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Abstract: The present paper compares two LRS Bianchi type-I bulk viscous models of the universe constructed in

f(R, T) theory of gravity. A parameterization of deceleration parameter (DP) is considered to find solutions of the models.

This parameterization of DP reduces to both linear-varying deceleration parameter (LVDP) (Akarsu and Dereli in Int J

Theor Phys 51:612–621, 2011) and bilinear-varying deceleration parameter (BVDP) (Mishra and Dua in Astrophys Space

Sci 364:1–12, 2019) for specific values of model parameters. The cosmic evolution is discussed with the help of LVDP in

model I and BVDP in model II. Both the models exhibit phase transition from early cosmic decelerated phase to the present

accelerated phase. We discuss physical and geometrical properties of the models graphically and compare them in detail. In

addition, best-fit values of model parameters are obtained using 51 values of observational Hubble parameter.
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1. Introduction

Multiple research findings indicate that the present uni-

verse is experiencing accelerated expansion phase [1–3].

This widely accepted phenomenon is difficult to explain

through Einstein’s general theory of relativity (GTR). It is

believed that hypothetical matter with a negative pressure

could be causing cosmic acceleration. This unknown form

of matter is known as dark energy (DE). There is maximum

contribution of DE in comparison with other matter such as

baryonic matter and dark matter in providing an anti-

gravity effect to drive the cosmic acceleration. Cosmo-

logical constant K with equation of state (EoS) x ¼ �1 is

considered to be simplest candidate for DE [4–7]. How-

ever, different observations suggest an equation of state of

DE different from x ¼ �1 [8–10]. The other forms of DE

with EoS different from x ¼ �1 are mainly quintessence

(�1�x� � 1
3
) [11, 12] and phantom (x\� 1) [13, 14].

The most interesting thing is that the nature and origin of

DE are still unknown to the scientists, and knowing the

EoS of DE is a key goal in theoretical and observational

cosmology. Exact information about the EoS of DE at the

present epoch and its evolution will provide valuable

insights into cosmic evolution leading to the late-time

cosmic acceleration.

Alternatively, one may attempt to find a solution of the

model using a viable parameterization of geometrical

parameter and derive the EoS for possible fluid that might

be driving the cosmic acceleration in the context of DE.

Thereafter, one may examine whether the behavior of fluid

is realistic or not and try to study the nature of DE.

Numerous attempts have been made by many cosmol-

ogists to modify the geometrical action and explain the

late-time accelerated expansion phase of the universe. The

most simplest geometrical modification to GTR is f(R)

gravity in which action contains an arbitrary function of the

Ricci scalar R rather than only R in GTR. This theory offers

an explanation to the phenomenon of late-time cosmic

acceleration. Harko et al. [15] proposed a theory of gravity

called f(R, T) gravity in which the gravitational Lagrangian

is considered as an arbitrary functional of the Ricci scalar R

and trace T of energy momentum tensor Tlm. f(R, T) theory

has been found to be successful in explaining various

cosmological aspects such as dark matter [16], dark energy

[17] and gravitational waves [18, 19]. Many authors have
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studied cosmological models in f(R, T) gravity and pub-

lished encouraging results [20–27].

After the confirmation of the accelerated expansion of

the universe, many authors have begun to investigate

cosmological model with deceleration parameter (DP) as

time-varying quantity [28–32]. DP is a dimensionless

quantity and is defined as q ¼ � €aa
_a2, where a is an average

scale factor. q[ 0 indicates decelerated expansion phase

of the universe, while q\0 shows accelerated cosmic

expansion phase. This quantity helps in studying how

acceleration varies with cosmic time. Berman [33] pro-

posed a special law of variation for the Hubble parameter

(H ¼ _a
a), which yields constant deceleration parameter

(CDP), i.e., q ¼ a1 � 1, a1 � 0. Recently, Singh and Bee-

sham [34] have studied LRS Bianchi-I model of universe in

GTR with CDP and discussed properties of the model for

different values of a1. Akarsu and Dereli [35] have pro-

posed a linear-varying deceleration parameter (LVDP), i.e.,

q ¼ �a2t þ a1 � 1, a1; a2 [ 0, and utilized it in achieving

an accelerated solution of the cosmological model. This

law covers Berman’s law for a2 ¼ 0.

Further, Mishra and Chand [36] have studied a cosmo-

logical model with bilinear-varying deceleration parameter

(BVDP), i.e., q ¼ að1�tÞ
ð1þtÞ , a[ 0 in Brans–Dicke theory of

gravity. The behavior of DP shows past cosmic decelera-

tion followed by present cosmic acceleration, which is in

good agreement with observational data. Following Mishra

and Chand [36], many authors have studied the dynamics

of the universe in alternate theories of gravity and achieved

accelerated cosmic solutions with the help of BVDP

[37–40].

Research interest in studying bulk viscous properties in

cosmic fluid has seen an increase over the past few years.

The concept of viscous cosmology was first given by

Eckart [41]. It is believed that matter behaved like viscous

fluid during early evolution of the universe when neutrino

decoupling occurred. During this era, the effect of viscosity

was the largest when the temperature was about 1 MeV

(1010K). Our universe at a large scale is spatially isotropic;

therefore, we usually ignore shear viscosity. In view of this,

bulk viscosity could play a prominent role in governing the

early cosmic evolution. Several studies reported that bulk

viscosity could possibly drive the early cosmic inflation

[42, 43]. According to these studies, the inflation driven by

bulk viscous fluid contributes a negative pressure, which in

turn gives rise to repulsive gravity and cause rapid cosmic

expansion. Dark energy phenomenon could also be the

effect of bulk viscosity in the cosmic fluid that has been

studied by Zimdahl et al. [44]. Many authors have studied

the viscous cosmology and published fruitful results

[45–48].

With this motivation, we study two LRS Bianchi type-I

bulk viscous cosmological models in f(R, T) gravity. The

accelerated cosmic solution has been achieved with the

help of LVDP in model I and BVDP in model II. The main

aim of this study is to compare physical and geometrical

properties of the models in detail and constrain model

parameters using observational Hubble data. The remain-

ing paper is organized as follows: We present the metric

and the field equations governing the models in Sect. 2.

Section 3 deals with the parameterization of DP to find

solutions of the models. In Sect. 4, we find the solutions of

the models and discuss their physical and geometrical

properties in detail. Section 5 is devoted to the analysis of

cosmographic parameters. We also perform state finder

diagnostic in this section. In Sect. 6, we constrain the

model parameters a1 and a2 using observational Hubble

data. Finally, in Sect. 7, we compare behavior of both the

models and summarize their results.

2. Equations governing the models

For constructing cosmological models, we consider LRS

Bianchi type-I metric, being defined as

ds2 ¼ dt2 � a21dx
2 � a22ðdy2 þ dz2Þ; ð1Þ

where the directional scale factors a1 and a2 are functions

of cosmic time t only. This metric is homogeneous and

anisotropic in nature.

For bulk viscous fluid, the energy–momentum tensor Tlm
is defined as:

Tlm ¼ ðqþ �pÞulum � �pglm; ð2Þ

where q, �p ¼ p� 3nH, p, n and H are the energy density,

effective pressure, pressure, bulk viscous coefficient and

Hubble parameter, respectively. ul ¼ ð0; 0; 0; 1Þ is the four
velocity vector in co-moving coordinate system, which

agrees with ulum ¼ 1.

The trace of energy–momentum tensor Tlm is given by:

T ¼ q� 3�p: ð3Þ

The gravitational field equations in f(R, T) gravity with

f ðR; TÞ ¼ f1ðRÞ þ f2ðTÞ, f1ðRÞ ¼ kR and f2ðTÞ ¼ kT , k
being a constant [15], are given by

Rlm �
1

2
Rglm ¼

8p
l

þ 1

� �
Tlm þ pþ 1

2
T

� �
glm: ð4Þ

The above field equations for the metric (1) and energy–

momentum tensor (2) reduce to the following differential

equations:
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2
€a2
a2

þ _a2
a2

� �2

¼ q
2
� 8p

k
þ 3

2

� �
�p; ð5Þ

€a1
a1

þ €a2
a2

þ _a1 _a2
a1a2

¼ q
2
� 8p

k
þ 3

2

� �
�p; ð6Þ

2
_a1 _a2
a1a2

þ _a2
a2

� �2

¼ 8p
k

þ 3

2

� �
q� �p

2
: ð7Þ

Here, dot in the superscript denotes the usual time

derivative.

The spatial volume of LRS Bianchi type-I space-time is

defined as

V ¼ a1a
2
2 ¼

ffiffiffiffiffiffiffi�g
p ð8Þ

To solve the field Eqs. (5)–(7), we follow the technique

suggested by Saha and Shikin [49] and Saha [50].

From Eqs. (5) and (6), we obtain

a1
a2

¼ k2exp

Z
k1
a1a

2
2

dt

� �
; ð9Þ

where k1 and k2 are integrating constants.

Further, the scale factors a1 and a2 can be written as

follows:

a1 ¼ k
2
3

2V
1
3exp

2

3
k1

Z
dt

V

� �
; ð10Þ

a2 ¼ k
�1

3

2 V
1
3exp � 1

3
k1

Z
dt

V

� �
; ð11Þ

Using Eqs. (5)–(11), we obtain the following expressions

of energy density q and effective pressure �p:

q ¼ 1

A

24p
k

þ 3

� �
H2 � _H � 8p

3k
þ 2

3

� �
k21
V2

� �
; ð12Þ

�p ¼ 1

A
�3

8p
k
þ 1

� �
H2 � 2

8p
k

þ 3

2

� �
_H

�

� 8p
k

þ 2

� �
k21
3V2

�
;

ð13Þ

where A ¼ 8p
k þ 3

2

� �2� 1
4
.

Equations (5)–(7) are three independent differential

equations containing five unknown variables, viz. a1, a2, q,
p and n. Therefore, to find a solution of the field equations,

we need two more constraints involving these parameters.

We discuss the same in the next section.

3. Assumptions and some definitions

In survey of literature, it has been observed that there are

multiple approaches to solve gravitational field equations.

In one such approach, in order to find a solution of the field

equations, either a parameterization of geometrical

parameter such as a, H, q or parameterization of physical

parameter such as p, q, qde, pde is used. The first kind of

parameterization helps in understanding the cosmic

expansion without any knowledge of background theory

and matter content of the universe. This model-independent

approach provides the solution of the field equations

explicitly, while the second kind of parameterization is

usually considered to discuss the physical aspects of the

universe such as structure formation and thermodynamics.

In this paper, we adopt model-independent approach to

find a solution of the field equations.

We consider the following parameterization of DP:

q ¼ ða1 � 1Þ � a2t
1þ a3t

; ð14Þ

where a1, a2 & a3 � 0 are constants. Such form of DP is

motivated from Mishra and Chand [36], where the authors

have taken similar parameterization of DP and called it as

bilinear-varying deceleration parameter (BVDP).

For a2=a3 ¼ 0, the above form of DP (14) reduces to

constant DP, i.e., q ¼ a1 � 1 [33]. For a3 ¼ 0, it reduces to

linear-varying deceleration parameter (LVDP) [35], i.e.,

q ¼ ða1 � 1Þ � a2t. For a3 ¼ a2, it reduces to the special

form of BVDP, i.e., q ¼ ða1 � 1Þ � a2t
1þ a2t

, which is similar to

the form taken by Mishra and Dua [40].

i) In this study, we find a solution of the gravitational

field equations with the help of LVDP, i.e.,

q ¼ ða1 � 1Þ � a2t, a1; a2 [ 0 in model I, and BVDP,

i.e., q ¼ ða1 � 1Þ � a2t
1þ a2t

, a1; a2 [ 0 in model II for

solving the field equations. Table 1 shows the same.

ii) The models assume the barotropic equation of state

relating the non-viscous fluid pressure p to the energy

density of fluid, i.e.,

p ¼ cq; ð15Þ

where 0� c� 1 is a constant. c ¼ 0 corresponds to pres-

sure less universe and c ¼ 1
3
corresponds to radiation-

dominated universe.

Using these two assumptions, we find solutions of the

models in the next section.

For LRS Bianchi type-I metric, various geometrical

parameters such as Hubble parameter H, directional Hub-

ble parameters Hlðl ¼ 1; 2Þ, expansion scalar h, shear

scalar r are defined as:

H ¼ 1

3

_a1
a1

þ 2
_a2
a2

� �
; ð16Þ

Hl ¼
_al
al

; l ¼ 1; 2; ð17Þ
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h ¼ 3H ¼ _a1
a1

þ 2
_a2
a2

� �
; ð18Þ

r2 ¼ 1

2
rlmr

lm ¼ 1

2

_a1
a1

� �2

þ2
_a2
a2

� �2
" #

� 1

6
h2; ð19Þ

where rlm is shear tensor.
The anisotropic parameter A is defined as

A ¼ 1

3

H1 � H

H

� �2

þ2
H2 � H

H

� �2
" #

: ð20Þ

4. Solution of the models

As discussed above, we consider LVDP, i.e.,

q ¼ ða1 � 1Þ � a2t, a1; a2 [ 0 in model I, and BVDP, i.e.,

q ¼ ða1 � 1Þ � a2t
1þ a2t

, a1; a2 [ 0 in model II for finding a

solution of the field equations.

4.1. Model I: q ¼ ða1 � 1Þ � a2t, a1; a2 [ 0

Here, we consider DP as

q ¼ ða1 � 1Þ � a2t; ð21Þ

where a1 and a2 are positive constants.

For t ¼ 0, q ¼ a1 � 1. Hence, if we would like to begin

the universe with decelerated expansion phase, we may

choose a1 [ 1.

From Eq. (21), we obtain the expressions for the Hubble

parameter H and average scale factor a as follows:

H ¼ 2

tð2a1 � a2tÞ
; ð22Þ

aðtÞ ¼ l0exp
2

a1
tanh�1 a2

a1
t � 1

� �� �
; ð23Þ

where l0 is an integrating constant.

Further, the energy density q, effective pressure �p,

normal pressure p and bulk viscosity coefficient n, in terms

of cosmic time, are obtained as:

q ¼ 1

A
A1ðtÞ

2

tð2a1 � a2tÞ

	 
2
"

�A2ðtÞl�6
0 exp � 12

a1
tanh�1 a2

a1
t � 1

� �	 
�
;

ð24Þ

where A1ðtÞ ¼
24p
k

þ 3þ a1 � a2t

� �
and

A2ðtÞ ¼ k21
8p
3k

þ 2

3

� �
,

�p ¼ 1

A
A3ðtÞ

2

tð2a1 � a2tÞ

	 
2
"

�A4ðtÞl�6
0 exp � 12

a1
tanh�1 a2

a1
t � 1

� �	 
�
;

ð25Þ

where A3ðtÞ ¼ 2
8p
k

þ 3

2

� �
ða1 � a2tÞ � 3

8p
k

þ 1

� �	 


and A4ðtÞ ¼
k21
3

8p
k

þ 2

� �
,

p ¼ c
A

A1ðtÞ
2

tð2a1 � a2tÞ

	 
2
"

�A2ðtÞl�6
0 exp � 12

a1
tanh�1 a2

a1
t � 1

� �	 
�
;

ð26Þ

n ¼ A5ðtÞ
3A

2

tð2a1 � a2tÞ

	 


þ A6ðtÞ
6A

tð2a1 � a2tÞl�6
0 exp � 12

a1
tanh�1 a2

a1
t � 1

� �	 

;

ð27Þ

where A5ðtÞ ¼ c
24p
k

þ 3

� �
þ 3 1þ 8p

k

� �
þ ða2t �

a1Þ 2
8p
k

þ 3

2

� �
� c

	 

and

A6ðtÞ ¼ k21
1

3
2þ 8p

k

� �
� c

8p
3k

þ 2

3

� �	 

.

The other geometrical parameters such as V, h, r and A

are obtained as:

VðtÞ ¼ a1a
2
2 ¼ l30exp

6

a1
tanh�1 a2

a1
t � 1

� �	 

ð28Þ

Table 1 The models

Models q(t) H(t) a(t)

Model I (LVDP) ða1 � 1Þ � a2t 2
tð2a1�a2tÞ l0exp

2
a1
tanh�1 a2

a1
t � 1

� �h i

Model II (BVDP) ða1�1Þ�a2t
1þa2t

a2
a1logð1þa2tÞ l1t

1
a1expðA7ðtÞÞ

996 RK Mishra, H Dua



h ¼ 3H ¼ 6

tð2a1 � a2tÞ
ð29Þ

r2 ¼ k21
3
l�6
0 exp � 12

a1
tanh�1 a2

a1
t � 1

� �	 

ð30Þ

A ¼ k21
18

t2ð2a1 � a2tÞ2l�6
0 exp � 12

a1
tanh�1 a2

a1
t � 1

� �	 


ð31Þ

For q0 ¼ �0:54 [51] and t0 ¼ 13:8 Gyr, Eq. (21) reduces to

13:8a2 þ 0:46 ¼ a1. For all the graphical representations of
the cosmological parameters in model I, we make a choice

of pair ða1; a2Þ in such as way that it satisfies

13:8a2 þ 0:46 ¼ a1. Here, we opt ða1; a2Þ ¼ ð2:216; 0:127Þ
for the same.

From Eq.(23), it is clear that the average scale factor

a ¼ 0 at t ¼ 0 and a ! 1 as t ! 2a1
a2
. This infers that this

model of the universe starts with the Big Bang at t ¼ 0 and

ends at te ¼ 2a1
a2
. This is the Big Rip scenario, which was

first suggested by Caldwell [14]. For chosen values of a1
and a2, te ¼ 34:89, which is found to be very close to the

value given by Caldwell, i.e., trip ¼ 35. Similar behavior of

a can be observed from Fig. 1.

Equation (21) infers that q ¼ a1 � 1[ 0, provided

a1 [ 1 at t ¼ 0, q� 0 for t� a1�1
a2

, q� � 1 for t� a1
a2

and

q ¼ �a1 � 1 at te ¼ 2a1
a2
. Such behavior of q indicates that

the model starts with decelerated expansion phase, enters

into accelerated expansion phase at t ¼ a1�1
a2

, enters into

super exponential expansion phase at t ¼ a1
a2

and ends at

te ¼ 2a1
a2
. One can observe the similar behavior of q in

Fig. 2. Hubble parameter also diverges at the beginning

(t ¼ 0) and end of the universe (te ¼ 2a1
a2
). It remains posi-

tive throughout the evolution of the universe as observed in

Fig. 3.

Figures 4, 5 and 6 represent the time-varying behavior

of q, �p and n, respectively. Here, we have used l0 ¼ 103,

c ¼ 0:5, k ¼ 1:052 and k1 ¼ 1 for the pictorial represen-

tation of these parameters. It is noticed that both q and n
remain positive throughout the cosmic evolution; however,

they diverge at the beginning and end of the universe.

Effective pressure �p is gradually decreasing with the pas-

sage of cosmic time. Also, �p is initially positive and

becomes negative at present. It also diverges at the

beginning and end of the universe. The negative value of �p

ensures the present accelerated expansion phase of the

universe.

Figure 7 is a plot of the time variation of EoS parameter

x ¼ �p
q. It is observed that x starts evolving from a non-dark

region, enters into quintessence region (�1\x\� 1
3
),

crosses the cosmological constant line (w ¼ �1) and

thereon stays in the phantom region (w\� 1). The

behavior of EoS parameter shows that the model I behaves

similar to phantom DE model in future followed by the Big

Rip.

Next, we explore the behavior of energy condition-

dominant energy conditions (DEC): q� �p� 0, weak

energy conditions (WEC): q� 0 and qþ �p� 0, null energy

conditions (NEC): qþ �p� 0, strong energy conditions

(SEC): qþ 3�p� 0.

Phantom matter is regarded as one of the interesting

possibilities that does not satisfy NEC, i.e., qþ �p� 0, and

our model follows the same. Such property ensures that the

model is physically realistic. In this model, NEC is not

satisfied at late times, and hence, SEC is also violated at

late time cosmic evolution. The time variation of these

energy conditions is represented in Figs. 8, 9 and 10.

From Eqs. (30) and (31), it is observed that both r2 &

A ! 0 as t ! te. Such behavior of the anisotropic

parameter shows that the derived model is anisotropic in

the past and it becomes isotropic at late times.

4.2. Model II:q ¼ ða1�1Þ�a2t
1þa2t

; a1; a2 [ 0

Here, we consider the bilinear form of DP as

q ¼ ða1 � 1Þ � a2t
1þ a2t

; ð32Þ

where a1 and a2 are arbitrary positive constants.

Further, we write

1

H
¼

Z
ð1þ qðtÞÞdt þ k3: ð33Þ

Using Eq. (32) in the above equation, we obtain

H ¼ 1
a1
a2

logð1þ a2tÞ þ k3
: ð34Þ

Since the rate of expansion is very high during early stages

of cosmic evolution, therefore, we consider k3 ¼ 0 so that

Eq. (34) becomes

H ¼ a2
a1logð1þ a2tÞ

: ð35Þ

On integrating Eq. (35), the average scale factor a ¼
ða1a22Þ

1
3 is obtained as:

aðtÞ ¼ l1t
1
a1expðA7ðtÞÞ; ð36Þ

where l1 is an integrating constant and

A7ðtÞ ¼
a2t
2a1

� a22t
2

24a1
þ a32t

3

72a1
� 19a42t

4

2880a1
þ Oðt5Þ.
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Further, the energy density q, effective pressure �p,

normal pressure p and bulk viscosity coefficient n are

obtained as:

q ¼ 1

A
A8ðtÞ

a2
a1logð1þ a2tÞ

	 
2
"

�A2ðtÞl�6
1 t

�6
a1 expð�6A7ðtÞÞ

i
;

ð37Þ

where A8ðtÞ ¼
24p
k

þ 3þ a1
1þ a2t

� �
,

�p ¼ 1

A
A9ðtÞ

a2
a1logð1þ a2tÞ

	 
2
"

�A4ðtÞl�6
1 t

�6
a1 expð�6A7ðtÞÞ

i
;

ð38Þ

where A9ðtÞ ¼ 2
8p
k

þ 3

2

� �
a1

1þ a2t
� 3

8p
k
þ 1

� �	 

,

p ¼ c
A

A8ðtÞ
a2

a1logð1þ a2tÞ

	 
2
"

�A2ðtÞl�6
1 t

�6
a1 expð�6A7ðtÞÞ

i
;

ð39Þ

n ¼ A10ðtÞ
3A

a2
a1logð1þ a2tÞ

	 


þ A6ðtÞ
3A

a1logð1þ a2tÞ
a2

	 

l�6
1 t

�6
a1 expð�6A7ðtÞÞ;

ð40Þ

where A10ðtÞ ¼ c
24p
k

þ 3

� �
þ 3 1þ 8p

k

� �
� a1
�

1þ a2tÞ 2
8p
k

þ 3

2

� �
� c

	 

.

The other geometrical parameters such as V, h, r and A

are obtained as:

V ¼ l31t
3
a1expð3A7ðtÞÞ; ð41Þ

h ¼ 3H ¼ 3a2
a1logð1þ a2tÞ

; ð42Þ

r2 ¼ k21
3
l�6
1 t

�6
a1 expð�6A7ðtÞÞ; ð43Þ

A ¼ 2k21
9

a1logð1þ a2tÞ
a2

	 
2

l�6
1 t

�6
a1 expð�6A7ðtÞÞ; ð44Þ

For q0 ¼ �0:54 [51] and t0 ¼ 13:8 Gyr, Eq. (32) reduces to

6:34a2 þ 0:46 ¼ a1. For all the graphical representations of
the cosmological parameters in model II, we make a choice

of pair ða1; a2Þ in such a way that it satisfies

Fig. 1 Time variation of scale

factor a

Fig. 2 Time variation of deceleration parameter q
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6:34a2 þ 0:46 ¼ a1. Here, we opt ða1; a2Þ ¼ ð1:266; 0:127Þ
for the same.

From Eq. (36), it is observed that the average scale

factor begins with zero and approaches to infinity as

t ! 1. This infers that the model starts with the Big Bang

singularity and continues to expand forever. Similar

behavior of a can be observed from Fig. 1.

From Eq. (32), q ¼ a1 � 1[ 0 provided a1 [ 1 at

t ¼ 0, q[ 0 for t\ a1�1
a2

, q\0 for t[ a1�1
a2

and q ! �1 as

t ! 1. This behavior of q infers that in this model, uni-

verse had decelerated expansion phase in the past and is

currently accelerating. Such feature of the model is in line

with the recent observational and theoretical data. Figure 2

represents the similar behavior of q. Hubble parameter H is

a decreasing function of cosmic time t. Also, H ! 0 as

t ! 1.

The time-varying behavior of energy density q, effective
pressure �p and bulk viscosity coefficient n is shown in

Figs. 4, 5 and 6, respectively. Here, we have considered

l1 ¼ 103, c ¼ 0:5, k ¼ 1:052 and k1 ¼ 1 for the pictorial

representation of these parameters. It is clear that both q
and n remain positive throughout the cosmic expansion.

Also, both q & n ! 0 as t ! 1 and diverge at t ¼ 0.

However, effective pressure �p is negative throughout the

Fig. 3 Time variation of Hubble parameter H

Fig. 4 Time variation of energy density q

Fig. 5 Time variation of effective pressure �p

Fig. 6 Time variation of bulk viscosity n
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evolution of the universe. The negative effective pressure

ensures the accelerated expansion of the universe. Also,

�p ! 0 as t ! 1.

The nature of EoS parameter represented in Fig. 7

indicates that model resembles quintessence DE model

(� 1
3
\x\� 1) at present and KCDM DE model

(x ’ �1) at late times.

We examine the behavior of the energy conditions-

DEC, WEC, NEC and SEC. From Figs. 8 and 9, it can be

observed that all DEC, WEC and NEC are well satisfied in

our model. However, SEC is violated at present and late

times. In quintessence DE model, SEC needs to be

violated, which is true in our case as observed from Fig. 10,

and thus ensures the viability of this model.

From Eqs. (43) and (44), it is clear that both r2 and

Am ! 0 as t ! 1, i.e., model II also shows anisotropy in

the past and reaches isotropization at late times.

5. Cosmographic analysis

Cosmographic analysis helps in understanding the

dynamics of the observable universe without any prior

knowledge of theory of gravity and matter content of the

universe. This model-independent approach makes use of

Fig. 7 Time variation of EoS parameter x

Fig. 8 Time variation of energy conditions

Fig. 9 Time variation of energy conditions

Fig. 10 Time variation of energy conditions
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kinematic variables to study the evolution of the universe

and dark energy.

5.1. Jerk, snap and lerk parameters

Visser [52] introduced the cosmographic parameters such

as jerk, snap and lerk involving third-, fourth- and fifth-

order derivatives of the scale factor a(t). Like the Hubble

parameter H (involves first-order derivative of a(t)) and DP

q (involves second-order derivative of a(t)), these param-

eters also play a significant role in studying the dynamics

of the universe and are defined as:

jðtÞ ¼ a
000

a

a
0

a

� ��3

sðtÞ ¼ a
0000

a

a
0

a

� ��4

lðtÞ ¼ a
00000

a

a
0

a

� ��5

:

ð45Þ

We first express these parameters in terms of H and its

derivatives as follows:

jðtÞ ¼ 1þ H
00

H3
þ 3

H
0

H2
; ð46Þ

sðtÞ ¼ 1þ H
000

H4
þ 4H

00

H3
þ 3

H
0

H2

� �2

þ 6H
0

H2
; ð47Þ

lðtÞ ¼ 1þ H
0000

H5
þ 5H

000

H4
þ 10H

00

H3
þ 15

H
0

H2

� �2

þ 10H
00
H

0

H5
þ 10H

0

H2
:

ð48Þ

For model I, j, s and l are obtained as:

jðtÞ ¼ 1þ 3T1 þ 2T2
1 þ

a2t
2

ð2a1 � a2tÞ; ð49Þ

where T1 ¼ a2t � a1,

sðtÞ ¼ 1þ 6T1 þ 11T2
1 þ 6T3

1 þ a2tð2a1 � a2tÞð2þ 3T1Þ;
ð50Þ

lðtÞ ¼ 1þ 10T1 þ 35T2
1 þ 50T3

1 þ 24T4
1 þ 2a2tð2a1

� a2tÞT1ð10þ 9T1Þþ

a2tð2a1 � a2tÞ
3

2
a2tð2a1 � a2tÞ þ 5

	 

:

ð51Þ

From Eqs. (49)-(51), it is noticed that j ! 1� 3a1 þ 2a21,
s ! 1� 6a1 þ 11a21 � 6a31 and l ! 1� 10a1 þ 35a21 �
50a31 þ 24a41 as t ! 0 and j ! 1þ 3a1 þ 2a21, s ! 1þ
6a1 þ 11a21 þ 6a31 and l ! 1þ 10a1 þ 35a21 þ 50a31 þ 24a41
as t ! te. Table 2 shows the behavior of the cosmographic

parameters in model I.

For model II, these parameters are obtained as

jðtÞ ¼ 1þ a1
1þ a2t

� �2

ð2þ T2Þ �
3a1

1þ a2t
; ð52Þ

where, T2 ¼ logð1þ a2tÞ;

sðtÞ ¼ 1� 2
a1

1þ a2t

� �3

ð3þ 3T2 þ 2T2
2 Þ

þ a1
1þ a2t

� �2

ð11þ 4T2Þ

� 6a1
1þ a2t

;

ð53Þ

lðtÞ ¼ 1þ 2
a1

1þ a2t

� �4

ð12þ 18T2 þ 11T2
2 þ 3T3

2 Þ

� 10
a1

1þ a2t

� �3

ð5þ 4T2 þ T2
2 Þ

þ 5
a1

1þ a2t

� �2

ð7þ 2T2Þ �
10a1

1þ a2t
:

ð54Þ

Table 2 Behavior of the cosmographic parameters in Model I

Time (t) a(t) H(t) q(t) j(t) s(t) l(t)

t ¼ 0 0 1 a1 � 1 2a21 � 3a1 þ 1 �6a31 þ 11a21 �6a1 þ 1 24a41 � 50a31 þ35a21 � 10a1 þ 1

t ! te ð¼ 2 a1
a2
Þ 1 1 �a1 � 1 2a21 þ 3a1 þ 1 6a31 þ 11a21 6a1 þ 1 24a41 þ 50a31 þ35a21 þ 10a1 þ 1

Table 3 Behavior of cosmographic parameters in Model II

Time (t) a(t) H(t) q(t) j(t) s(t) l(t)

t ¼ 0 0 1 a1 � 1 2a21 � 3a1 þ 1 �6a31 þ 11a21 �6a1 þ 1 24a41 � 50a31 þ35a21 � 10a1 þ 1

t ! 1 1 0 �1 1 1 1
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From Eqs. (52)–(54), its is observed that all three param-

eters j, s & l ! 1 as t ! 1.

Figures 11, 12 and 13 represent the evolution of jerk,

snap and lerk parameter, respectively. In model I,

increasing values of all three parameters in the future show

deviation from the KCDM model. However, in model II,

all j; s & l ! 1 as t ! 1. Such behavior of these param-

eters indicates that model reaches to KCDM in late-time

cosmic evolution. The behavior of EoS parameter in model

II also shows similar feature of the model. Table 3 shows

the behavior of the cosmographic parameters in model II.

5.2. Statefinder diagnostic

It is a model-independent approach to distinguish DE

models from the standard models generally KCDM,

Chaplygin gas (CG), quintessence and standard cold dark

matter (SCDM). Sahni et al. [53] have introduced the

geometrical pair (r, s), where r is same as the jerk

parameter defined in Sect. 5.1 and s is the combination of r

and DP q, and is defined as

s ¼ 2ðr � 1Þ
3ð2q� 1Þ : ð55Þ

Here, we plot the trajectories of the pair (s, r) in ðs� rÞ
plane and see the evolution of different DE models. In

ðs� rÞ plane, the fixed point ðs; rÞ ¼ ð0; 1Þ represents

KCDM model and ðs; rÞ ¼ ð1; 1Þ represents SCDM model.

The region s\0; r[ 1 represents CG DE model, and

s[ 0; r\1 represents quintessence DE model.

For model I, s is obtained as

s ¼
2 3T1 þ 2T2

1 þ
a2t
2

ð2a1 � a2tÞ
n o

3ð�2T1 � 3Þ : ð56Þ

For model II, we obtain s as

s ¼
2

a21
1þ a2t

ð2þ T2Þ � 3a1

	 


3ð2a1 � 3a2t � 3Þ :
ð57Þ

Figure 14 shows the evolution of the (s, r) trajectories in

both the models. In model I, the trajectory starts evolving

in the quintessence region (s[ 0; r\1), crosses the

KCDM fixed point and thereon stays in the CG region

(s\0; r[ 1), whereas model II shows different behaviors.

In model II, the trajectory starts evolving in the CG gas

region, enters into the quintessence region and finally

reaches to the KCDM point.

6. Best-fit values of model parameters a1 and a2

In this section, we constraint the model parameters a1 and

a2 in both the models. For this purpose, we use 51 values of

observed Hubble parameter measurements, complied by

Magana et al. [54]. These values of H(z) are in the redshift

range 0:07� z� 2:36. This Hubble data set includes 31

values of H(z) that are obtained from differential age (DA)

method and 20 values of H(z) that are obtained from

clustering using sound horizon at drag epoch, i.e., rd ¼
152:33� 1:3Mpc from WMAP [55] measurements for

entire data set.

The Chi-square function to find the best-fit values of the

model parameters a1 and a2 is given by:

Fig. 11 Time variation of jerk

parameter j
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v2ða1; a2Þ ¼
X51
l¼1

Hthða1; a2; zlÞ � HobsðzlÞ
r2l

; ð58Þ

where Hthða1; a2; zlÞ and HobsðzlÞ are the predicted and

observed values of H(z), respectively. rl is the standard

error in observed value of H(z).

For model I, the t � z relationship is obtained as

tðzÞ ¼ a1
a2

tanh � a1
2
logfl1ð1þ zÞg

h i
þ a1
a2

� T3: ð59Þ

Further, H in terms of redshift z is obtained as

HðzÞ ¼ 2

2a1T3 � a2T2
3

: ð60Þ

Using Eq. (60), the best-fit values of a1 and a2 are obtained
as 2:483� 0:06 and 0:415� 0:06, respectively, at 95%

confidence level. The corresponding v2red ¼ 0:52, and cor-

relation coefficient is 0.97. Figure 15 represents the redshift

variation of the Hubble parameter in model I.

Further, for model II, using the expressions of q and H

as represented in Eqs. (32) and (35), respectively, we

obtain

exp � a2
a1H

� �
¼ qþ 1

a1
¼ 1

1þ a2t
ð61Þ

Further using
dH

dz
¼ _H � 1

Hð1þ zÞ

� �
, one can obtain

Hzð1þ zÞ
Ha1

¼ exp � a2
a1H

� �
¼ qþ 1

a1
¼ 1

1þ a2t
ð62Þ

Integrating Eq. (62), we get

Ei
1

a4H

� �
¼ �a1logð1þ zÞ � logA; ð63Þ

where Ei is the exponential integral function, a4 ¼ a1
a2

and

A is an integrating constant.

Using t0 ¼ 13:8 Gyr., we obtain the value of logA as

�Ei logð1þ 13:8a2Þf g, so that we get

Ei
1

a4H

� �
þ a1logð1þ zÞ � Ei logð1þ 13:8a2Þf g ¼ 0

ð64Þ

Using Eq. (64), the best-fit values of a1 and a2 in model II

are obtained as 3:145� 0:08 and 7:032� 0:02, respec-

tively, at 95% confidence level. The corresponding

v2red ¼ 0:48, and correlation coefficient is 0.99. Figure 16

represents the redshift variation of the Hubble parameter in

model II.

7. Conclusions

In this manuscript, the authors have studied two LRS

Bianchi type-I bulk viscous cosmological models in f(R, T)

gravity with variable DP. The parameterization of DP has

been considered as q ¼ ða1 � 1Þ � a2t
1þ a3t

, a1; a2; a3 � 0. This

form of DP reduces to both LVDP [35] and BVDP [40] for

specific values of model parameters. Cosmic acceleration is

achieved through LVDP, i.e., q ¼ ða1 � 1Þ � a2t,

a1; a2 [ 0 in model I, and BVDP, i.e., q ¼ ða1 � 1Þ � a2t
1þ a2t

,

a1; a2 [ 0 in model II. The physical and geometrical

properties of the models have been discussed and com-

pared in detail.

In model I, the universe has finite lifetime, i.e., it starts

with the Big Bang singularity ða ¼ 0 at t ¼ 0Þ and ends at

te ¼ 2a1
a2

ða ! 1 as t ! 2a1
a2
Þ. Such feature is known as Big

Fig. 12 Time variation of snap

parameter s
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Rip scenario [14]. However in model II, the universe starts

with the Big Bang singularity ða ¼ 0 at t ¼ 0Þ and con-

tinues to expand forever ða ! 1 as t ! 1). The fastest

rate of the expansion under LVDP is super-exponential

expansion (q\� 1). In model I, universe starts with

decelerated expansion phase (q ¼ a1 � 1[ 0;), enters into

accelerated expansion phase ðq\0Þ at t ¼ a1�1
a2

and then

enters into super-exponential expansion phase (q\� 1) at

t ¼ a1
a2

and ends with q ¼ �a1 � 1 at te ¼ 2a1
a2
. However,

under BVDP, the fastest rate of expansion is exponential

expansion ðq ¼ �1Þ. In model II, q ¼ a1 � 1[ 0 ,pro-

vided a1 [ 1 at t ¼ 0, q[ 0 for t\ a1�1
a2

, q\0 for t[ a1�1
a2

and q ! �1 as t ! 1. Both the models show phase

transition from early cosmic deceleration to the current

cosmic acceleration. This feature of the models is found to

be aligned with the theoretical and observational data. Both

the models show anisotropy in the past and reach

isotropization at late times.

Energy density q and bulk viscosity coefficient n remain

positive throughout the evolution of the models. However,

in model I, q and n diverge at the beginning and end of the

universe, and in model II, q and n diverge at the beginning

and q, n ! 0 as t ! 1. Effective pressure �p alters its sign

from early positive to present negative in model I. In model

II, �p is negative throughout the expansion of the universe.

The present negative effective pressure in the models

ensures the cosmic acceleration. In model I, x starts

evolving from a non-dark region, enters into quintessence

region (�1\x\� 1
3
), crosses the cosmological constant

Fig. 13 Time variation of lerk

parameter l

Fig. 14 Plot of

(s, r) trajectories
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line (w ¼ �1) and thereon stays in the phantom region

(w\� 1). The nature of EoS parameter shows that model I

behaves similar to phantom DE model in future followed

by the Big Rip. However, model II resembles to quintes-

sence DE model at present and KCDM model in future.

The behavior of the energy conditions—DEC, WEC,

NEC and SEC—has been examined and presented graph-

ically. Phantom matter is regarded as one of the interesting

possibilities that does not satisfy NEC, i.e., qþ �p� 0, and

our model I follows the same. This ensures that the model

is physically realistic. In this model, NEC is not satisfied at

late times, and hence, SEC is also violated at late time

cosmic evolution. In quintessence DE model, SEC needs to

be violated, which is true in model II and thus ensures the

viability of this model.

In model I, increasing values of jerk j, snap s and lerk l

parameters in the future show deviation from the KCDM
model. However, in model II , all j; s & l ! 1 as t ! 1.

Such behavior of these parameters in model II indicates

that model reaches to the KCDM in future. We have also

performed statefinder diagnostic to discriminate various

DE models. In model I, the trajectory starts evolving in the

quintessence region, crosses the KCDM fixed point and

thereon stays in the CG region, whereas, in model II, the

trajectory starts evolving in the CG gas region, enters into

the quintessence region and finally reaches to the KCDM
point. Such feature of model II reassures that it behaves

similar to the KCDM in late-time cosmic evolution.

In addition, we have also constrained the model

parameters a1 and a2 in both the models using 51 values of

observational Hubble data. The best-fit values of a1 and a2
in model I and II are obtained as ð2:483� 0:06, 0:415�
0:06Þ and ð3:145� 0:08; 7:032� 0:02Þ, respectively, at

95% confidence level.

Both the models developed in this study are significant

in explaining late-time cosmic acceleration of the universe

and are demonstrated to be applicable in the study of

cosmic dynamics.
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