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Abstract: In this paper, we have explored the features of the five-dimensional Bianchi type-I cosmological universe filled

with barotropic fluid and dark energy within the framework of Saez-Ballester theory of gravitation. Field equations have

been solved by assuming the different functional forms of metric potentials, i.e., A ¼ B ¼ C ¼ tn and D ¼ tn1 . The value of

the equation of state parameter and other kinematical parameters have been obtained for both interacting and non-

interacting scenarios. The characteristics of physicals parameters are also explained. The obtained results are compatible

with the recent observational data.
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1. Introduction

Our universe is experiencing accelerated expansion that

has been validated by many cosmological observations

such as Type 1a Supernova [1, 2]. According to data from

CMB and large-scale structure, a fluid with negative

pressure, known as dark energy, is causing cosmic accel-

eration. Though dark energy dominates the universe, yet its

origin is still mystic. Moreover, WMAP estimates that

nearly 73, 23, and 4% of our universe filled up with dark

energy, dark matter and normal matter, respectively. Cos-

mological constant is defined as energy density associated

with vacant space or as vacuum energy having negative

pressure which causes expansion of the universe. K has

proven best candidate to represents as dark energy com-

ponent but KCDM has some serious issues given by cos-

mological constant fine- tuning problem and cosmic

coincident problem [3]. Hence, Scalar field models such as

quintessence [4–6], phantom [7], k-essence [8, 9], Tachyon

[10], and Quintom [11] have been explored to understand

the universe following cosmic acceleration. The Dark

Energy can be represented by the equation of state (EoS)

x ¼ p
q where p is the pressure and q is energy density. It

has become mathematically equivalent to the cosmological

constant K in the case of ðx ¼ �1Þ. Peebles and Ratra [12]

have given a brief review on the cosmological constant and

dark energy. Nojiri and Odintsov [13] have given a detailed

review of different modified gravities. Also, the Big rip and

other singularities have been discussed with their solutions.

Bamba et al. [14] have reviewed different dark energy

models, namely the KCDM model with a fluid description

of dark energy. Moreover, they analyzed the various cos-

mological observation tests and modified gravity models.

Several scalar-tensor theories have been a matter of

interest to researchers in the last few years. After the for-

mation of the scalar-tensor theories proposed by Brans and

Dicke [15], Nordvedt [16], Barber [17], Saez and Ballester

[18] introduced a scalar-tensor theory in which the metric

is coupled with a dimensionless scalar field in a simple

manner. Whereas, in Brans–Dicke’s theory, simply a scalar

field / is coupled to the mass density of the universe and it

is reciprocal of time-varying gravitational constant G. The

Saez-Ballester theory gives a good enough description of

the weak fields and thought-provoking results of scalar

field. Despite having the dimensionless character of the

scalar field, the antigravity regime appears in weak fields.

Furthermore, the theory offers a feasible approach to fig-

uring out the missing matter problem in non-flat FRW

models. Rao et al. [19], Rao et al. [20], Pradhan et al. [21],

Reddy et al. [22] have worked upon different aspects of this

theory. Moreover, Naidu et al. [23], Ghate and Sontakke

[24], Vinutha et al. [25] have investigated dark energy

models in Saez-Ballester theory of gravitation.
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WMAP and CMB data suggest that the inclusion of a

small amount of anisotropy can be seen in the early phase

of the universe. The spatially homogeneous and anisotropic

universe became the area of interest to the researchers.

Bianchi models had proved very useful to understand the

anisotropic universe. Bianchi type-I models are the most

understandable model of the universe because of their

ability to explain the spatially homogeneous, anisotropic,

and flat universe. Also, Bianchi-I cosmology can explain

the flat FLRW universe as a special case. A desirable

feature of these models is the field equations used in these

models are very simplified. A tremendous amount of work

has been done on Bianchi-I cosmologies. In the literature,

Pradhan and singh [26], Saha [27], Singh and Tiwari [28],

Adhav et. al. [29], Mahanta and Biswal [30], Katore and

Kapse [31] worked upon Bianchi -I models in different

theories of gravitation. Aditya and Reddy [32] have studied

Bianchi -I model in saez-ballester theory of gravitation.

Recently, Mishra and Dua [33] have studied Bianchi type-I

cosmological model in Saez-Ballester theory with variable

deceleration parameter.

Kaluza and Klein [34, 35] developed the idea of the

extra dimension by unifying gravitation and electromag-

netism. But the fifth dimension remains small which leads

to our universe effectively looking four dimensional. It was

hard to explain the early-stage evolution of the universe

just After the Big Bang explosion. Hence, higher-dimen-

sional models came out with the aim to understand early-

stage evolution. The flatness and horizon problems can be

solved by generating large amount of entropy, which is

possible in the presence of the extra dimension [36, 37].

Marciano [38] has invesigated how the low-energy cou-

plings and masses are related. The parameters are found

time varying which may indicate the presence of extra

dimensions. In the 1980s, many authors explained the idea

of how external dimensions expand while internal dimen-

sions contract [39–41]. Recently, Akarsu et al. [42] have

studied the impact of the unobservable universe on the

evolution of the possible anisotropy of the observable

universe by considering a five-dimensional Bianchi type-I

metric within the framework of extension of the conven-

tional general theory of relativity with a five-dimensional

cosmological constant. Moreover, higher dimensions play a

significant role in the development of string theories. The

existence of higher dimensions can influence the unifica-

tion of fundamental forces. This results in many authors

have studied higher-dimensional models [39, 43, 44].

Katore et al. [45] and Reddy et al. [46] studied higher-

dimensional models within the framework of Saez-ballet-

ser theory of gravitation. Reddy and Ramesh [47] have

investigated five-dimensional dark energy model in the

presence of scalar-meson fields in general relativity. Zim-

dahl and Pavo’n [48] have investigated that the coincidence

problem can be solved by an interaction between dark

energy and dark matter. Barrow and Clifton [49] have

given a mathematical model which describes the energy

transfer between two fluids in an expanding Friedmann

universe with zero spatial curvature. The interacting and

non-interacting behavior of barotropic fluid and dark

energy is capable of explaining cosmic acceleration.

Hence, Reddy et al. [50, 51] have discussed two fluid

scenario for dark energy model in Saez-Ballester and

Brans-Dicke theories of gravitation. Singh and Chaubey

[52] have investigated an interacting scenario of Dark

energy and Barotropic fluid in Bianchi-I cosmologies.

Also, Singh and Chaubey [53] studied interacting scenario

of two fluids in Bianchi-V cosmological model. Amir-

hashchi et al. [54] have studied interacting two-fluid vis-

cous dark energy models in a non-flat universe. Moreover,

Vinutha et al. [55], Tiwari et al. [56] have discussed both

interacting and non-interacting behavior of dark energy and

barotropic fluid. Rao et al. [57] have discussed two-fluid

scenario for dark energy cosmological model in higher

dimension in the framework of Saez-Ballester theory of

gravitation. Recently, Goswami et al. [70] have obtained

Bianchi-I models with dark energy and barotropic fluid in

general relativity.

Inspired by the above research work, in this paper we

will discuss Bianchi-I universe filled with dark energy and

barotropic fluids in saez-ballester theory of gravitation. We

have structured this paper as follows. Section 2 contains the

field equation for Bianchi Type-I universe. Section 3 rep-

resents non-interacting two fluid model. Physical parame-

ters for case I and case II are estimated in subsections 3.1

and 3.2. In Sect. 4, interacting two fluid model is described

and subsecs. 4.1, 4.2 contain Physical parameters for case I

and case II. Graphs and concluding remarks are presented

in Sect. 5.

2. Metric and field equations

Here, we have taken five-dimensional Bianchi type-I

metric in the form

ds2 ¼ �dt2 þ A2dx2 þ B2dy2 þ C2dz2 þ D2dw2 ð1Þ

where the metric potentials A, B, C and D are functions of

cosmic time t. The field equation in scalar-tensor theory

proposed by Saez and Ballester are given by

Gij � x/n /;i/;j �
1

2
gij/;k/

;k

� �
¼ �Tij ð2Þ

and the scalar field / satisfies the equation

2/n/;i
;i þ n/n�1/;k/

;k ¼ 0 ð3Þ
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where Gij is Einstein tensor, n is an arbitrary constant, x is

a dimensionless coupling constant, comma and semicolon

denotes partial and covariant differentiation, respectively.

The equation of motion is given by

Tij
;j ¼ o ð4Þ

It is a consequence of the field Eqs. (2) and (3). Now, the

energy momentum tensor for the obtained model of two

fluids is defined as

Tij ¼ T
ðdeÞ
ij þ T

ðmÞ
ij ð5Þ

where T
ðdeÞ
ij and T

ðmÞ
ij represent the energy momentum

tensors of dark energy and ordinary matter (barotropic uid),

respectively, and defined as

T
ðdeÞ
ij ¼ diag½�qde; pde; pde; pde; pde�

¼ diag½�1;xde;xde þ a;xde þ b;xde þ b�qde
ð6Þ

and

T
ðmÞ
ij ¼ diag½�qm; pde; pm; pm; pm�

¼ diag½�1;xm;xm;xm;xm�qm
ð7Þ

where xde ¼ pde
qde

represents the equation of state parameter

(EoS) for dark energy. pde and qde are the pressure and

energy density of dark energy. a and b are considered as

skewness parameters, which represent the deviations from

xde on y and z;w axis, respectively. Similarly, pm and qm
denote, respectively, the pressure and energy density of the

barotropic uid component while xm ¼ pm
qm

is the corre-

sponding EoS parameter.

The field equations (2), (3) and (4) for the metric (1),

with the help of (5),(6) and (7), lead to

€B

B
þ

€C

C
þ

€D

D
þ

_B _C

BC
þ

_B _D

BD
þ

_C _D

CD
� 1

2
x/n _/

2

¼ �xdeqde � xmqm

ð8Þ

€A

A
þ

€C

C
þ

€D

D
þ

_A _C

AC
þ

_A _D

AD
þ

_C _D

CD
� 1

2
x/n _/

2

¼ � xde þ að Þqde � xmqm

ð9Þ

€A

A
þ

€B

B
þ

€D

D
þ

_A _B

AB
þ

_A _D

AD
þ

_B _D

BD
� 1

2
x/n _/

2

¼ � xde þ bð Þqde � xmqm

ð10Þ

€A

A
þ

€B

B
þ

€C

C
þ

_A _B

AB
þ

_B _C

BC
þ

_A _C

AC
� 1

2
x/n _/

2

¼ � xde þ bð Þqde � xmqm

ð11Þ

_A _B

AB
þ

_B _C

BC
þ

_A _C

AC
þ

_A _D

AD
þ

_B _D

BD
þ

_C _D

CD
þ 1

2
x/n _/

2

¼ qde þ qm

ð12Þ

€/þ _/
_A

A
þ

_B

B
þ

_C

C
þ

_D

D

� �
þ n

2

_/
2

/
¼ 0 ð13Þ

where overhead dot represents differentiation with respect

to the cosmic time t. Also, the energy conservation

equation (4) leads to

_qde þ 4qdeðxde þ 1ÞH þ qde aH2 þ bH3 þ cH4ð Þ þ _qm

þ 4qmðxm þ 1ÞH ¼ 0

ð14Þ

where H is average Hubble parameter and H2;H3;H4 are

directional Hubble parameters.

3. Non-interacting two-fluid model

We consider that two fluids do not interact with each other

in the universe. The assumption of non-interacting behav-

ior of dark energy and barotropic fluid is represented by

these two separate equations as obtained from eq.(14).

_qde þ 4qdeðxde þ 1ÞH þ qde aH2 þ bðH3 þ H4Þð Þ ¼ 0

ð15Þ

and

_qm þ 4qmðxm þ 1ÞH ¼ 0 ð16Þ

EoS parameter of barotropic uid xm is constant (Akarsu

[59] and Kilinc [60]), that is

xm ¼ pm
qm

¼ constant ð17Þ

whereas, xde is considered as a function of cosmic time.

Hence, integrating Eq.(16) we get,

qm ¼ q0a
�4ð1þxmÞ ð18Þ

where q0 is constant of integration and a is scale factor.

In order to solve highly nonlinear field Eqs. (8)-(13), we

will use the assumption, that is,

A ¼ B ¼ C ¼ tnand D ¼ tn1 ð19Þ

Bhabor et al. [61] have used this transformation to find

solution of the highly nonlinear field equations. where n

and n1 are constants.

Now, using Eq. (19), the field Eqs. (8)–(12) reduce to

the following equations
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3n2 þ n21 þ 2nn1 � 2n� n1
t2

� 1

2
x/n _/

2 ¼ �xdeqde

� xmqm

ð20Þ

3n2 þ n21 þ 2nn1 � 2n� n1
t2

� 1

2
x/n _/

2 ¼ � xde þ að Þqde
� xmqm

ð21Þ

3n2 þ n21 þ 2nn1 � 2n� n1
t2

� 1

2
x/n _/

2 ¼ � xde þ bð Þqde
� xmqm

ð22Þ

6n2 � 3n

t2
� 1

2
x/n _/

2 ¼ � xde þ bð Þqde
� xmqm

ð23Þ

3n2 þ 3nn1
t2

þ 1

2
x/n _/

2

¼ qde þ qm

ð24Þ

Subtracting Eq. (22) from Eq. (23), we get two values of n1

n1 ¼ n ð25Þ

n1 ¼ �3nþ 1 ð26Þ

Hence, dark energy model with barotropic fluid for two

different scenarios can be obtained for the above two val-

ues of n1.

3.1. Case 1: when n1 ¼ n

The metric (1) can be written as

ds2 ¼ �dt2 þ t2n dx2 þ dy2 þ dz2 þ dw2
� �

ð27Þ

and from Eq. (19), we have

A ¼ B ¼ C ¼ D ¼ tn ð28Þ

The directional Hubble parameters are as follows,

H1 ¼ H2 ¼ H3 ¼ H4 ¼
n

t
ð29Þ

Average Hubble parameter,

H ¼ n

t
ð30Þ

Spatial Volume,

V ¼ ABCD ¼ a4 ¼ t4n ð31Þ

The expansion scalar,

h ¼ 4n

t
ð32Þ

The shear scalar,

r2 ¼ 0 ð33Þ

The Anisotropy parameter,

Ah ¼ 0 ð34Þ

The ratio,

r2

h2
¼ 0 ð35Þ

Deceleration parameter,

q ¼ 1� n

n
ð36Þ

Now, using Eq.(28) in Eq. (13) and integrating, we get

/ ¼ nþ 2

2

� �
/0

1� 4n
t1�4n þ c ð37Þ

where /0 and c are constants of integration.

using Eqs. (18), (25), (37) in Eq. (24), we obtain dark

energy density as

qde ¼
6n2

t2
þ x

2

/2
0

t8n
� q0
t4nð1þxmÞ

ð38Þ

The deviation free part of Eq. (15) with the help of

Eq. (38), gives the value of EoS parameter of dark energy,

xde ¼ �
3n
t2 2n� 1ð Þ � x

2

/2
0

t8n þ
xmq0

t4nð1þxmÞ

6n2

t2
þ x

2

/2
0

t8n
� q0

t4nð1þxmÞ

2
4

3
5 ð39Þ

the pressure of dark energy is given by,

pde ¼ � 3n

t2
2n� 1ð Þ � x

2

/2
0

t8n
þ xmq0
t4nð1þxmÞ

� �
ð40Þ

The skewness parameters,

a ¼ b ¼ 0 ð41Þ

Dark energy density parameter can be defined as

Xde ¼
qde
3H2

¼ 2þ x/2
0

6n2
t2ð1�4nÞ � q0

3n2
t2ð1�2nð1þxmÞÞ ð42Þ

density parameter of barotropic fluid can be defined as

Xm ¼ qm
3H2

¼ q0
3n2

t2ð1�2nð1þxmÞÞ ð43Þ

Hence, the overall density parameter can be obtained as

X ¼ Xde þ Xm ¼ 2þ x/2
0

6n2
t2ð1�4nÞ ð44Þ

jerk parameter,

j ¼ qþ 2q2 � _q

H
¼ ð1� nÞð2� nÞ

n2
ð45Þ
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3.2. Case 2: when n1 ¼ �3nþ 1

The metric (1) can be written as

ds2 ¼ �dt2 þ t2n dx2 þ dy2 þ dz2
� �

þ t2ð�3nþ1Þdw2 ð46Þ

and from Eq. (19), we have

A ¼ B ¼ C ¼ tn;D ¼ t�3nþ1 ð47Þ

The directional Hubble parameters are as follows,

H1 ¼ H2 ¼ H3 ¼
n

t
;H4 ¼

ð�3nþ 1Þ
t

ð48Þ

Average Hubble parameter,

H ¼ 1

4t
ð49Þ

Spatial Volume,

V ¼ ABCD ¼ a4 ¼ t ð50Þ

The expansion scalar,

h ¼ 1

t
ð51Þ

The shear scalar,

r2 ¼ 3

8t2
ð4n� 1Þ2 ð52Þ

The Anisotropy parameter,

Ah ¼
3

2
ð4n� 1Þ2 ð53Þ

The ratio,

r2

h2
¼ 3

8
ð4n� 1Þ2 ð54Þ

Deceleration parameter,

q ¼ 3 ð55Þ

Now, using Eq.(46) in Eq. (13) and integrating, we get

/ ¼ nþ 2

2

� �
/0logt þ c ð56Þ

where /0 and c are constants of integration.

using Eqs. (18), (26), (56) in Eq. (24), we obtain dark

energy density which is given by

qde ¼
3n

t2
ð1� 2nÞ þ x

2

/2
0

t2
� q0
tð1þxmÞ

ð57Þ

The deviation free part of Eq. (15) with the help of

Eq. (57), gives the value of EoS parameter of dark energy,

xde ¼ �
3n
t2 2n� 1ð Þ � x

2

/2
0

t2 þ
xmq0
tð1þxmÞ

3n
t2
ð1� 2nÞ þ x

2

/2
0

t2
� q0

tð1þxmÞ

2
4

3
5 ð58Þ

the pressure of dark energy is given by,

pde ¼ � 3n

t2
2n� 1ð Þ � x

2

/2
0

t2
þ xmq0
tð1þxmÞ

� �
ð59Þ

The skewness parameters,

a ¼ b ¼ 0 ð60Þ

Dark energy density parameter can be defined as

Xde ¼
qde
3H2

¼ 16nð1� 2nÞ þ 8x/2
0

3
� 16q0

3
tð2�ð1þxmÞÞ

ð61Þ

density parameter of barotropic fluid can be expressed as

Xm ¼ qm
3H2

¼ 16q0
3

tð2�ð1þxmÞÞ ð62Þ

Hence, the overall density parameter is given by

X ¼ Xde þ Xm ¼ 16nð1� 2nÞ þ 8x/2
0

3
ð63Þ

jerk parameter,

j ¼ qþ 2q2 � _q

H
¼ 21 ð64Þ

4. Interacting two-fluid model

In this section, we examine the framework when dark

energy and barotropic fluid are interacting. In this regard,

the continuity equations for dark energy and barotropic

fluid is as follows,

_qde þ 4Hðxde þ 1Þ ¼ �Q ð65Þ

_qm þ 4Hðxm þ 1Þ ¼ Q ð66Þ

where the quantity Q stands for the interaction between

dark energy and barotropic fluids. We consider a positive

value of Q because we want energy transformation from

dark energy to barotropic fluid. In this way, the second

postulate of thermodynamics is also satisfied [62].

Following Amendola et al. [63] and Gau et al. [64], we

have

Q ¼ 3Hrqm ð67Þ

where r is coupling constant. Using Eq. (67) in Eq. (66)

and integrating, we obtain

qm ¼ q0t
�4n ð1þxmÞ�3

4
rð Þ when n1 ¼ n ð68Þ

Higher dimensional bianchi type-I dark energy models with barotropic fluid in Saez-Ballester 1321



qm ¼ q0t
� ð1þxmÞ�3

4
rð Þ when n1 ¼ �3nþ 1 ð69Þ

where q0 is constant of integration.

using Eqs. (25), (37) and (68) in Eq. (24), we obtain dark

energy density for case I defined as

qde ¼
6n2

t2
þ x

2

/2
0

t8n
� q0

t4n ð1þxmÞ�3
4
rð Þ ð70Þ

The deviation free part of Eq. (15) with the help of

Eq. (70), gives the value of EoS parameter of dark energy,

xde ¼ �
3n
t2

2n� 1ð Þ � x
2

/2
0

t8n
þ xmq0

t
4n ð1þxmÞ�3

4
rð Þ

6n2

t2
þ x

2

/2
0

t8n
� q0

t
4n ð1þxmÞ�3

4
rð Þ

2
64

3
75 ð71Þ

the pressure of dark energy is given by,

pde ¼ � 3n

t2
2n� 1ð Þ � x

2

/2
0

t8n
þ xmq0

t4n ð1þxmÞ�3
4
rð Þ

� �
ð72Þ

using Eqs. (26), (56) and (69) in Eq. (24), dark energy

density for case II are given by

qde ¼
3n

t2
ð1� 2nÞ þ x

2

/2
0

t2
� q0

t 1þxm�3
4
rð Þ ð73Þ

The deviation free part of Eq. (15) with the help of

Eq. (73), gives the value of EoS parameter of dark energy

for case II,

xde ¼ �
3n
t2

2n� 1ð Þ � x
2

/2
0

t2
þ xmq0

t
1þxm�3

4
rð Þ

3n
t2
ð1� 2nÞ þ x

2

/2
0

t2
� q0

t
1þxm�3

4
rð Þ

2
64

3
75 ð74Þ

the pressure of dark energy can be expressed as

pde ¼ � 3n

t2
2n� 1ð Þ � x

2

/2
0

t2
þ xmq0

t 1þxm�3
4
rð Þ

� �
ð75Þ

The matter density (Xde) and dark energy density (Xm)

(case I) are given by

Xde ¼
qde
3H2

¼ 2þ x/2
0

6n2
t2ð1�4nÞ � q0

3n2
t2 1�2n 1þxm�3

4
rð Þð Þ

ð76Þ

Xm ¼ qm
3H2

¼ q0
3n2

t2 1�2n 1þxm�3
4
rð Þð Þ ð77Þ

the overall density parameter can be obtained as

X ¼ Xde þ Xm ¼ 2þ x/2
0

6n2
t2ð1�4nÞ ð78Þ

Hence, the total density parameter of interacting fluids is

the same as non-interacting fluids for the value n1 ¼ n. The

matter density (Xde) and dark energy density (Xm) and total

density parameter for case II are found to be

Xde ¼
qde
3H2

¼ 16nð1� 2nÞ þ 8x/2
0

3
� 16q0

3
t 2� 1þxm�3

4
rð Þð Þ

ð79Þ

Xm ¼ qm
3H2

¼ 16q0
3

t 2� 1þxm�3
4
rð Þð Þ ð80Þ

X ¼ Xde þ Xm ¼ 16nð1� 2nÞ þ 8x/2
0

3
ð81Þ

The expression for X is same as the obtained value of the

average density parameter in the non-interacting scenario

for n1 ¼ �3nþ 1.

5. Results and discussion

The behavior of dark energy density and EoS parameter for

non-interacting two-fluid scenarios has represented in

Figs. 1, 2, 3 and 4. For the case I, it is observed that dark

energy density is positive and decreasing function of time

for different values of n. Hence, both weak energy condi-

tions (WEC) and null energy conditions (NEC) are satisfied

in our model. Later on, it converges to zero for a large

value of cosmic time t which implies that the barotropic

fluid is a little affective on dark energy density (see

Fig. (1)). We have taken the different value of n (n ¼ 0:1)

for case II because dark energy density is found negative

throughout the evolution for n[ 1. We have observed that

for case II, dark energy density depends on the barotropic

EoS parameter. Therefore, We have taken different values

of xm to see how they affect the energy density and EoS

parameter. We observed that the energy density is negative

and increasing with time for xm ¼ 0:05; 0. So, we can

conclude that universe is matter dominated in the early

phase of the evolution for these two values of xm. Whereas

Fig. 1 The plot of dark energy density as a function of cosmic time t
(Gyr) for non-interacting two fluid scenario (CASE I) with

x ¼ 2; q0 ¼ /0 ¼ xm ¼ 1
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it stays positive and decreasing function of time for xm ¼
1; 2 (see Fig. (3)) which indicates that dark energy density

dominates over the matter fluid.

Fig. 2 The plot of EoS parameter as a function of cosmic time t (Gyr)
for non-interacting two fluid scenario (CASE I) with

x ¼ 2; q0 ¼ /0 ¼ xm ¼ 1

Fig. 3 The plot of dark energy density as a function of cosmic time t
(Gyr) for non-interacting two fluid scenario (CASE II) with

x ¼ 2; q0 ¼ /0 ¼ 1; n ¼ 0:1

Fig. 4 The plot of EoS parameter as a function of cosmic time t (Gyr)
for non-interacting two fluid scenario (CASE II) with

x ¼ 2; q0 ¼ /0 ¼ 1; n ¼ 0:1

Fig. 5 The plot of dark energy density as a function of cosmic time t
(Gyr) for interacting two fluid scenario (CASE I) with

x ¼ 2; q0 ¼ /0 ¼ xm ¼ 1; r ¼ 1:34

Fig. 6 The plot of EoS parameter as a function of cosmic time t (Gyr)
for interacting two fluid scenario (CASE I) with

x ¼ 2; q0 ¼ /0 ¼ xm ¼ 1; r ¼ 1:34

Fig. 7 The plot of dark energy density as a function of cosmic time t
(Gyr) for interacting two fluid scenario (CASE II) with

x ¼ 2; q0 ¼ /0 ¼ 1; n ¼ 0:1;r ¼ 1:34
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For case I, the value of EoS parameter is considered a

function of time and lies between quintessence region�
� 2

3
�xde � � 1

3

�
for n ¼ 1. Also, it attains constant

values which is independent of time for different values of

n. The model shows consistency with KCDM model as it is

tending to �1 for large values of n. Moreover, it does not

crosses the phantom divided region, i.e., xde\� 1 (see

Fig. (2)). For xm ¼ 0:05; 0, It is observed that the value of

xde starts in the phantom region, increases and tends to �1.

Later on, it passes through the quintessence region and

tends to a constant value. The behavior of EoS parameter is

found positive and tends to 1 for xm ¼ 2. For xm ¼ 1, xde

attains the constant value 1 (see Fig. (4)). Also, for

xm ¼ 0:05; 0, EoS parameter lies between

�1:44�xde � � 0:92 which shows resemblance with the

latest results from Planck collaboration and CMBR aniso-

tropy [65, 66].

Figures (5) and (6) describe the behavior of the density

of dark energy and EoS parameter of dark energy in the

interacting two-fluid scenario for case I. We concluded that

both the parameters show almost similar behavior as case I

of a non-interacting scenario. For n1 ¼ �3nþ 1, a little

variation can be seen in the character of these parameters in

comparison to case II of a non-interacting scenario (see

Figs. (7) and (8)). Dark energy density is negative for xm ¼
0:05; 0; 1 and positive for xm ¼ 2. Also, it tends to a small

positive value for xm ¼ 2. The value of the EoS parameter

begins in the phantom region for xm=2. Furthermore, it

crosses the phantom region, varies between quintessence

region and tends to 0 for xm ¼ 0:05; 0. for xm ¼ 1, it

shows the same constant value 1 (see Fig. (8)).

Fig. 8 The plot of EoS parameter as a function of cosmic time t (Gyr)
for interacting two fluid scenario (CASE II) with

x ¼ 2; q0 ¼ /0 ¼ 1; n ¼ 0:1;r ¼ 1:34

Fig. 9 The plot of average density parameter as a function of cosmic

time t (Gyr) for non-interacting two fluid scenario (CASE I) with

x ¼ 2;/0 ¼ 1

Fig. 10 The plot of average density parameter as a function of n for

non-interacting two fluid scenario (CASE II) with x ¼ 2;/0 ¼ 1

Fig. 11 The plot of Hubble parameter as a function of redshift z for
non-interacting two fluid scenario (CASE I) with n ¼ 70
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The behavior of the average density parameter as a

function of t in the case I of non-interacting model is shown

in Fig. (9). X is decreasing function of time and its value

will always be X[ 2. From Eq. (63), it can be seen that X
is independent of time and depends on n in the context of

case II of a non-interacting scenario. Figure (10) demon-

strates that X is positive for 0:1� n� 0:7 and than it

becomes negative for n� 0:8. The Average density

parameter of interacting model exhibits identical values

with the average density parameter of non-interacting

scenario (see Eqs. (78) and (81)).

The variation of the Hubble parameter over the variation

of redshift z is represented in Figs. (11) and (12). From

Fig. (11), for n ¼ 70 the numeric value of Hubble’s

parameter is measured to be H ¼ 69:37 at z ¼ �0:5. Also

for case II, the calculated value of the Hubble parameter is

H ¼ 66:66 at z ¼ 3. These values are very close to

H0 ¼ 67:36� 0:54 kms�1 Mpc�1, the value estimated by

the latest Planck 2018 result [67].

We can see from Fig. (13) that our model is accelerating

in case I of the non-interacting scenario as the value of the

deceleration parameter is negative throughout the evolu-

tion. Whereas in case II, our model is decelerating at all

times as the value of the deceleration parameter is constant

and positive.

6. Conclusions

In this paper, we have examined a five-dimensional Bian-

chi type-I cosmological model filled with barotropic fluid

and dark energy in a scalar-tensor theory of gravitation

proposed by Saez-Ballester (1986). We have derived

physical and kinematical parameters for both the interact-

ing and non-interacting scenarios. The observations and

conclusions are as follows:

For case I, the spatial volume V ¼ 0 at t ¼ 0 and it

expands exponentially as t ! 1 for n[ 0. Hubble

parameter H;H1;H2;H3;H4 and expansion scalar diverge

at t ¼ 0. Also, they will vanish as t tends to 1. Since

r2 ¼ 0, universe is shear free. The model becomes iso-

tropic at all times as r2

h2
¼ 0. Deceleration parameter q ¼ 0

for n ¼ 1 represents expanding universe with constant

velocity. Also, the negative value of deceleration parameter

q\0 for n[ 1 represents accelerated universe. The

skewness parameters are zero. jerk parameter becomes zero

at n ¼ 1; 2 and it becomes positive for n[ 2. Hence, the

model begins with zero volume and than it becomes

expanding, shear free, accelerating and isotropic. Singh and

Chaubey [52] have investigated four-dimensional Bianchi

type-I model with dark energy and barotropic fluid in

general relativity which leads to shear free and isotropic

model. Although method of solving the field equations is

different from what they have adapted in LRS Bianchi-I

space-time yet we observed that our model shows simi-

larities with the results obtained by them.

For case II, the spatial volume V ¼ 0 at t ¼ 0 and it

expands as t ! 1. Hubble parameters and shear scalar

diverges at t ¼ 0 and get vanish as t ! 1 which is same as

case I. Shear scalar also diverges as t tends to 1 and for

n ¼ 1
4
it vanishes. Model is anisotropic as r2

h2
is constant. It

will become isotropic for n ¼ 1
4
. The value of deceleration

parameter is positive, therefore the model is decelerating.

Jerk parameter stays constant and positive.

The calculated value of the EoS parameter of dark

energy for case I and case II shows resemblance with

current observational data. Mishra et al. [68, 69] have

concluded that compared with string fluid, viscous fluid has

a slighter effect on dark energy density as dark energy

density attains a small positive value rather than reaches

zero. In our model, dark energy density is decreasing

Fig. 12 The plot of Hubble parameter as a function of redshift z for
non-interacting two fluid scenario (CASE II)

Fig. 13 The plot of deceleration parameter as a function of n for non-
interacting two fluid scenario (CASE I)
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function of cosmic time and tends to zero for the case I.

Also, this indicates string and barotropic fluids are a little

more effective on dark energy comparatively to viscous

fluid. But, Dark energy dominates the universe in late

times. For case II, the universe is matter dominated for

some values of the barotropic EoS parameter. In particular,

dark energy dominates the universe in both scenarios. The

behavior of dark energy density and EoS parameter of dark

energy is almost same in both interacting and non-inter-

acting scenarios. It can be observed that the behavior of

these physical parameters is consistent with the results

already obtained in the five-dimensional Kaluza-Klien

model with dark energy and barotropic fluid in Saez-Bal-

lester theory [57]. Recently, Goswami et al. [70] have

studied four-dimensional Bianchi-I universe filled with

barotropic fluid and dark energy in general relativity. The

cosmological parameters have been estimated by using 38

OHD points and 581 SN Ia data.

Here, the fifth dimensional plays a significant role to

understand early evolution of the universe. These two

models investigated here are physically stable and show

good agreement with recent cosmological data. Thus, the

consequences of this investigation might be valuable to get

a better understanding of anomalies about the cosmic

evolution and existence of dark energy in the universe.
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