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Abstract: In this paper, we report a special memristor-based Jerk system in which self-excited and hidden attractors can

be generated by adjusting one decisive system parameter. With increasing the parameter from negative to positive, the

system has a transition from unstable equilibriums to no equilibrium point, and thus leading to the occurrence of coexisting

self-excited and hidden attractors in the modified Jerk system simultaneously. More interestingly, the memristor parameters

play an important role in the coexistence of attractors and the formation of the Feigenbaum remerging trees, and these two

dynamic behaviors can be found in both hidden and self-excited attractor regions. In addition, the study of state-switching

proves that the memristor’s internal initial state is very sensitive to the system. In order to verify the complex dynamic

behavior of the system, an analog circuit simulation based on Multisim is developed and two types of attractors and their

coexisting attractors are successfully captured.
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1. Introduction

Chua et al. predicted the existence of memristor theoreti-

cally in 1998 [1] and Hewlett-Packard (HP) laboratory

fabricated the first solid-state memristor in 2008 [2]. The

current flowing through the memristor can change its

resistance, and its resistance can be permanently main-

tained when the power is cut off, so that the memristor is a

natural non-volatile memory device. Due to its unique

properties, memristor has been adopted in many scenarios,

such as acting as synapses in artificial neural networks

[3–5], increasing more possibilities in the field of com-

munications [6, 7], enhancing chaotic image encryption

effect [8]. In recent years, memristor-based chaotic circuits

have become a hot topic in nonlinear dynamics [9, 10].

Generally speaking, there are two types chaotic attrac-

tor: self-excited attractor and hidden attractor.

A system with self-excited attractor has at least one

basin of attraction that is intersected with unstable equi-

librium, whereas a system with hidden attractor whose

basins of attraction do not overlap any small neighborhood

of unstable equilibrium points. The previous researches

mainly focused on self-excited chaotic systems [11–13],

but in the recent years, people have paid more attention to

the hidden attractors. For example, Y Dong et al. proposed

a hidden chaotic circuit based on a nonvolatile locally

active memristor, and verified its non-volatility and local

activity [14]. S Vaidyanathan et al. presented an electronic

circuit emulating the memristor-based hyperchaotic system

with hidden attractor [15], and Yu Feng et al. showed a

new hidden hyperchaotic memristive oscillator with a line

of equilibria [16]. Is it possible to propose a system in

which the hidden and self-excited attractors coexist? This

topic will be explored and analyzed in this paper.

Nonlinear systems are often accompanied by many

interesting dynamic phenomena, such as multistability, and

antimonotonicity. Multistability means that a system can

produce the coexistence of multiple attractors by changing

its initial conditions under the other parameters remain

unchanged, and it is used in many physics and engineering

applications, such as impulse oscillators [17, 18], the pro-

posal of extreme multistability [19, 20] has attracted a lot

of attention, and B.C. Bao et al. developed the multi-

stable systems with memory elements [21]. Antimono-

tonicity is a relatively common dynamic phenomenon, and

it expresses the process of beginning to form the Feigen-

baum remerging trees by period-doubling bifurcation sce-

nario and finally annihilating by inverse period-doubling
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scenario. Atiyeh Bayani et al. proposed a 4-D hidden

chaotic system in 2018 and found the Feigenbaum

remerging trees [22], and not long, Signing VR Folifack

et al. also discovered this interesting phenomenon in a 4-D

system [23]. This paper will study multistability and anti-

monotonicity from the perspective of the hidden and self-

excited attractors.

Enlightened by the above considerations, a memristor-

based Jerk system with hidden attractors and self-excited

attractors is proposed. Some novel features and special

properties of this system are as follows:

(1) The system can change the attractor types by

adjusting k, the hidden attractor with k [ 0 and

the self-excited attractor with k � 0.

(2) Multistability and antimonotonicity can be observed

in both the hidden and self-excited attractor regions

under the influence parameters.

(3) The internal variable x(0) of the memristor is very

sensitive to the system, and the switching of three

states can be observed.

The rest parts are organized as follows. The new system

and its equilibrium point are introduced in Sect. 2.

Including multistability, antimonotonicity and state-

switching are analyzed in Sect. 3. The analog circuit design

based on Multisim is presented in Sect. 4. The last section

is a summary of the full text.

2. System model and its stability

In [24], we developed a simple flux-controlled memristor

and its memductance function is expressed as

Wð/Þ ¼ a� b/ ð1Þ

where a and b are memristor’s parameters with positive

values, / is the flux having passed across the device, which

corresponds to the integration of terminal voltage v with

respect to time t. According to Ohm’s law, the v-i

relationship of the memristor can described as

i ¼ Wð/Þv ð2Þ

Consequently, the emulator mathematically described

by (2) can exhibit the pinched hysteresis loops when driven

by a periodic sinusoidal signal. As shown in Fig. 1, when

the excited amplitude is fixed with 4 V at different

frequency, all pinched hysteresis loops pass through the

origin (0, 0) and shrink as the excited frequency is

increased. By introducing the memristor defined by (1) into

the Jerk-like system, presented in [25], a memristor-based

Jerk system is given by

_x ¼ y
_y ¼ z

_z ¼ azþ bxz� eW xð Þyþ cx2 þ k

9
=

;
ð3Þ

where x, y, and z are state variables, a, b and c are positive

parameters, e is memristor’s coupled parameter, and k is a

tunable parameter. In order to analyze the stability of

system (3), the system parameters are fixed as a ¼ 5:2,

b ¼ 1, c = 1, e = 1, a ¼ 7, b ¼ 1, and k is considered as a

controlled parameter with variation in the range [-15 15].

Letting _x ¼ _y ¼ _z ¼ 0; the equilibrium points can be

obtained as Eðx�; 0; 0Þ, where x* is dependent on the

controlled parameter k. Due to k being a tunable parameter,

system (3), thus, can be divided into the following three

cases. The first case (S1) for k[ 0, there is no equilibrium

point in system (3). Then, in this case, the proposed system

shows hidden attractors. The second case (S2) with k ¼ 0,

the system (3) has the only equilibrium point E0ð0; 0; 0Þ.
The third case (S3) for k\0, two equilibrium points

E1;2ð�
ffiffiffiffiffiffi
�k

p
; 0; 0Þ exist in system (3).

For S2 and S3, the equilibrium points E0ð0; 0; 0Þ and

E1;2ð�
ffiffiffiffiffiffi
�k

p
; 0; 0Þ have the same Jacobian matrix and

characteristic equation, given by

J ¼
0 1 0

0 0 1

2x� �7þ x� 5:2þ x�

2

4

3

5 ð4Þ

and

k3 þ A1k
2 þ A2kþ A3 ¼ 0 ð5Þ

where

Fig. 1 The pinched hysteresis loops of the proposed memristor
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A1 ¼ �x� � 5:2

A2 ¼ 7� x�

A3 ¼ �2x�
ð6Þ

According to Routh–Hurwitz criterion, the stability of

equilibrium points E0ð0; 0; 0Þ and E1;2ð�
ffiffiffiffiffiffi
�k

p
; 0; 0Þ is

depended on the following conditions

D1 ¼ A1 [ 0

D2 ¼ A1A2 � A3 [ 0

D3 ¼ A3ðA1A2 � A3Þ[ 0

ð7Þ

Substituting x� ¼ 0 into (6), it is easy to find that D1\0,

D2\0, and D3 ¼ 0, which are in contradiction with (7),

the equilibrium points E0ð0; 0; 0Þ, thus, is an

unstable equilibrium point. When x� ¼
ffiffiffiffiffiffi
�k

p
, we can

conclude D1\0 and D2\0, indicating the equilibrium

Fig. 2 The self-excited chaotic attractor in different planes: (a) x–y plane, (b) y–z plane, (c) x–z plane with k ¼ �2

Fig. 3 The hidden chaotic attractor in different planes: (a) x–y plane, (b) y–z plane, (c) x–z plane with k ¼ 2

Fig. 4 Dynamics depending on parameter k: (a) Bifurcation diagram and (b) The Lyapunov exponents
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Fig. 5 The phase diagram in the x –y plane. Self-excited attractors

(red): (a) Period-1 with k = - 15, (b) Period-2 with k = - 10,

(c) Period-4 with k = - 7 and (d) Chaos with k = - 5. Hidden

attractors (blue): (e) Chaos with k = 1, (f) Period-3 with k = 7,

(g) Period-2 with k = 9 and (h) period-1 with k = 12
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point E1ð
ffiffiffiffiffiffi
�k

p
; 0; 0Þ is unstable. Similarly, letting

x� ¼ �
ffiffiffiffiffiffi
�k

p
, we can obtain D2 ¼ 0:2

ffiffiffiffiffiffi
�k

p
� k � 36:4. In

the given parameter range of �15� k� 15, D2\0,

manifesting the equilibrium point E2ð�
ffiffiffiffiffiffi
�k

p
; 0; 0Þ is also

an unstable equilibrium point. According to the above

analysis, we can draw a conclusion that the equilibrium

points E0ð0; 0; 0Þ and E1;2ð�
ffiffiffiffiffiffi
�k

p
; 0; 0Þ are all unstable and

thus the system (3) in S2 and S3 shows self-excited

attractors.

To sum up, the system (3) is a special chaotic system,

which can generate not only self-excited attractors but also

hidden attractors by adjusting one system parameter. To the

best of our knowledge, this kind of chaotic systems has

been rarely reported. The corresponding self-excited

attractor and hidden attractor are shown in Figs. 2 and 3

obtained with k = 2 and k = -2, respectively. Comparing

Fig. 2 with Fig. 3, we find that the self-excited attractor

and the hidden attractor have similar topological structure

in the phase space. However, their formation mechanisms

Fig. 6 Coexisting bifurcation diagrams in self-excited region: the

blue points correspond to the initial conditions (- 7, 1, - 7) and the

red points are related to the initial conditions (- 1, 1, - 7)

Fig. 7 Self-excited coexisting attractors: (a) coexisting period-4 and chaotic attractor with e = 1.15, (b) coexisting period-2 and period-2

attractor with e = 1.22, (c) coexisting period-1 and period-2 attractor with e = 1.42 and (d) coexisting period-1 and period-4 attractor e = 1.441
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are quite different, one is induced by unstable equilibrium

points and the other has nothing to do with any equilibrium

point.

3. Dynamic properties of the new system

3.1. Dynamic evolution depending on parameter k

From the above analysis, we know the parameter k plays an

important role in deciding the attractors generated in sys-

tem (3) are self-excited or hidden. In order to explore the

effect of the parameter k on dynamics, the system param-

eters are fixed as the above values and k varies in the range

of �15� k� 15, the bifurcation of state x is depicted in

Fig. 4(a), which is obtained by plotting the local maxima of

x with the initial values [- 1, 1, 7]. Based on Wolf’s

method, the corresponding Lyapunov exponents are illus-

trated in Fig. 4(b), which shows a good coincidence with

the bifurcation diagram.

It is remarkable that attractors generated in system (3)

with the range of [- 15 0] are self-excited, labeled with red

color, and those in the range of (0 15] are hidden which are

marked with blue color in Fig. 4(a). From Fig. 4(a) and (b),

one can find whether in self-excited oscillations or hidden

oscillations, the proposed system exhibits abundant and

complex dynamical behaviors. Some typical phase dia-

grams including periodic oscillations and chaotic motions

are illustrated in Fig. 5. Furthermore, period-doubling

bifurcation route to chaos in self-excited regime and

inverse period-doubling bifurcation scenario in hidden

regime are observed. In particular, it is worth mentioning

Fig. 8 Basins of self-excited attraction: fixing the parameters a = 5.2,

b = 1, c = 1, k = - 0.1, a = 7, b ¼ 1 and y(0) = 1 (a) e = 1.15, the

red stands for period-4 oscillation and the green for chaotic attractor

and the blue for unbound behavior. (b) e = 1.22, the red and the green

stand for period-2 oscillation and the blue for unbound behavior.

(c) e = 1.42, the red stands for period-1 oscillation and the green for

period-2 oscillation and the blue for unbound behavior. (d) e = 1.441,

the red stands for period-1 oscillation and the green for period-4

oscillation and blue for unbound behavior
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there exists a smooth transition from a self-excited attractor

to a hidden chaotic attractor when k crosses zero.

3.2. Multistability of the system

Multistability is a complex dynamical phenomenon in

nonlinear systems, referring to the coexistence of multiple

stable attractors for the given system parameters and the

different initial conditions. Due to the fact the system (3)

can produce not only self-excited attractors but also hidden

attractors, which is dependent on the decisive parameter k,

so, in the following, we focus on self-excited and hidden

multistability behavior generated from the system (3).

Letting the parameters a = 5.2, b = 1, c = 1, k = - 0.1,

a = 7 and b ¼ 1, respectively, where k\ 0 means the

system is in the self-excited region, and varying parameter

e in the range [1.1 1.6], the corresponding coexistence

bifurcation diagrams of state x are shown in Fig. 6, where

the initial conditions (-7, 1, -7) are marked with the blue

color and the other initial conditions ( 1, 1, 7) with the red

color. It is obvious from Fig. 6 that there are various dif-

ferent types of coexisting self-excited attractors, such as

coexisting period-4 and chaotic attractors, coexisting per-

iod-2 and period-2 attractors, coexisting period-1 and

period-2 attractors and coexisting period-1 and period-4

Fig. 9 Coexisting bifurcation diagrams in hidden region: the initial

conditions (- 2, - 3, - 1) marked with the red color and the initial

conditions (- 2, 3, - 1) marked with the blue color

Fig. 10 Hidden coexisting attractors: (a) coexisting period-4 and period-2 attractor with c = 0.92, (b) coexisting period-8 and period-2 attractor

with c = 0.95 and (c) coexisting chaotic and period-2 attractor with c = 1.1
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attractors. The corresponding phase diagrams are illus-

trated in Fig. 7. In order to further explore the influence of

the initial values x(0) and z(0) for categories of the

attractor, the basins of attraction are shown in Fig. 8, and it

once again verifies the four situations in Fig. 7. It is easy

to observe that multiple attractors can be generated in

different regions.

In addition to the above coexisting self-excited attrac-

tors, the proposed system can exhibit coexisting hidden

attractors. In order to make the system (3) generate hidden

oscillations, let the parameter k = 0.6 and the other

parameters are chosen as a = 4.2, b = 1.2, e = 1, a = 7,

b = 1. By varying parameter c in the range of 0:8� c� 1:5,

the coexisting bifurcation diagrams are obtained and shown

in Fig. 9, where the red points correspond to the initial

conditions ( 2, 3, 1) and the blue points are related to the

initial conditions ( 2, 3, 1). From Fig. 8, we can see the

coexistence of multiple attractors, such as coexisting per-

iod-4 and period-2 attractors, coexisting period-8 and

period-2 attractors and coexisting chaotic and period-2

attractors. Some typical phase diagrams of the coexisting

attractors are shown in Fig. 10 by setting different the

values of the parameter c. Fixing initial value z(0) = 1, the

basins of attraction relating to x(0) and y(0) are shown in

Fig. 11, and it once again verifies the coexistence of

attractors in Fig. 10.

3.3. Three state switching based on the memristor’s

internal initial state x(0)

Letting parameters (a, b, c, e, k,a; b) = (4.2, 1.5, 1.014, 1,

0.6, 7, 1), initial conditions y(0) = z(0) = 0, and consider-

ing initial state x(0) as the controlled parameter varied in

the interval of �2:4� xð0Þ� � 1:2, the bifurcation dia-

gram of the variable y is shown in Fig. 12(a). It is obvious

from Fig. 12(a) that the system repeatedly switches among

three states: period-3 attractor, period-6 attractor, and

chaotic attractor when the initial state x(0) changes. It’s

worth noting that period-6 attractor is observed only in a

narrow parameter interval. The corresponding Lyapunov

exponents are described in Fig. 12(b). It can be seen

intuitively that in the interval �2:4� xð0Þ� � 2:19 and

Fig. 11 Basins of hidden attraction: fixing the parameters a = 4.2,

b = 1.2, e = 1, k = 0.6, a = 7, b = 1 and z(0) = 1 (a) c = 0.92, the

red stands for period-4 attractor, the green for period-2 attractor and

the blue for unbound behavior. (b) c = 0.95, the red stands for period-

8 attractor, the green for period-2 attractor and the blue for unbound

behavior. (c) c = 1.1, the red stands for chaotic attractor, the green for

period-2 attractor and the blue for unbound behavior
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�1:49� xð0Þ� � 1:2, the corresponding Lyapunov expo-

nents are LE1 = 0, LE2\ 0 and LE3\ 0, meaning the

system (3) is in a periodic state. And in the interval

�2:19\xð0Þ\� 1:49, LE1[ 0, LE2\ 0 and LE3\ 0,

resulting in that the system (3) is in a chaotic state.

Obviously, there are some narrow windows interspersed in

the interval �2:19\xð0Þ\� 1:49 with LE1 = 0,

LE2\ 0 and LE3\ 0, showing that the system (3) is in a

periodic state. The corresponding attractors are illustrated

in Fig. 12(c), where period-3 attractor is obtained with

x(0) = - 1.4(green), chaotic attractor with

x(0) = - 1.8(red), and period-6 attractor with

x(0) = - 1.835(blue). Furthermore, the corresponding

basin of attraction is shown in Fig. 12(d), in which the

green stands for period-3 attractor, the orange for chaotic

attractor, the yellow for period-6 attractor and blue for

unbound behavior. In �2:4� xð0Þ� � 1:2, it is obvious

that following the dotted line from left to right, the

system first enter the orange-yellow area from the green

area and then back to the green area. This is the same as

described in Fig. 12(a) and (b). The reason why this phe-

nomenon is called state switching is that by adjusting the

initial value, boundary crisis is ignited and thus leads to a

qualitative change in the states of the system. This state

switching phenomenon proves that the system (3) is very

sensitive to the internal initial variable of the memristor,

and it also reveals the generation mechanism of coexis-

tence attractors.

3.4. Antimonotonicity of the system

Antimonotonicity is a dynamic behavior that periodic

orbits can be born and then destroyed through anti-period

bifurcation. Interestingly, this system can be observed two

complete Feigenbaum remerging trees in the hidden and

self-excited attractor regions. Letting the parameters b = 2,

Fig. 12 State-switching phenomenon depending on x(0) with

parameters (a, b, c, e, k,a;b) = (4.2, 1.5, 1.014, 1, 0.6, 7, 1): (a) the
bifurcation diagram, (b) the Lyapunov exponents, (c) phase portrait,

showing that the initial condition corresponding to period-3 attractor

(green) with x(0) = - 1.4, chaotic attractor(red) with x(0) = - 1.8,

and period-6 attractor(blue) x(0) = - 1.835, and (d) the basin of

attraction with y(0) = 0
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e = 1, k = -0.1, a ¼ 7; andb ¼ 1, respectively, in which

k\ 0 means in self-excited region, initial conditions

x(0) = -1, y(0) = z(0) = 1, parameter a varies in the

range of 2� a� 9, and the bifurcation diagram of state x is

described in Fig. 13 with adjusting the parameter c. From

Fig. 13 can be seen that the period-2 bubble is created with

c = 2.1, then period-4 bubbles is developed with c = 1.9,

and with the decrease of parameter c (c = 1.8 and

c = 1.72), those bubbles gradually growing into a complete

Feigenbaum remerging tree.

Besides the above self-excited Feigenbaum remerging

tree, the proposed system can be observed hidden Feigen-

baum remerging tree. Letting the parameters b = 2, e = 1,

k = 0.1,a ¼ 7andb ¼ 1, respectively, where k[ 0, and

initial conditions x(0) = 1, y(0) = z(0) = 1. Parameter c

varies in the range of 1:1� c� 1:7, the bifurcation diagram

of state x with respect to the parameter a is shown in

Fig. 14. In light of Fig. 14, for a = 3.6, the period-2 bubble

is obtained, and then period-4 bubble is observed at a = 4.

With the parameter a gradually increasing, bubbles grad-

ually develop until chaos appears (the complete Feigen-

baum remerging trees appear in a = 4.12 and a = 4.2).

4. Circuit simulation

In order to verify the above two types of attractors and their

coexisting attractors, a simulation circuit based on Mul-

tisim is designed in this section and shown in Fig. 15. The

multipliers are selected as AD633 and operational

Fig. 13 Bifurcation diagrams of self-exited antimonotonicity: (a) period-2 bubble with c = 2.1, (b) period-4 bubble with c = 1.9, (c) and (d) the
complete Feigenbaum remerging tree with c = 1.8, c = 1.72, respectively
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amplifiers are TL082CD with supply voltages ± 15 V. It is

worth noting that the memristor module is displayed in the

red dashed box in Fig. 15. The dynamic range of the state

variables x, y and z is beyond the saturation voltage 13.5 V

Fig. 14 Bifurcation diagrams of hidden Antimonotonicity: (a) period-2 bubble with a = 3.6, (b) period-4 bubble with a = 4, (c) and

(d) complete Feigenbaum remerging trees with a = 4.12 and a = 4.2, respectively

Fig. 15 Multisim simulation circuit of the memristor-based system

Table 1 Circuit parameters of system for verify the existence of two

types of attractors

Parameters Significations Values

C1;C2;C3 Capacitance 10nF

ðC1 0ð Þ;C2 0ð Þ;C3 0ð ÞÞ Initial

capacitance

�1; 1; � 7ð ÞV

R1;R2;R4;R5;R6;R7 Resistance 10kX

R3;R8;R9;R10;R11;R12;R13ð Þ Resistance 1000; 500; 192:3;ð
20; 285:7;
40; 40ÞkX

R14 Resistance Adjustable

Ev Voltage Adjustable
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Fig. 16 The screenshots of the Multisim in the x–y plane for

verifying two types of attractors: The self-excited attractors with

Ev ¼ �1v: (a) Period-1 for R14 ¼ 666:67kX, (b) Period-2 for

R1 ¼ 1000kX, (c) Period-4 with R14 ¼ 1428:57kX, (d) Chaotic with

R14 ¼ 2000kX. The hidden attractors with Ev ¼ 1v: (e) Chaotic

attractor with R14 ¼ 10000kX, (f) Period-3 with R14 ¼ 1428:57kX,

(g) Period-2 with R14 ¼ 1111:11kX, (h) Period-1 with

R14 ¼ 833:33kX
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of operational amplifiers TL082, appropriate scaling is

required with x = 5x, y = 5y and z = 10z. In addition, the

time constant is set to 100.

Applying Kirchhoff’s law, the circuit equations are

obtained:

dvx
dt

¼ 1

R3C1

vy

dvy
dt

¼ 1

R8C2

vz

ð8Þ

dvz
dt

¼ 1

R9C3

vz þ
1

10R10C3

vxvz �
1

R11C3

� 1

10R12C3

vx

� �

vy

þ 1

10R13C3

vxvx þ
1

R14C3

Ev

wherevx vy and vz are the output voltages of the operational

amplifiers, and Ev is an adjustable DC voltage source. In

order to capture the two types of attractors, comparing (8)

with (3) and according to the system parameters

(a; b; c; e; a; b) = (5.2, 1, 1, 1, 7, 1), it is easy to calculate

Table 2 Circuit parameters of system for verify the coexistence of multiple self-excited attractors

Parameters Significations Values

C1;C2;C3 Capacitance 10nF

C1 0ð Þ;C2 0ð Þ;C3 0ð Þ Initial capacitance Adjustable

R1;R2;R4;R5;R6;R7 Resistance 10kX

R3;R8;R9;R10;R13;R14ð Þ Resistance 1000; 500; 192:3; 20; 40; 100000ð ÞkX
R11;R12ð Þ Resistance Adjustable

Ev Voltage - 1 V

Fig. 17 The screenshots of the Multisim in the x–y plane for

verifying Coexistent self-excited attractors: The blue and red graphics

represent the initial values (C1;C2;C3) = (�7v; 1v;�7v) and

(�1v; 1v;�7v), respectively, (a) coexisting period-4 and chaotic

attractor with R11 ¼ 248:45kX and R12 ¼ 34:78kX, (b) coexisting

period-2 and period-2 attractor with R11 ¼ 234:19kX and

R12 ¼ 32:79kX, (c) coexisting period-1 and period-2 attractor with

R11 ¼ 201:2kX and R12 ¼ 28:17kX and (d) coexisting period-1 and

period-4 attractor R11 ¼ 198:27kX and R12 ¼ 27:76kX
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the corresponding circuit parameters, as shown in Table 1.

Letting the parameter Ev ¼ �1v and adjusting the resis-

tance ofR14, the self-excited attractors can be captured, as

shown in Fig. 16(a)–(d). For Ev = 1v, we continue to adjust

the value ofR14, the hidden attractors are obtained as shown

in Fig. 16(e)–h.

In addition, we have also successfully verified the

coexisting attractors in the self-excited and hidden regions,

respectively. Letting the parameter Ev ¼ �1v, and com-

paring (8) with (3), the corresponding circuit parame-

ters are calculated by the system parameters

(a; b; c; k; a; b) = (5.2, 1, 1, 0.1, 7, 1), as shown in Table 2.

Setting appropriate resistance values for R11 and R12, dif-

ferent self-excited attractors can be captured under the two

cases of initial conditions (C1;C2;C3) = (�7v; 1v;�7v)

labeled with blue and (C1;C2;C3) = (�1v; 1v;�7v) with

red, as displayed in Fig. 17. Similarly, for Ev ¼ 1v,

according to the system parameter (a, b, e, k,a; b) = (4.2,

1.2, 1, 0.6, 7, 1), the corresponding circuit parameters for

generating the coexisting hidden attractors are calcu-

lated and listed in Table 3. In Fig. 18, two different types

of hidden attractors are captured by setting the appropriate

Table 3 Circuit parameters of system for verify the coexistence of multiple hidden attractors

Parameters Significations Values

C1;C2;C3 Capacitance 10nF

C1 0ð Þ;C2 0ð Þ;C3 0ð Þ Initial capacitance Adjustable

R1;R2;R4;R5;R6;R7 Resistance 10kX

R3;R8;R9;R10;R11;R12;R14ð Þ Resistance 1000; 500; 238:1; 16:67; 285:71; 40; 16666:67ð ÞkX
R13 Resistance Adjustable

Ev Voltage 1 V

Fig. 18 The screenshots of the Multisim in the x–y plane for

verifying Coexistent hidden attractors: The blue and red graphics

represent the initial values (C1;C2;C3) = (�2v; 3v;�1v) and

(�2v;�3v;�1v), respectively, (a) coexisting period-4 and period-2

attractor with R13 ¼ 43:48kX, (b) coexisting period-8 and period-2

attractor with R13 ¼ 42:11kX and (c) coexisting chaotic and period-2

attractor with R13 ¼ 36:36kX
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resistance value of R13, in which the blue corresponds to

the initial conditions ðC1;C2;C3Þ= (�2v; 3v;�1v) and red

is related to the initial conditions (C1;C2;C3) = (�2v;

�3v;�1v). These simulation results agree well with the

digital simulation results of Sects. 3.1 and 3.2.

5. Conclusions

This paper proposes a memristor-based new Jerk system.

Interestingly, the system can switch attractor types by

adjusting the parameter k, for k[ 0 it shows hidden

attractor and for k � 0 it shows self-excited attractors. We

analyzed the rich dynamic behavior of the system through

Lyapunov exponent diagrams, phase diagrams, bifurcation

diagrams, and basins of attraction. By setting different

initial conditions, the system can exhibit the coexistence of

attractors in the hidden region and self-excited region.

Moreover, the result of three state-switching verifies

that the memristor’s internal initial x(0) is very sensitive.

Of most interest is that the full Feigenbaum remerging trees

can be developed in the hidden region and self-excited

region. Finally, we implemented an analog circuit based on

Multisim, two types of attractors and multistability are

verified successfully.
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