c is the Lorentz factor, me is the

electron rest mass, and hd is the fast electron divergence

angle (the angle between the fast electron and the target

axis). This confirms that the product of BuLr must be larger

than that the fast electron momentum to reflect the fast

electrons back toward the guiding structure axis[22, 24].

Whereas the laser-generated incident fast electrons enter

the core with a wide distribution of angles, they may be

affected by these extended magnetic fields at the different

radii and some fast electrons are concentrated at distances

far from the interfaces. So, only a part of fast electrons with

sufficiently high angles can escape through the boundary

areas and feel magnetic fields with higher intensity.

Therefore, the electron transportation pattern can be more

beneficial to improve the energy coupling efficiency and

heating the dense core.

Figure 4 shows the comparison of the Gaussian and

super-Gaussian densities [25]. Increasing the power of

inhomogeneous density profile for the fast electron beam

that was introduced in Eq. (12) causes larger values of the

self-generated extended magnetic fields in the boundary

regions. It happens, because the higher the power of fast

electron current density profiles, the sharper they are

around the boundary areas. In fact, by increasing the power

of the function, the amount of density variations (Djb2Dr ), in

these radial intervals, increases and the impact of gradient

term on the fast electron current density becomes more

pronounced. Figure 5 shows the comparison of the mag-

netic fields generated by the Gaussian and super-Gaussian

fast electron beams in specially engineered multilayer

targets vs. radius. In summary, we have observed that as we

move closer to the center of the fast electron beam

Fig. 4 The normalized electron

beam density for Gaussian and

super-Gaussian profiles.
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distributions, the trend of the beam density profiles influ-

ences the magnetic field direction and magnitude.

Additionally, the sharper density increases the magnetic

field in the dense core. Figure 4 shows that the Gaussian

shape at some intervals, for example 11\r\13, has the

most changes, which leads to the production of a greater

magnetic field.

5. Conclusions

We developed a theoretical model for the propagation of a

fast electron beam with inhomogeneous density profiles in

a radial direction through a cylindrical specially engineered

multilayer target. The analytical solutions for the magnetic

field generated by an inhomogeneous fast electron beam

have been determined in the Gaussian and super-Gaussian

cases. In this situation the generation of magnetic field is

due to two different mechanisms: (1) non-parallel density

gradient to the flow velocity of a fast electron beam and (2)

the gradient of the fast electron current density propagating

into the target structure. Then, we compared the self-gen-

erated magnetic fields due to the propagation of fast elec-

tron beams with Gaussian density distributions and the

homogeneous fast electron beams in cylindrical structures

of the same density. The results show that as the Gaussian

(or super-Gaussian) beams propagate through a target

structure, the magnitude of the self-generated magnetic

field at the interfaces reduces enormously and significantly

as compared to homogeneous density beams. It is because

of the lower accumulation of fast electrons at the bound-

aries. But the Gaussian and super-Gaussian beams extend

the length of the resulting magnetic field and reduce the

magnetic field gradient at the interfaces.

Also, a comparative study on the extended magnetic

field result from the fast electron beams with the Gaussian

and super-Gaussian density profiles shows that the beam

distribution shape and the trend of density changes, influ-

ence the magnetic field. The above calculations indicate

that, when fast electrons with Gaussian and super-Gaussian

density profiles propagate in cylindrical specially engi-

neered multilayer targets, although tend to broaden the

magnetic fields throughout the core region and may affect

the electron transportation pattern, they are no longer able

to produce the magnetic fields with magnitudes of the order

of tens of mega-Gauss at interfaces.

Here for the first time we study the transportation of a

relativistic electron beam through a cylindrical specially

engineered multilayer target with more realistic density

distributions through a theoretical model. Important aspects

of this paper, as mentioned before, are the prominent

reduction of the self-generated magnetic fields at the

interfaces of the layers as well as the increase in the width

of the resulting magnetic fields. Consequently, these results

can be useful and notable for future investigations and

Fig.5 Comparison of

normalized self-generated

magnetic fields generated by the

Gaussian and super-Gaussian

electron beams.
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experimental studies. Having considered them, it is possi-

ble to take place promising progress in this area.

It should be noted that this simple analytical model is

only used to gain insight into the generation of a sponta-

neous magnetic field when a fast electron beam with

inhomogeneous density profile in a radial direction prop-

agates in a cylindrical specially engineered multilayer

target and the effects of different instabilities (such as fil-

amentation and two-stream instabilities) in fast electron

beam–plasma interactions in this suggested model and our

equations are not taken into account. In fact, a proper

analysis of these physical processes needs more complex

and accurate models that are not the purpose of our study.

Since the self-generated magnetic field can develop in a

very short time (of the order of a hundred femtoseconds), in

this investigation, the focus is put on this early stage.

However, such considerations are ignored in our simple

model, but this kind of process during fast electron beam–

plasma interactions in a fast ignition scenario needs further

study.

Appendix

The functions u1 rð Þ and u2 rð Þ introduced in Eqs. (14) are

calculated as follows:

u1 rð Þ ¼ r
r2

r

v02n0
n2

exp �4
r � k1
r2 � r1

� �2
" #

Ko
r

d2

� �
rdr

u2 rð Þ ¼ � r
r

r1

v02n0
n2

exp �4
r � k1
r2 � r1

� �2
" #

Io
r

d2

� �
rdr

Also, the constants c1,c2, c3, and c4are derived as

follows:

c1 ¼ c2u1 r1ð Þ þ v01nb1

n1Io
r1
d1

	 


c2 ¼

�d2c3 u2
0
r1ð ÞKo

r1
d2

	 

þ v01nb1

n1

d2I1
r1
d1

	 


d1Io
r1
d1

	 


u1
0
r1ð Þd2Io r1

d2

	 

þ u1 r1ð ÞI1 r1

d2

	 

�

d2u1 r1ð ÞIo r1
d2

	 

I1

r1
d1

	 


d1Io
r1
d1

	 

2
4

3
5

A1 ¼ u1
0
r2ð ÞIo

r2
d2

� �� �
v01nb1
n1

I1
r1
d1

	 


d1Io
r1
d1

	 

0
@

1
A

A2 ¼
v03nb3
n3

K1
r2
d3

	 


d3Ko
r2
d3

	 

2
4

u1
0
r1ð ÞIo

r1
d2

� �
þ
u1 r1ð ÞI1 r1

d2

	 

d2

�
u1 r1ð ÞIo r1

d2

	 

I1

r1
d1

	 


d1Io
r1
d1

	 

2
4

3
5
3
5

A3 ¼ u2
0
r2ð ÞKo

r2
d2

� �
�
u2 r2ð ÞK1

r2
d2

	 

d2

þ
u2 r2ð ÞKo

r2
d2

	 

K1

r2
d3

	 


d3Ko
r2
d3

	 

2
4

3
5

A4 ¼ u1
0
r1ð ÞIo

r1
d2

� �
þ
u1 r1ð ÞI1 r1

d2

	 

d2

�
u1 r1ð ÞIo r1

d2

	 

I1

r1
d1

	 


d1Io
r1
d1

	 

2
4

3
5

A5 ¼ u2
0
r1ð ÞKo

r1
d2

� �� �
u1
0
r2ð ÞIo

r2
d2

� �� �

c3 ¼
A1 þ A2

�A3A4 þ A5

c4 ¼
c3u2 r2ð ÞKo

r2
d2

	 

þ v03nb3

n3

Ko
r2
d3
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