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Abstract: The present study investigated two super geomagnetic storms (GSs) that occurred on November 20, 2003

(Dst = –422 nT), and November 08, 2004 (Dst = –374 nT). The investigation was conducted by the zonal geomagnetic

indices (ZGi) and the solar wind parameters (SWp) (nT). The analysis of the two super geomagnetic activities based on the

artificial neural network model (ANNm) consists of the correlation matrix, the hierarchical cluster appearance, and the ZGi

estimation with their errors. In the light of physical principles, the ANNm utilizes SWp as inputs and ZGi as outputs. The

comparative estimation conclusions with a high correlation rate and low absolute error are satisfied. The ANNm perfor-

mance is evaluated using the correlation constant (R) and root mean square error (RMSE) (nT) measures for either GS. The

study claims that the network model is reliable, with an R-value of up to 88% and an RMSE value of down to 4.78 nT. The

paper may support the Sun–Earth investigations.

Keywords: Geomagnetic storm; Artificial neural network (ANN); Zonal geomagnetic indices (ZGi); Solar wind

parameters (SWp)

1. Introduction

Geomagnetic storms (GSs) [1–18] have been widely dis-

cussed during the past centuries. Generally, investigations

focus on understanding GS dynamics via the solar wind

parameters (SWp) (Bz, E, P, N, v, T) and the zonal geo-

magnetic indices (ZGi) (Dst, ap, AE), where the B mag-

netic field z component Bz (nT), the proton density N (1/

cm3), temperature T (K), the plasma flow speed v (km/s),

the dynamic pressure P (nPa), and the electric field E (mV/

m) [17–24]. Moreover, various studies

[7–10, 12, 14, 17, 18, 25–30] have revealed models

between the SWp and the ZGi. These models are inten-

sively handled with traditional methods [31–36] and

occasionally with new methods like the artificial neural

network models (ANNm) [37–39]. The Dst (nT), the ap

(nT), and the AE (nT) ZGi are the prominent indices in the

models [24, 40–42]. This paper is established on the

ANNm [10, 37–39, 43–58] that used the back-propagation

performance of Rumelhart et al. (1986) [59]. The paper

offers the scaled conjugate gradient (trainscg) training

algorithm. Thirty-five neural members provide the interior

interaction of the model.

The study aims to model and compare two superstorms

(November 20, 2003, Dst = –422 nT and November 08,

2004, Dst = –374 nT) by the ANN with remarkable con-

sistency. In the discussion governed by the causality prin-

ciple [60–62], the SWp is the cause, and the ZGi is the

effect. As in previous studies [8–10, 63], phenomena are

dealt with in their physical context. In the ANN, where

SWp is given as an input, ZGi is presented as an output.

The first part of the study reviews the literature. The second

part attempts to depict the GS dynamics by considering the

variables with their behavior in the events. In the third part,

after discussing the binary relations, hierarchical clusters,

and distributions of the variables, ANN analysis is

employed. In the last part, the paper is concluded with

discussions of the results.

The bow shock to the ionosphere is considered in the

essay through ground stations. All data are handled in

hourly versions.

2. Data

The emergence of superstorms can be illustrated at the

beginning of the research. The 5-day (120-h) storm period

in which the day of the storm settles in the middle is pre-

sented in Fig. 1a–b. The investigation employs SPEDAS
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for displaying fluctuations of the GSs’ variables. GS titles

can be specified as weak, moderate, and severe according

to the Dst (nT) index.

According to Fig. 1, at 07:00 UT on November 10, the

first coronal mass ejection (CME) hits with a sudden

increase in the dynamic pressure (nPa) and the proton

density (1/cm3). The first CME signs the commencement of

the November 2003 superstorm. Meanwhile, conditions are

immediately ready for a storm with the negative orientation

of the Bz (nT) magnetic field from northward to southward.

After then, the peak of the Bz (–50.9 nT) magnetic field at

15:00 UT and the Dst index hitting –422 nT at 20:00 UT

with a 5-h response time point to the heart of the storm.

According to Fig. 1, the first CME for the November

2004 superstorm hit at 15:00 UT on November 06 with a

sudden increase in dynamic pressure (from 1.11 to 5.31

nPa) and the proton density (from 5.3 to 18.0 1/cm3). This

storm’s initial CME is much more shocking than the pre-

viously reported November superstorm from the previous

year. The next day, the second CME hits at 03:00 UT. On

the same day, after the orientation of the Bz magnetic field

from north to south, the Dst index reached its minimum

value of –374 nT on November 08, at 06:00 UT.

3. Modeling

Dual relations with the Pearson correlation matrix for the

data of the superstorm on November 20, 2003, and

November 08, 2004, GSs are displayed in Table 1, which

reveals the mutual relations of data. When the coefficients

in Table 1 get close to ± 1, their relationship gets stronger.

The hierarchical appearance of two super GSs’ data and the

scattering of variables are exhibited in Figs. 2a–b and 3a–b,

respectively. Each line exhibits the correlation of variables

through what is called the dendrogram.

As shown in Fig. 3, in the 2003 November superstorm,

variables clustered around two major centers. T, v, Bz, and

Dst variables are in one group, while E, AE, ap, N, and

P are in another group. In the 2004 November superstorm,

Fig. 1 Dst (nT) index, Bz (nT), E (mV/m), P (nPa), N (1/cm3), v (km/s) SWp, ap (nT) and the AE (nT) index (a) November 20, 2003, storm;

(b) November 8, 2004, storm
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v, AE, ap, and E variables are clustered in one group, while

Dst, N, Bz, P, and T variables are clustered in the other

group.

When it comes to the statistical partnership of data, the

ANNm could be useful to remember. The ANNm is

inspired by the human brain that interacts via neurons. Like

regions in the brain, the ANN has layers called input,

hidden, and output layers (Fig. 4). This complex structure

learns by training (educating) with the aid of mathematical

arguments, especially nonlinear ones. The ANN inputs and

outputs do not want any information or homework for

modeling [43].

This ANNm employs,

yij ¼
Xn

k¼1

wkjxik þ bj ð1Þ

equation; where w is the weight vector, y is the independent

variable of the activation function (as an output), x is the

input, and b is the bias. The sigmoid transfer function [64]

is f:

f yð Þ ¼ 1

1 þ e�y
ð2Þ

where f is the logistic function.

The instructional learning method is a commonly uti-

lized approach [65]. The ANN framework includes a few

layers, and a pre-defined number of neural cells is used in

the frame. The input layer is usually the initial layer. The

hidden layer [43] is the second layer. One hidden layer is

commonly preferred over multiple ones [66]. The last layer

is the output layer. While the input layer consists of the

independent variables (SWp: Bz, T, N, v, P, E), the output

layer consists of the dependent variables (ZGi: Ds, ap, AE).

The output layer uses the sigmoid transfer function. This

paper employs 120 (h) data in total; 84 h (70%) are used

for training ANN, 24 h (20%) for testing, and 12 h (10%)

for validating. The study utilizes the back-propagation

algorithm for the estimation. This algorithm learns through

feedback iteration. The feedback sum (or iteration) is the

gradient reduction approach that uses the weights of the

variables in the path of the activation function’s negative

gradient. Newton’s method [67] and gradient descent are

widely used as standard optimizations in back-propagation

algorithms. Feedback training-learning using constant

input minimizes the total error residue by backward cluster.

The study uses the scaled conjugate gradient (trainscg)

training algorithm.

After creating the training algorithm, the neurons’

amount of the hidden layer ought to be specified. The

neurons’ number should be determined as required. While

a few neurons cause inadequate learning, a large number of

neurons also cause memorization by the ANN. The
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appropriate neuron enforces the ANN to improve its gen-

eralization skills [68, 69]. The number of the layer’s neu-

rons is specified as 35, in which the mean square error

(MSE) value tends to be steady. The MSE is:

MSE ¼ 1

n

X
yobserved � yestimatedð Þ2 ð3Þ

While the MSE values (Eq. 3) are calculated, the

number of updates (iteration, epoch) is continued until

the ideal validation performance is attained (Fig. 5). When

the MSE value inclines steadily, the ANN ends iteration.

As a consequence of the learning, the ANN should yield

the most suitable result. The authors try to eradicate

memorization in the iterations. The MSE does not rise in

the validation-train-test series after that marked iteration

(Fig. 5). When the MSE of the validation-train-test series

demonstrates no considerable memorization, the

performance of the ANN reaches an acceptable level

Fig. 2 Cluster of the variables (a) November 20, 2003, storm; (b) November 8, 2004, storm

Fig. 3 Scattering of the data

(a) November 20, 2003, storm;

(b) November 08, 2004, storm

Fig. 4 The ANN interaction frame for the estimation
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(Fig. 5a–b). Figure 5 exhibits the MSE (nT) values of the

Dst (nT), the ap (nT), and the AE (nT) ZGi, respectively.

The significant investigations have discussed the Dst,

the Kp (or ap), and the AE estimation of ANNm (Table 2).

Some of them can be indicated in Table 2.

Figures 6a–b and 7a–b discuss the examination results

by indicating the three monitored and estimated ZGi. It is

possible to observe the harmony of the output-target dual

team’s R and RMSE (nT) values (Fig. 6a–b).

Fig. 5 From the top to the bottom, the MSE (nT) of the ANNm of the Dst, ap, AE. (a) November 20, 2003, storm; (b) November 08, 2004, storm

Investigating and comparing the two superstorms 2711



For the November 20, 2003, Storm: The R constant

estimation rate of the Dst, ap, and AE ZGi were 96.7, 98.2,

and 98.3%, respectively (Fig. 6a).

For the November 8, 2004, storm, the R constant esti-

mation rate of the ZGi was 98.4, 98.8, and 98.2%,

respectively (Fig. 6b).

The model for predicting the ZGi impacts of super-

storms appears similar. The ANNm indicates not only the

fitting of the monitored-estimated of the ZGi outputs but

also shows the consistency of the results.

Figure 7a–b indicates the observed-estimated ZGi val-

ues with their average absolute errors. The absolute error of

the estimated ZG indices rates according to the monitored

ones can be shown with the Error ¼ Dstest�Dst
Dst

���
���;

Error ¼ apest�apj j
ap , and Error ¼ AEest�AEj j

AE
where the Dstest,

apest, and AEest are the estimated Dst, ap, and AE index

values, respectively. The graphics of the estimated Dst

(nT), ap (nT), and AE (nT) indices of two super GS are

exhibited in Fig. 7a–b. The low absolute error rates in the

ANNm can be immediately recognized.

Absolute error rates in Fig. 7a–b, together with their

variance values:

For the November 2003 storm For the November 2003 storm

Error Variance Error Variance

Dst 0.395

(0.50%)

0.0281 Dst 0.340

(0.34%)

0.274

ap

(nT)

0.228

(0.43%)

0.046 ap

(nT)

0.405

(0.43%)

0.488

AE

(nT)

0.274

(0.06%)

0.146 AE

(nT)

0.243 (0.04) 0.146

The assessment of the estimated ZGi values average

errors superstorms through data obtained from NASA is

presented in Fig. 7a–b.

The relationship [73] of the independent and dependent

variables in the ANNm may be defined by:

% Effect ¼ 100 � 1 � Rn

Rdiff

� �
ð4Þ

Equation (4) is utilized by omitting the variables from

the investigation. The correlation coefficient governs

Eq. (4). Rn is the correlation constant obtained by

anticipating related input. Rdif is the basic correlation

constant between estimated and observed data in Eq. (4).

The data influenced by the ANNm can be observed in

Table 3.

As the Bz (nT) B magnetic field z component, N (1/cm3)

the proton density, v (km/s) the flow speed, and P (nPa) the

dynamic pressure:

November 20, 2003, Storm: According to Table 3, in the

prediction of the Dst (nT) ZGi, the Bz (nT), N (1/cm3), and

v (km/s) have the maximum effect. When these indices are

neglected, the R-value declines by 13.24, 12.20, and

11.99%, respectively. The R-value is also moderately

affected by 7.45% due to the omitting of the P (nPa). The

Bz (nT), the N (1/cm3), the v (km/s), and the P (nPa) are

vital estimator for the Dst (nT) ZGi [2, 36]. Physically, the

irregularities of high-speed (v) energetic particles that are

hot plasma-dense produce coronal gaps. The magnetic field

polarization responds with the SW high-speed [77]. A GS

is designed by the Bz (nT) that orients to a negative

southward direction, and the flow speed reaches high

speed. The Dst (nT) ZGi responds to the irregularities of

the flow speed and the Bz field by taking its negative peak

score. The SW reaches and presses the magnetosphere with

the proton density-the plasma dynamic pressure pairs [76].

The disturbance of the Dst index is the main effect of the

compression caused by the flow speed [78–80]. As can be

Table 2 Some Correlation Coefficient (R) estimation scores

Dst (nT) (Year) Cite Kp (or ap) (nT) (Year) Cite AE (nT) (Year) Cite

84% (1996) [37] 77% (2000) [38] 70% (1996) [37]

79% (1998) [48] 94% (2005) [71] 98% (1997) [75]

88% (2000) [49] 96% (2012) [56] 84% (2001) [39]

88% (2002) [51] 93% (2013) [72] 83% (2012) [56]

90% (2006) [54] 91% (2016) [73]

86% (2012) [56] 92% (2017) [74]

86% (2012) [55]

79% (2016) [57]

100% (2017) [70]
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realized, the ANNm of the Dst values is in parallel with the

literature.

According to Table 3, in the estimation of the ap (nT)

index, the Bz (nT), the N (1/cm3), the v (km/s), and the P

(nPa) has a high effect. The R-value of the ap (nT) ZGi is

affected due to neglecting mentioned variables by 19.14,

11.81, 10.08, and 9.37%, respectively. Physically, the

electromagnetic field polarization exhibits parallel

Fig. 6 The estimated-monitored Dst, ap, AE ZGi and their regressions, respectively. (a) November 20, 2003, storm; (b) November 08, 2004,

storm
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impressions with the N (1/cm3), v (km/s), and P (nPa)

while the ap (nT) ZGi responses with nonlinearly the

instabilities [9, 12, 14, 50]. Table 3 indicates the clear

relationship between the stated SWp and the ap (nT) ZGi.

According to Table 3, in the auroral AE (nT) ZGi

forecasting ANNm, the Bz (nT) has the maximum effect.

The v (km/s), and the N (1/cm3) have moderate impact with

value of 9.87, 8.75, and 7.73%, respectively (Table 3) [40].

November 08, 2003, Storm: The response of the

November 2004 super GS to the neglect of the SWp of the

R score that belongs to the ZGi estimation is almost

identical to the 2003 superstorm.

According to Table 3, in the forecasting of the Dst (nT)

ZGi, the N (1/cm3), the Bz (nT), v (km/s), and the P (nPa)

have the maximum effect. When these ZGi are neglected,

the R-value declines by 14.43, 13.92, 10.37, and 9.65%,

respectively.

According to Table 3, in the estimation of the ap (nT)

ZGi, the N (1/cm3), the v (km/s), the Bz (nT), and the

P (nPa) have a high effect. The R-value of the ap (nT) ZGi

is affected due to neglecting mentioned variables by 13.46,

12.35, 10.83, and 10.0%, respectively.

According to Table 3, in the auroral AE (nT) ZGi esti-

mating ANNm, the v (km/s) has a high effect with a value

Fig. 7 The estimated and monitored Dst, ap, AE indices with absolute errors (a) November 20, 2003, storm; (b) November 08, 2004, storm

2714 F Basciftci



of 10.08%. The Bz (nT) and the N (1/cm3) have a moderate

impact with a value of 8.76 and 6.42%, respectively.

4. Conclusions

The present study discusses two super GSs (November 20,

2003, and November 08, 2004) of the 23rd solar cycle. The

study systematically reveals the estimation of the ZGi via

SWp. Similar conclusions are drawn from the results

obtained. For the 2003 storm, while the Dst (nT), the ap

(nT), and the AE (nT) indices are estimated with the

absolute error rate of 0.395, 0.228, and0.274 and the

variance rate of 0.281, 0.046, and 0.146, respectively, for

the 2004 storm, the Dst (nT), the ap (nT), and the AE (nT)

indices are estimated with the absolute error rate of 0.340,

0.405, and 0.243 and the variance rate of 0.274, 0.488, and

0.146. In addition, for the 2003 superstorm, the Dst (nT),

the ap (nT), and the AE (nT) indices are modeled with the

R-value of 96.7, 98.2, and 98.3% and the RMSE 10.93

(nT), 5.71 (nT), and 40.31 (nT), respectively. For the 2004

superstorm; the Dst (nT), the ap (nT), and the AE (nT)

indices are modeled with the R-value of 98.4, 98.8, and

98.2% and the RMSE 6.41 (nT), 4.78 (nT), and 31.97 (nT),

respectively. It is crucial that the models can be accurate so

that the results of these two superstorms, which occur at

different times, can be displayed with similar results. The

model dynamic of GSs may contribute to interplanetary

studies.

In his study, Eroğlu (2021b) [81] examined the first four

moderate geomagnetic events of 2015 with an artificial

neural network model. All in all, it reveals that the model is

more than 90% consistent in predicting ZGi for these four

moderate storms. The similarity between the results of the

present study and those of previous studies supports the

reliability of this study’s findings.
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