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Abstract: We study the time evolution behavior of entanglement, the quantum and classical correlations in a system of

two coupled two-level atoms interacting with a single mode thermal field. In the model, one atom is in an isolated state and

the other is coupled with a small external environment (a single mode thermal field). The effects of mean photon number of

thermal field, atom-field coupling strength and intensity-dependent coupling on the evolution processes of the four

quantities are analyzed and discussed thoroughly. The results show the sudden deaths and sudden births of various

correlations occur and quantum correlation beyond entanglement may be observed in the certain time intervals. It has been

seen clearly that the maximal values of various correlations degrade with the increase of mean photon number, atom-field

coupling strength and intensity-dependent coupling. The evolution patterns of various correlations are strongly dependent

on the about three parameters. Particularly, the time evolution of classical correlation is not consistent with that of quantum

correlations during the observed period of time.
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1. Introduction

There is usually the quantum correlation between two

subsystems in a quantum system such as entanglement.

Quantum correlation has the special characteristics to be

quite different from the classical. Quantum information

processing has the advantages over the corresponding

classical one for performing various intriguing tasks in

some information technologies. Owing to this reason, the

quantum entanglement has been regarded as a core

resource [1, 2] in quantum information, quantum compu-

tation and so on. Many researches focus on the quantum

entanglement phenomena in the quantum system and the

numerous interesting results have been reported in the past

decades. It has been observed that quantum entanglement

can suddenly disappear and suddenly revive due to spon-

taneous emission within a limited time interval under

certain conditions, which are called ‘‘sudden death’’ (ESD)

[3, 4] and ‘‘sudden birth’’ (ESB) [5–7] of quantum entan-

glement. With the advances of the experimental and the-

oretical investigation into quantum correlation, it is also

found that the non-classical correlation can also exist in the

separable states [8–10], which indicates that the non-clas-

sical correlation in these states is a kind of the quantum

correlation beyond entanglement. The results show that

quantum entanglement may not include all the quantum

correlation in the quantum systems [11]. To depict the

properties of quantum correlations more generally, the

concepts of quantum discord (QD) [12–15] and geometri-

cal quantum discord (GQD) [16] has been introduced. The

quantum correlations in some physical systems have been

investigated under the several conditions [17–29]. The

system interacting two atoms with a single-mode field is a

well-known simplest quantum one in which quantum

effects, such as quantum coherence and quantum entan-

glement, can be observed clearly. The time evolution

behavior of these quantities has been intensively investi-

gated [30]. However, the evolution process of quantum

system cannot get out of the influence of the external
*Corresponding author, E-mail: sacrf@imnu.edu.cn

Indian J Phys (February 2023) 97(2):367–378

https://doi.org/10.1007/s12648-022-02436-7

� 2022 IACS

http://crossmark.crossref.org/dialog/?doi=10.1007/s12648-022-02436-7&amp;domain=pdf
https://doi.org/10.1007/s12648-022-02436-7


environment practically, which is often responsible for the

effects such as quantum decoherence and the loss of the

quantum correlation. Many researchers pay much attention

to the subject that is concerned with the time evolution of

quantum correlation of the system exposed to its external

environment [31–40]. Recently, it is manifested that sud-

den death and birth of entanglement in a system of two

coupled atoms interacting with a very small environment

take place under the certain conditions [41]. In this paper,

we consider the system consisting of two coupled atoms

plus a single-mode thermal field in which one of the cou-

pled atoms interacts with a single-mode thermal field

(termed a very small environment) under intensity-depen-

dent coupling. Our aims are to study the properties of the

quantum and classical correlations in the above system and

to grasp how the different correlations evolve with time

under various conditions of the external field. The three

criteria of concurrence (C), quantum discord (QD) and

geometrical quantum discord (GQD) are employed to

measure the quantum correlation between two atoms. We

have compared the evolution properties of C, QD, GQD

with that of the classical correlation (CC) in detail. The

article is organized as follows: in Sect. 2, the theoretical

model and its solution are given. In Sect. 3, we present the

definitions and expressions of various correlations. In Sect.

4, we discuss the obtained results by means of numerical

way. Finally, the conclusion is drawn in Sect. 5.

2. The model

2.1. The theoretical model

Here we consider the system which consists of two two-

level atoms labeled 1 and 2 plus a single mode quantized

field in the rotating wave approximation. Assume that the

atoms are themselves coupled, and only the second atom

interacts with a single-mode thermal field in the form of the

intensity-dependent coupling. Let the transition frequencies

of atoms be same as the resonance between the second

atom and the field x1 ¼ x2 ¼ x3ð Þ. k is the coupling

constant between the two atoms, and g is the effective

coupling strength between the second atom and a single-

mode thermal field. So the interaction Hamiltonian of the

system ð�h ¼ 1Þ may be written as

H ¼H0 þ H1;

H0 ¼ 1

2
xr1z þ

1

2
xr2z þ xaþa;

H1 ¼k rþ1 r
�
2 þ r�1 r

þ
2

� �
þ g af ðnÞrþ2 þ aþf ðnÞr�2

� �
;

ð1Þ

where H0 and H1 denote the unperturbed and interaction

parts of the Hamiltonian, respectively. aþ and a are the

usual creation and annihilation field operators. f(n)

represents an arbitrary function of intensity-dependent

coupling [42, 43]. The rising and lowing operators are

rþi ¼ eij i gijh , r�i ¼ gij i eijh , respectively, and riz ¼
eij i eijh � gij i gijh ði ¼ 1; 2Þ. Let eij i and gij i denote the

upper and lower level states of the atoms. We can work

conveniently in the interaction picture. So the interaction

Hamiltonian of the system (interaction picture) is given by

V ¼ eiH0t=�hH1e
�iH0t=�h: ð2Þ

Combining (1) and (2), we have

V ¼ k rþ1 r
�
2 þ r�1 r

þ
2

� �
þ agf ðnÞrþ2 þ aþgf ðnÞr�2 : ð3Þ

The density operator of time-evolved joint system

(interaction picture)

qIðtÞ ¼ e�iH1tqð0ÞeiH1t; ð4Þ

with

qð0Þ ¼qq1ð0Þ � qq2ð0Þ � qf ð0Þ

¼ e1j i e1jh � g2j i g2jh �
X1

n¼0

Pn nj i njh

�
X1

n¼0

Pn e1; g2; nj i e1; g2; njh ;

ð5Þ

here

Pn ¼
�nn

ð1 þ �nÞnþ1
; �n ¼ 1

e
x

kBT � 1
; ð6Þ

where Pn denotes the photon number distribution of the

single mode thermal field, and �n is mean photon number in

the thermal equilibrium (frequency x) at the effective

temperature T.

2.2. Solution of the model

The Schrödinger equation of the system is

i
o

ot
WIðtÞj i ¼ V WIðtÞj i: ð7Þ

The state vector of two interacting two-level atoms can be

written in the form

WIðtÞj i ¼ C1;nðtÞ e1; e2; n� 1j i þ C2;nðtÞ e1; g2; nj i
þC3;nðtÞ g1; e2; nj i þ C4;nðtÞ g1; g2; nþ 1j i:

ð8Þ

Here e1; g2; nj i means that atom 1 is in an excited state,

atom 2 is in a ground state and the single mode field has n

photons. There are similar descriptions for the states

e1; e2; n� 1j i, g1; e2; nj i and g1; g2; nþ 1j i. The

coefficients Cj;nðtÞ are the probability amplitudes of

finding two atoms in these four states with j ¼ 1; 2; 3; 4,
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respectively. Substitute (3) and (8) into (7), we get the

following differential equations

i _C1;n ¼gf ðnÞ
ffiffiffi
n

p
C2;n;

i _C2;n ¼gf ðnÞ
ffiffiffi
n

p
C1;n þ kC3;n;

i _C3;n ¼kC2;n þ gf ðnÞ
ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
C4;n;

i _C4;n ¼gf ðnÞ
ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
C3;n:

ð9Þ

The solution can be expressed as

Cj;nðtÞ ¼
X4

m¼1

A
ðnÞ
jm ðtÞcmð0Þ; j ¼ 1; 2; 3; 4; ð10Þ

with A
ðnÞ
jm ¼ A

ðnÞ
mj , the dimensionality of the Fock state basis

is expressed as n ðn ¼ 0; 1; 2; . . .Þ. The relevant matrix

elements can therefore be written as

A
ðnÞ
11 ðtÞ ¼

1

rn

x2
þ;n � b2

n � k2
� �

cos xþ;nt
� �

�

x2
�;n � b2

n � k2
� �

cos x�;nt
� �

2

64

3

75;

A
ðnÞ
12 ðtÞ ¼

ian
rn

b2
n � x2

þ;n

� �
sin xþ;nt

� �

xþ;n
�

b2
n � x2

�;n

� �
sin x�;nt

� �

x�;n

2

4

3

5;

A
ðnÞ
13 ðtÞ ¼

kan
rn

cos xþ;nt
� �

� cos x�;nt
� �� �

;

A
ðnÞ
14 ðtÞ ¼ � ikanbn

rn

sin xþ;nt
� �

xþ;n
�

sin x�;nt
� �

x�;n

	 

;

A
ðnÞ
22 ðtÞ ¼

1

rn
x2

þ;n � b2
n

� �
cos xþ;nt

� �
� x2

�;n � b2
n

� �
cos x�;nt

� �h i
;

A
ðnÞ
23 ðtÞ ¼

�ik
rn

xþ;n sin xþ;nt
� �

� x�;n sin x�;nt
� �� �

;

A
ðnÞ
24 ðtÞ ¼

kbn
rn

cos xþ;nt
� �

� cos x�;nt
� �� �

;

A
ðnÞ
33 ðtÞ ¼

1

rn
x2

þ;n � a2
n

� �
cos xþ;nt

� �
� x2

�;n � a2
n

� �
cos x�;nt

� �h i
;

A
ðnÞ
34 ðtÞ ¼

ibn
rn

a2
n � x2

þ;n

� �
sin xþ;nt

� �

xþ;n
�

a2
n � x2

�;n

� �
sin x�;nt

� �

x�;n

2

4

3

5;

A
ðnÞ
44 ðtÞ

¼ 1

rn
x2

þ;n � a2
n � k2

� �
cos xþ;nt

� �
� x2

�;n � a2
n � k2

� �
cos x�;nt

� �h i
;

ð11Þ

with

an ¼gf ðnÞ
ffiffiffi
n

p
; bn ¼ gf ðnÞ

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
;

rn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2f 2ðnÞ þ k2
� �2þ4ng2f 2ðnÞk2

q
;

x�;n ¼
1
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2nþ 1Þg2f 2ðnÞ þ k2 � rn

q
:

ð12Þ

Assume that the system is initially in a separated state

Wð0Þj i ¼ e1; g2; nj i: ð13Þ

The coefficients Cj;nðtÞ become

C1;nðtÞ ¼
ian
rn

b2
n � x2

þ;n

� �
sin xþ;nt

� �

xþ;n
�

b2
n � x2

�;n

� �
sin x�;nt

� �

x�;n

2

4

3

5;

C2;nðtÞ ¼
1

rn
x2

þ;n � b2
n

� �
cos xþ;nt

� �
� x2

�;n � b2
n

� �
cos x�;nt

� �h i
;

C3;nðtÞ ¼
�ik
rn

xþ;n sin xþ;nt
� �

� x�;n sin x�;nt
� �� �

;

C4;nðtÞ ¼
kbn
rn

cos xþ;nt
� �

� cos x�;nt
� �� �

:

ð14Þ

Thus the joint density operator of the system can be

expressed as

qIðtÞ ¼
X1

n¼0

Pn

C1;nðtÞ e1; e2; n� 1j i þ C2;nðtÞ e1; g2; nj i
þC3;nðtÞ g1; e2; nj i þ C4;nðtÞ g1; g2; nþ 1j i

" #

�
C�

1;nðtÞ e1; e2; n� 1jh þ C�
2;nðtÞ e1; g2; njh

þC�
3;nðtÞ g1; e2; njh þ C�

4;nðtÞ g1; g2; nþ 1jh

" #

:

ð15Þ

By tracing the field variables, we get the following operator

qq1;q2ðtÞ ¼ Trf qIðtÞ½ �

¼
X1

n¼0

Pnþ1 C1;nþ1

�� ��2 e1; e2j i e1; e2jh

þ
X1

n¼0

Pn C2;n

�� ��2 e1; g2j i e1; g2jh

þ
X1

n¼0

Pn C3;n

�� ��2 g1; e2j i g1; e2jh

þ
X1

n¼0

Pn�1 C4;n�1

�� ��2 g1; g2j i g1; g2jh

þ
X1

n¼0

PnC2;nC
�
3;n e1; g2j i g1; e2jh

þ
X1

n¼0

PnC3;nC
�
2;n g1; e2j i e1; g2jh ;

ð16Þ

which is a peculiar type of bipartite state called X-form

state [44].

qq1;q2ðtÞ ¼

q11 q12 q13 q14

q21 q22 q23 q24

q31 q32 q33 q34

q41 q42 q43 q44

0

BBB@

1

CCCA
¼

q11 0 0 0

0 q22 q23 0

0 q�23 q33 0

0 0 0 q44

0

BBB@

1

CCCA
;

ð17Þ

where
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q11 ¼
X1

n¼0

Pnþ1 C1;nþ1

�� ��2; q22 ¼
X1

n¼0

Pn C2;n

�� ��2; q23

¼
X1

n¼0

PnC2;nC
�
3;n;

q�23 ¼
X1

n¼0

PnC3;nC
�
2;n; q33 ¼

X1

n¼0

Pn C3;n

�� ��2; q44

¼
X1

n¼0

Pn�1 C4;n�1

�� ��2:

ð18Þ

3. Entanglement, classical and quantum correlations

In this section, the quantum correlations between two

subsystems will be measured by introducing the concur-

rence (C), the quantum discord (QD) and the geometrical

quantum discord (GQD).

3.1. Quantum entanglement

The atom-atom interactions usually result in bipartite

entanglement. There are usually two ways to measure

quantum entanglement between two subsystems: concur-

rence (C) [45] and negativity [46–48]. We adopt the con-

currence as a function of time here

CðtÞ ¼ max½0;KðtÞ�; ð19Þ

with

KðtÞ ¼
ffiffiffiffiffiffiffiffiffiffi
n1ðtÞ

p
�

ffiffiffiffiffiffiffiffiffiffi
n2ðtÞ

p
�

ffiffiffiffiffiffiffiffiffiffi
n3ðtÞ

p
�

ffiffiffiffiffiffiffiffiffiffi
n4ðtÞ

p
;

n1ðtÞ	 n2ðtÞ	 n3ðtÞ	 n4ðtÞð Þ;
ð20Þ

where ni ði ¼ 1; 2; 3; 4Þ are the eigenvalues of the

Hermitian matrix M(t)

MðtÞ ¼ qq1;q2ðtÞ rð1Þy � rð2Þy

� �
q�q1;q2ðtÞ rð1Þy � rð2Þy

� �
;

ð21Þ

ry is the Pauli Y matrix and q�q1;q2 is the complex conjugate

of the two atoms density operator qq1;q2. The value of

concurrence ranges from 0 to 1. The larger the value of the

function, the stronger the corresponding entanglement. In

particular, it is straightforward to derive the expression for

the concurrence in a system of two two-level interacting

atoms with a single mode thermal field [49]

KðtÞ ¼ 2 j q23 j �2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
q11q44

p
: ð22Þ

3.2. Quantum discord and classical correlation

Quantum entanglement is the core resource for realizing

quantum information processing and quantum computing.

It has recently been discovered that quantum entanglement

can not contain all types of quantum correlation and there

are still some quantum correlations in the quantum system

without quantum entanglement. The results show that these

quantum correlations can improve the efficiency of the

quantum communication and realize the quantum speedup

algorithm in the absence of quantum entanglement. In

order to describe and measure the general quantum corre-

lations between two subsystems of a quantum system,

Ollivier and Zurek introduced the concept of quantum

discord [12]. It is defined by the difference between two

equivalent expressions of classical mutual information

during quantum generalization, that is, the difference

between quantum mutual information and classical

correlation

QD qq1;q2

� �
¼ I qq1;q2

� �
� CC qq1;q2

� �
: ð23Þ

Here I qq1;q2

� �
and CC qq1;q2

� �
are equal in the classical

case, but not equal in quantum physics. Therefore, it is

necessary to measure the quantum difference between the

two quantities. The quantum mutual information of the

two-body system can be expressed by the total correlation

of quantum states

I qq1;q2

� �
¼ S qq1

� �
þ S qq2

� �
� S qq1;q2

� �
: ð24Þ

The expression of the classical correlation is

CC qq1;q2

� �
¼ S qq1

� �
� min

Pq2

kf g
S qq1;q2 j Pq2

k

n o� �h i
; ð25Þ

where S qj
� �

is von Neumann entropy

S qj
� �

¼ �Trj qj log2 qj
� �

¼ �
X

i

kij log2 k
i
j: ð26Þ

kij

n o
is the nonzero eigenvalue of qj, the subscript j refers

to the subsystem 1 (2) or the total system, and the reduced

density matrix of 1 (2) in the two atoms system is

qq1ðq2Þ ¼ Trq2ðq1Þ qq1;q2

� �
: ð27Þ

The quantum conditional entropy is

S qq1;q2 j Pq2
k

n o� �
¼

X

k

pkS qq1
k

� �
: ð28Þ

Define Pq2
k

n o
as a set of orthogonal complete projection

operators locally acting on subsystem 2. k represents the

outcomes of measurements, and
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pk ¼ Trq1;q2 Iq1 �Pq2
k

� �
qq1;q2 Iq1 �Pq2

k

� �h i
;

qq1
k ¼ 1

pk
Trq2 Iq1 �Pq2

k

� �
qq1;q2 Iq1 �Pq2

k

� �h i
;

ð29Þ

pk and qq1
k refer to the probability of measurement and

conditional density matrix, respectively, where Iq1 is the

unit operator of subsystem 1. Substituting formulas (24)

and (25) into (23), the quantum discord of the system can

be expressed as

QD qq1;q2

� �
¼ S qq2

� �
� S qq1;q2

� �
þ min

Pq2

kf g
RkpkS qq1

k

� �h i
:

ð30Þ

For the quantum system described by density matrix (17),

QD can be simply expressed as [50]

QD qq1;q2

� �
¼ min QD1;QD2f g;

QD1 ¼
X4

i¼1

ci log2 ci �
X4

i¼1

qii log2 qii;

QD2 ¼ C q11 þ q33ð Þ þ
X4

i¼1

ci log2 ciþ

C 1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q11 þ q22 � q33 � q44ð Þ2þ4 q23j j2

q� 
=2

	 

;

ð31Þ

with

CðxÞ ¼ �x log2 x� ð1 � xÞ log2ð1 � xÞ;

c1 ¼ q11; c2 ¼ q44; c3;4

¼
q22 þ q33ð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q22 � q33ð Þ2þ4 q23j j2

q

2
:

ð32Þ

In particular, the classical correlation (CC) is

CC qq1;q2

� �
¼ max C1;C2f g; ð33Þ

and

Cj ¼ C q11 þ q22ð Þ � Bj;

B1 ¼ C 1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q11 þ q22 � q33 � q44ð Þ2þ4 q23j j2þ4 q14j j2

q� 
=2

	 

;

B2 ¼ �
X4

i¼1

qii log2 qii � C q11 þ q33ð Þ:

ð34Þ

By applying the above results, we can discuss the time

evolution behavior of the quantum correlation and classical

correlation in the system.

3.3. Geometrical quantum discord

Quantum discord involves a difficult optimization process,

and it is difficult to obtain analytical results of quantum

discord except for a few classes of two qubits state. To

overcome this difficulty, Dakić et al proposed a geometric

measure of quantum discord [16], called geometrical

quantum discord (GQD), which can be used to measure the

quantum correlation between two subsystems [51]. Using

geometric method, the geometrical quantum discord is

defined as the nearest distance between a zero discord state

and a given state, which can be described by Hilbert–

Schmidt norm

DGðqÞ � min
v2X0

kq� vk2; ð35Þ

where X0 represents the set of zero discord states v, kq�
vk is the Hilbert–Schmidt norm of the Hermitian operator

[52]. We consider the system of two atoms, whose density

matrix can be expressed as

qq1;q2 ¼ 1

4
I � I þ

X3

i¼1

Airi � I þ BiI � rið Þ
"

þ
X3

i;j¼1

Pijri � rj
� �

#

;

ð36Þ

where I is the identity matrix, ri; rj ði; j ¼ x; y; zÞ represent

Pauli matrices, and Ai and Bi are the components of the

local Bloch vectors

Ai ¼Tr qq1;q2 ri � Ið Þ
� �

;

Bi ¼Tr qq1;q2 I � rið Þ
� �

;
ð37Þ

and

Pij ¼ Tr qq1;q2 ri � rj
� �� �

: ð38Þ

Therefore, GQD is expressed as

DðtÞ ¼ 1

4
kAk2 þ kPk2 � jmax

� �
;

kAk2 ¼
X3

i¼1

A2
i ;P ¼ Pij; kPk2 ¼ Tr PTP

� �
:

ð39Þ

The maximum eigenvalue of the matrix K ¼ AAT þ PPT is

expressed as jmax, and superscript T represents the

transpose of the matrix P and the vector A. Based on the

above theories, it can be concluded that
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A1 ¼ 0;A2 ¼ 0;A3 ¼ q11 þ q22 � q33 � q44;

P11 ¼ q23 þ q32;P12 ¼ i q32 � q23ð Þ;P13 ¼ 0;

P21 ¼ i q23 � q32ð Þ;P22 ¼ q23 þ q32;P23 ¼ 0;

P31 ¼ 0;P32 ¼ 0;P33 ¼ q11 � q22 � q33 þ q44;

ð40Þ

kAk2 ¼ A2
3; kPk

2 ¼ P2
11 þ P2

12 þ P2
21 þ P2

22 þ P2
33: ð41Þ

The three eigenvalues of the matrix K are

j1 ¼� 1

3
X1 �

2

3
X2

1 � 3X2

� �1=2
cos

c
3
;

j2 ¼� 1

3
X1 þ

1

3
X2

1 � 3X2

� �1=2
cos

c
3
þ

ffiffiffi
3

p
sin

c
3

� �
;

j3 ¼� 1

3
X1 þ

1

3
X2

1 � 3X2

� �1=2
cos

c
3
�

ffiffiffi
3

p
sin

c
3

� �
;

c ¼ arccos L; L ¼ 2X3
1 þ 27X3 � 9X1X2

2 X2
1 � 3X2

� �3=2
;

ð42Þ

and

X1 ¼ � Y1 þ Y2 þ Y3ð Þ;

X2 ¼ Y1Y2 þ Y2Y3 þ Y1Y3 � Y4Y5;

X3 ¼ Y3Y4Y5 � Y1Y2Y3;

Y1 ¼ P2
11 þ P2

12; Y2 ¼ P2
21 þ P2

22; Y3 ¼ A2
3 þ P2

33;

Y4 ¼ P11P21 þ P12P22; Y5 ¼ P21P11 þ P22P12;

Y6 ¼ 0; Y7 ¼ 0;Y8 ¼ 0; Y9 ¼ 0:

ð43Þ

According to the above formulae, GQD between two atoms

is

DðtÞ ¼ � 1

4
X1 þ max j1; j2; j3ð Þ½ �: ð44Þ

It is worth noting that GQD is sometimes regarded as the

weak correlation measure since it may increase under some

local operations. But the recent research show that it is

more simple to measure experimentally [53].

4. Numerical results and discussion

In this section, we will focus on the numerical calculation

and then analyze the obtained results. Here we express the

ratio of the atom1-atom2 coupling to the atom2-field

environment coupling as k � g=k, and then g ¼ kk. By

changing k, viz., the coupling constant g and the mean

photon number �n as well as the different intensity-depen-

dent coupling parameter f(n), the time evolution processes

of C, QD, GQD and CC are displayed and analyzed,

respectively. For the convenience of calculation, the cou-

pling constant k is set to 10.

Case 1. The evolution curves of C, QD, GQD and CC

are plotted versus the normalized time k t on the three

timescales.

The quantum entanglement between two atoms is a

periodic function of time for a completely isolated two-

atom coupling system ðg ¼ 0Þ [41]. If we consider the

interaction between the atoms and the thermal radiation

field, the evolution process will be changed due to the

influence of the external environment on quantum corre-

lations or classical correlation. Therefore, the destructive

effect of the small external environment can be estimated

by observing the changes of the amplitudes of entangle-

ment, the quantum and classical correlations during their

evolution processes.

Now we consider the case where atom 2 is weakly

coupled to the single-mode thermal radiation field ðg ¼
0:1kÞ and the average photon number is small ð�n ¼ 1Þ with

f ðnÞ ¼
ffiffiffi
n

p
. The evolution properties of quantum entan-

glement (C), quantum discord (QD), geometrical quantum

discord (GQD) and classical correlation (CC) with time in

three different timescales are given in Fig. 1. The initial

values of C, QD, GQD and CC are zero ½t ¼ 0;

Cð0Þ ¼ QDð0Þ ¼ GQDð0Þ ¼ CCð0Þ ¼ 0�, which means

that there is neither quantum correlation nor classical

correlation between two atoms at the initial moment. It can

be seen from Fig. 1 (a) that the time evolution behavior of

C, QD and GQD is quite similar to each other, while the

evolution curve of classical correlation CC is obviously

different from those of the three quantities. Compared the

evolution of C, QD, GQD with that of CC at the inter-

mediate time scales, it has been observed in Fig. 1 (b) that

the values of C, QD, GQD are degraded gradually and the

value of CC fluctuates in the certain range. The periodic

revivals of C, QD, GQD do not appear at the longer

timescales as shown in Fig. 1 (c) when f ðnÞ ¼
ffiffiffi
n

p
, in

contrast to the case where the periodic revivals of them

occur if f ðnÞ ¼ 1 corresponding to no intensity-dependent

coupling. The above results signify that the intensity-de-

pendent coupling factor f(n) may result in a destructive

effect on periodic revivals of C, QD, GQD. The sudden

death (SD) and sudden birth (SB) of C, QD and GQD occur

during the whole evolution process. The SD and SB of CC

appear only in the vicinity of time value 0.16, and its

values are larger than zero in any other time intervals. The

all-time evolution curves of C, QD, GQD and CC display

the irregular oscillations in the observed periods.

Figure 2 shows the evolution curves of C, QD, GQD and

CC with time for g ¼ 0:1k, �n ¼ 10 and f ðnÞ ¼
ffiffiffi
n

p
. Com-

pared with Fig. 1, the oscillating amplitudes of C, QD,

GQD and CC become smaller and the fluctuations are more
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irregular for the larger value of the mean photon number.

Figure 2 (a) shows the evolution of the four quantities in

the short time domain, from which we can obviously

observe the phenomena of entanglement sudden death

(ESD) and sudden birth (ESB). Compared with the evo-

lution processes of QD, GQD and CC, the values of C are

not zero in only five isolated time intervals and remain at

zero in any other time ones. However, the values of QD

and GQD are zero only in a few shorter time periods. It is

worth noting that the maximum values of QD, GQD are

really smaller, but that of C are relatively larger when the

time changes from 0.9 to 1.0 as shown in Fig. 2 (a) [see its

panels]. It has been manifested that there are still the

quantum correlation effects described by QD and GQD in

the absence of quantum entanglement within the certain

domains of time. By observing Fig. 2 (b) and (c), the

evolution curves of C, QD and GQD exhibit the small-

amplitude irregular oscillations with sudden death and

sudden birth of entanglement and quantum correlations.

However, the evolution behavior of the classical correla-

tion is different from that of the quantum correlation. The

values of CC are larger than zero in the selected time

domains except for t ¼ 0 moment.

We consider the case where atom 2 more strongly

coupled to the thermal field g ¼ 0:5k. It means that the

interaction strength between atom 2 and the thermal field

will increase and the values of the other coefficients are the

same as in Fig. 1. As shown in Fig. 3, the values of C are

between 0 and 0.8, QD between 0 and 0.7, GQD from 0 to

0.35, and CC from 0 to 0.9. It can be seen that the

amplitudes of the four quantities are generally lower than

those in Fig. 1, but larger than in Fig. 2. The phenomena of

sudden death and sudden birth for quantum entanglement

and quantum correlations can still be observed in Fig. 3.

According to Fig. 3 (a), the temporal evolution of C, QD

and GQD is also similar to each other. The evolution curve

of CC is significantly different from the others. The values

of CC are always larger than zero when the time is larger

than 0.17. For the intermediate and longer timescales as in

Fig. 3 (b) and 3 (c), the evolution curves of the four

quantities display intensely oscillating with time . The SD

and SB of C, QD and GQD still occur during the evolution

process and the phenomenon of the SD and SB of CC starts

to appear in Fig. 3 (b) and 3 (c). It is clear that the stronger

atom-environment coupling influences the evolution pro-

cesses of the quantum and classical correlations between

two atoms.

In Fig. 4, we take account of the case where there is a

stronger atom-environment interaction (g ¼ 0:5k), and the

excitation of environment is the higher (�n ¼ 10). It has

been shown in Fig. 4 (a) that the amplitudes of C, QD,

GQD and CC become the lower than those in Fig. 2 (a) or

Fig. 3 (a), and the time intervals having null entanglement

remain longer as well as the values of CC vanish in some

time intervals. Compared with the evolution of entangle-

ment in Fig. 4 (a), it is clearly evident that the non-classical

correlations captured by QD and GQD exist in some time

intervals in the absence of the quantum entanglement. As

plotted in Fig. 4 (b) and (c) in the intermediate and long

timescales, all the evolution behavior of the four quantities

(a) (b) (c)

Fig. 1 The time evolution curves of C, QD, GQD and CC for the different timescales with �n ¼ 1, g ¼ 0:1k and f ðnÞ ¼
ffiffiffi
n

p
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displays the intensely oscillating one, and the amplitudes of

them decrease gradually. The revivals of entanglement

almost disappear at later times in Fig. 4 (c).

Case 2. The evolution curves of C, QD, GQD and CC

are plotted versus the normalized time k t on the three

timescales.

In Fig. 5, all the parameters are the same as in Fig. 1

except f ðnÞ ¼
ffiffiffiffiffi
3n

p
. The evolution behavior of the four

quantities in Fig. 5 (a) is similar to those in Fig. 1 (a), but

the maximum values of them are lower compared to those

in Fig. 1 (a). The evolution curves of C, QD, GQD and CC

in Fig. 5 (b) are different from those in Fig. 1 (b), which

also give the more details for the various evolution of the

quantities in the intermediate scales. It has been seen

clearly from Fig. 5 (c) that the more peaks of them occur in

the longer timescales with rising the intensity-dependent

(a) (b) (c)

Fig. 2 The time evolution curves of C, QD, GQD and CC for the different timescales with �n ¼ 10, g ¼ 0:1k and f ðnÞ ¼
ffiffiffi
n

p

(a) (b) (c)

Fig. 3 The time evolution curves of C, QD, GQD and CC for the different timescales with �n ¼ 1, g ¼ 0:5k and f ðnÞ ¼ ffiffiffi
n

p
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coupling f(n). In Fig. 5 (c), it is shown that the oscillations

of the four quantities tend to more intense fluctuating form

in the long timescales. The SD and SB of C, QD, GQD and

CC still occur during the evolution as shown in Fig. 5.

The case is taken into account when �n ¼ 10, g ¼ 0:1k

and f ðnÞ ¼
ffiffiffiffiffi
3n

p
as illustrated in Fig. 6. It is observed that

the evolution curves of the four quantities shift evidently

down compared to those in Figs. 2 and 5. It is clear that the

zeros in entanglement and quantum correlations keep

longer times, and the time intervals having null QD and

GQD are still shorter than those in the absence of C. The

SD and SB of CC occur during the evolution as shown in

Fig. 6 (b) and (c). As we would expect, the larger mean

excitation number of field attenuates further the effects of

the various correlations, and rising the intensity-dependent

(a) (b) (c)

Fig. 4 The time evolution curves of C, QD, GQD and CC for the different timescales with �n ¼ 10, g ¼ 0:5k and f ðnÞ ¼
ffiffiffi
n

p

(a) (b) (c)

Fig. 5 The time evolution curves of C, QD, GQD and CC for the different timescales with �n ¼ 1, g ¼ 0:1k and f ðnÞ ¼
ffiffiffiffiffi
3n

p
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coupling also brings about the destructive effect on the

different correlations.

In Fig. 7, we plot the case when �n ¼ 1, g ¼ 0:5k and

f ðnÞ ¼
ffiffiffiffiffi
3n

p
. For short timescales, it is shown in Fig. 7

(a) that the evolution curves of C, QD, GQD and CC dis-

play the different distributed forms compared to those in

Fig. 5 (a), the time intervals having no entanglement

become longer. For intermediate and long timescales, the

evolution curves of the four quantities exhibit more

intensely irregular oscillations in Fig. 7 (b) and (c) than

those as plotted in Fig. 5 (b) and (c), and the SD and SB of

C, QD, GQD, CC occur during the evolution.

(c)(b)(a)

Fig. 6 The time evolution curves of C, QD, GQD and CC for the different timescales with �n ¼ 10, g ¼ 0:1k and f ðnÞ ¼
ffiffiffiffiffi
3n

p

(a) (b) (c)

Fig. 7 The time evolution curves of C, QD, GQD and CC for the different timescales with �n ¼ 1, g ¼ 0:5k and f ðnÞ ¼
ffiffiffiffiffi
3n

p
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In Fig. 8, we plot the evolution curves of the four

quantities when the field mean excitation number increases

(�n ¼ 10) with f ðnÞ ¼
ffiffiffiffiffi
3n

p
. It is shown that all the values of

C, QD, GQD and CC decay rapidly to the smaller ones

with the increase of �n, and there are some limited intervals

having the weaker entanglement as plotted in Fig. 8 (a) and

8 (b), as well as the sudden-births of entanglement almost

completely vanish in the longer times in Fig. 8 (c).

Meanwhile, the evolution curves of QD, GQD and CC shift

down, and the amplitudes of QD, GQD and CC become

smaller with time going on. Compared with the entangle-

ment, the sudden deaths and births of QD, GQD and CC

may still occur during their evolution. It has been seen that

the time intervals for the SD and SB of CC become longer

with rising the intensity-dependent coupling.

5. Conclusions

In summary, we have investigated the time-dependent

dynamics of quantum entanglement, quantum correlations

and classical correlation in a system of two coupled two-

level atoms interacting with a single mode thermal field to

be regarded as a small external environment. By using four

methods of measurement, the effects of the mean photon

number of the thermal field, the coupling strength between

the second atom and the thermal field and intensity-de-

pendent coupling on the evolution behavior of C, QD,

GQD and CC between two atoms are explored in detail. It

has been shown that the amplitudes of the entanglement,

the quantum and classical correlations degrade clearly with

increasing the mean photon number of the thermal field,

the coupling strength between the second atom and the

thermal field and intensity-dependent coupling. The phe-

nomena of the sudden deaths and births of the various

correlations (entanglement, quantum and classical corre-

lation) may be observed under the certain parameters’

conditions. It has been also found that there are still non-

classical correlations measured by QD and GQD in some

time intervals in the absence of entanglement, and the time

evolution of CC are different from those of C, QD and

GQD during the whole evolution. In addition, it has been

pointed out that the maximal values of C, QD, GQD and

CC become the less and less and the more peaks of them

appear when the intensity-dependent coupling

f(n) increases.
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