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Abstract: We generate a new exact model for neutral anisotropic star using Einstein field equations. In this model, we
consider a quadratic equation of state (QEoS) and a choice of gravitational potential which generalizes the choice
formulated by Pant and Fuloria. We generate stellar masses consistent with previous findings which describe the astro-
physical objects like PSR J1614-2230, Cen X-3, Vela X-1 and Exo 1785-248. New relativistic stellar masses and surface
gravitational redshifts in acceptable ranges are also generated using our model. It is observed that the matter variables and
gravitational potentials are well behaved. The model satisfies energy and stability conditions and all forces within the

stellar object sum to zero.

Keywords: Quadratic equation of state; Neutral star; Stellar masses; Surface redshifts; Stability

1. Introduction

The use of Einstein field equations to model compact rel-
ativistic stellar objects such as quark stars, neutron stars,
gravastars, dark energy stars and black holes is gaining
more exposure in contemporary studies. Diverse views on
the features of space-time geometry have been revealed.
By considering static and spherically symmetric spacetime,
various stellar models have been generated. Sunzu et al.
[1-3] generated anisotropic quark star models with masses
compatible with number of previous findings. Likewise
exact models by Maharaj et al. [4] are consistent with
Finch and Skea relativistic stars. Thirukkanesh and
Maharaj [5] found the realistic compact models with ani-
sotropy present. Models by Mafa Takisa and Maharaj [6]
describe the anisotropic quark star with core envelope in
the presence of the electric field. Abdalla et al. [7] found a
quark star model with anisotropy present. All these models
have astrophysical significance in describing the physical
properties and geometries of relativistic stellar objects.
Modelling anisotropic relativistic stellar spheres has
drastically drawn attention of researchers. Consideration of
pressure anisotropy in investigating the behaviour and
structure of relativistic compact stellar objects is very
significant as clearly pointed out in [8, 9]. The study by
Bowers and Liang [10] indicates that due to high
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gravitational pull and density, no celestial body can have
perfectly isotropic fluid distribution. One of the earliest
works which conceptualize anisotropy in stellar fluid
spheres was performed by Ruderman [11] and Canuto and
Chitre [12]. These studies indicate that tangential and
radial pressures may not be equal. The state of pressure
imbalance influence the existence of pressure anisotropy in
a stellar object. Pressure anisotropy is also influenced by
some factors including ultra high density in the stellar core
[11, 12], pion condensations and phase transitions [13-15],
gradual fluid rotation [16], stellar sphere having type 3A
super fluid [17], etc. Other aspects related to anisotropy in
self gravitating systems can be accessed in the performance
by Herrrera and Santos [9]. The study by Bowers and Liang
[10] paved a way of searching exact models for anisotropic
stellar spheres. Various anisotropic neutral stellar models
with astrophysical significance have been generated.
Recently, Thirukkanesh et al. [18] obtained neutral stellar
models which describe the stability and improved physical
features of compact, relativistic objects with QEoS. Sunzu
[19] generated anisotropic neutral star models with iso-
tropic nature at the vanishing point of anisotropic param-
eters. Dev and Gleiser [20] shows that the mass and
gravitational redshift for relativistic stellar objects are
affected by the presence of anisotropic pressure. The study
shows that there is relationship between pressure aniso-
tropy and stability of the stellar object. Gleiser and Dev
[21] observed the impact of pressure anisotropy to the
appearance of the stellar object. The results show that
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anisotropic pressure may increase the surface redshifts
which ultimately cause stellar objects to appear closer than
their reality, a phenomena caused by anisotropic distor-
tions. The models by Sunzu et al. [1] show that the mass of
anisotropic quark star is less than the mass of isotropic
quark star. Other stellar models with anisotropy present
include models obtained by Jape et al. [22], Mathias et al.
[23], Maurya et al. [24, 25] and Jasim et al. [26].

Star models consider several forms of equations describing
the state of gravitating objects. Stellar models generated by
Jasim et al. [26, 27], Maurya and Tello-Ortiz [28], Maurya
et al. [29], Deb et al. [30], Banerjee [31], Sunzu et al. [3],
Sunzu and Danford [32] and Lobo [33] used the linear equa-
tion of state (EoS). The performance by Singh et al. [34]
applied Color-flavor locked EoS in framework of MIT bag
model to model quark stars in energy-momentum squared
gravity. Thirukkanesh et al. [18], Sharov [35], Feroze and
Siddiqui [36], Maharaj and Mafa Takisa [37], Sunzu and
Mashiku [38], Ngubelanga et al. [39] and Lobo [40] applied
the QEoS. Malaver [41, 42] and Sunzu and Mahali [43]
applied Van der Waal equation of state. Thirukkanesh and
Ragel [44], Mafa Takisa and Maharaj [45], Singh et al. [46],
Shibata [47] and Lai and Xu [48] applied polytropic equation
of state. Recently, Bhar et al. [49], Bhar [50, 51], Rahaman
et al. [52] and Benaoum [53] applied Chaplygin EoS.

We are delighted to study the physical behaviour and
geometries for neutral stars in general relativity in the
presence of pressure anisotropy using QEoS and a choice
of one of the gravitational potentials. We formulate a
model that regains a potential specified in the work by Pant
and Fuloria [54]. We also perform several physical analysis
that are rarely performed in other models with similar
approach. To achieve this objective we give fundamental
and field equations in §2. Our model is then presented in
§3. Discussion on graphs for gravitational potentials,
matter variables, speed of sound, hydrostatic equilibrium,
stability and energy conditions is given in §4. We present
tables of radii, stellar masses and surface redshifts in the
same section. The conclusion is highlighted in §5.

2. Field equations

We generate a new model for the interior of a stellar object.
We consider the spacetime geometry which is static and
spherically symmetric with the interior line element

ds* = — Vdf’ + 2 dr? + 17 (d0” + sin? 0d¢’), (1)
where v(r) and A(r) are gravitational potentials. We

consider the Schwarzschild exterior spacetime with the
line element given by

oM oM\ !
ds* = — (1 -="a? + (1 -=—=) ar
r r (2)

+ r*(d0* + sin® 0d¢?),

where M is the total mass of the stellar object. The energy
momentum tensor for uncharged anisotropic stellar sphere
is given by

Tij = dlag (_pypraptvpt% (3)

where p, p, and p, represent the energy density, radial
pressure and the tangential pressure, respectively. These
quantities are determined relative to a comoving unit
timelike fluid four-velocity, #“. In this model the coupling
constant 8?—46 and the speed of light ¢ is assumed to be unity
(i.e. 82=1).

The field equations which describe neutral stellar objects
are given by

!
L (1—e?)+ Z:L e =p, (42)

2
1 N2V
_ﬁ (1 — €_2A) + 73_22 =Pr (4b)
/ ll
e % (v” R v7 - 7) =P, (4c)

where primes indicate the derivatives of the gravitational
potentials with respect to radial distance r. The function
defining the stellar mass with uncharged matter is given by

M(r) = %/Or *p(w)do. (5)

For a physically realistic stellar star the matter distribution
should satisfy a barotropic EoS given by p, = p,(p). In this
paper, we consider the stellar neutron fluid which admits
QEoS defined by

pr=ap’ + Bp—7, (6)
where o, f# and y are real constants.
We adopt the Durgapal and Bannerji [55] transformation

for easy simplification of the field equations in the system
(4). The transformation takes the form

x=CP, Z(x) = e 0, AP (x) = 20, (7)

where A and C are arbitrary real constants. With this
transformation, the field equations becomes

1-Z .
=L (8a)

x C
)} Z-1 DPr

477 == 8b
R (8b)
y NY D

AxZ=+ (AZ+2xZ) =+ Z =—, 8c
Vi z o)z £
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where dot represents differentiation with respect to x. The
line element becomes

1 X
2 A22472 2 X2 2 2y 9
ds yodt +4xCde +C(d9 +sin* 0d¢”).  (9)
The mass function (5) due to this transformation becomes

1 X
%Ax@M@Ml (10)

Mb) = 1¢c

By incorporating the equation of state (6) in the field
equations, the system (4) is presented as

-z .
p:< —2z)c, (11a)
X
pr =0p”> + fp — 7, (11b)
Pt =Dr + A; (11C)

. o 17 N2
A =4xCZ2 +20(2Z + x7)% — Czoc(— - 22)
y y x

1-27 . .

(11d)

y aC <1—Z>2+(1—,8)(1—Z)+2ﬁCZ—y

y x 47x 4C7Z

=__ 11e
y 4Z (1le)

where A = p, — p, defines the quantity of pressure ani-

sotropy. The force due to anisotropy is given by %. The
study by Gokhroo and Mehra [56] indicates that when
A <0 then the anisotropic force has attractive nature and
when A > 0 the anisotropic force is repulsive in nature.

3. The model

In order to track the system (11), we need to specify one of
the unknown variables p,p,,p:;,A,Z and y. We choose a
rational form of gravitational potential Z in the form
2

7= LTk (12)

(1 + kzx)
where k; and k; are real constants with k; = k, # 0. This
choice ensures regularity and continuity throughout the
interior of the stellar sphere. When k; = 0 we regain the
potential applied by Pant and Fuloria [54] in their charged
stellar model. We are motivated to use a generalized form
of potential Z to generate a neutral star model. By applying
Z specified in eq. (12) in eq. (11e), we obtain the first-order
differential equation

(1 + kox)®
4(1 + klxz)
(Ut hx) -1
C x(1 + kox)?

Y
y

— ﬁ (klx(—S + kZX) + k2(9 + 6k2x
2

aC
(1 + kox)®
ko (9 + 6kpx + 4K2x> + k§x3))2] ,

+ 413 + I3x)) + (k1x(—=5 + kox)

(13)
defining the metric function y.
By integrating (13) we obtain the general solution as
y = H(1 4 kox)? (1 + k1 2*) " exp[G(x)] (14)
where H is a constant of integration. We have set
1 k3yx?
60 =5 |~
~ 2k3x(3y + Cha(—1 + B))
Ck,
8Ca(k; —k3)  18Ca(k; +k3)
lo(1+kx)® k(1 + k)
 4Ckyo( 9K} + 14kiK3 + TKS)
(1 + kox) (ki + K2)? (15)
2 arctan[xv/k{]
 ChvE (b + k)
+2Ck k3
(=4 4+ 4B + 9Cky) + k5(—3y + ko (C — CP))
— 6k7k; (ko (C — CP))
+k}(y +3Cka(—1 + B) — 24C*K3)
—ki (8KSy + 3C2Sw))],
2
(ky + k2)3
—9k1 k3 (=2 + Chaor) — 3kS(—2 + Chyar
+k3 (6 + 45Cky))],
_ 1
CCR3(ky + K2)°
+ Ck} (—1 + 5B + 45Cky0x)
— 2213 (3y + 2Cka (=2 + B)) (17)
+ 2k k5 (—4y + 3Chka (1 + B)
— 3ktka(y — 4Cka B
+8C%50))].

(25C%K] o

¢ = [K5k3 (18 — 25Ckacr)

(16)

v (k37 + Ckik5(3 — 3B + Chyor)
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Then the gravitational potentials and matter variables for
this model becomes
o (14 kax)*

= =7 18a
1+ kx? (182)

¢ =A2H?(1 + kpx)** (1 + k12*) exp[2G(x)], (18b)

p :m (k1x(—=5 + kox) + k2 (9 + 6kpx + 4k§x2 i k§x3))7
pr=2p" + Bp— 7,
(18¢c)
p: =pr + A, (lgd)
2C
A =

(14 kix2)(1 4 kpx)’

[(2 — kox + kix? (4 + kox))(G(x) + ka (@ + xG(x))
+ k1 x(2y + xG(x) + kox(@ + 24 4+ xG(x)))

T 2x((—1 + 9)(1 + )G ()
+ ko + xG(x)) + ki x(2 + G(x)
+ kox(@ + 2y + xG(x)))) + 2x(—1 + Y)k;

(1 + kox(G(x) + k(¢ + xG(x))
+ k1 x(2Y + xG(x) + kax( + 24 4+ xG(x))))
+ (14 kax®) (1 + kox)G(x) (G(x) + ko (@ + xG(x))
+ kox(2 + xG(x) + kox

(@ 42y +xG(x)))) + (1 + kyx®) (1 + kox) ((G(x)
+ ko (G(x) + xG(x)) + ki

2y + 2xG(x) 4+ *(G(x)
+hkox(2¢ + 4 + 3xG(x) + ¥*G(x))) + F(x)],

(18e)
where,
__CF _ 2.2 3.3
F(x) = 7 (kix(=5 + kox) 4 ko (9 4 6kox + 4kyx” + kyx7))
(1 +k2x)
Co
———— (kix(=5 + kox
(1-‘1-/(2)6)8(I ( 2%)

+ k(9 + 6kyx + 42x% + I3x°))?
C(*3k2 + k]X(2 - kQX))
(1 + kpx)*

+7.
(19)

We note that the exact solution in (18) is presented in terms
of elementary functions.
The mass function in eq. (10) becomes
M(x) = %4
6V C(1 + kyx)
[k1x(=5 + kox) + k2 (3 + kox) (3 + kox(1 + kpx))],

(20)

and the line element in eq. (1) becomes

ds* = — A2H?*(1 4 kox)*" (1 + k1 x2) ¥ exp[2G(x)]di

3
(l + kzx) dr2
1+ k1X2
+ r}(d0* + sin® 0d?).
(21)
3.1. Compactness and redshift
The compactness factor u is defined by
M
_¥ 22
H=" (22)

where M is the total stellar mass and R is the stellar radius at
the boundary. By substituting eqn. (20) into (22) we obtain

M) =

L k(=5 + kax) + ko (3 + kox) (3 + kox(1 + ko))

(23)
We define the surface redshift z; of a stellar sphere by

1
I—u

Zs = -1, (24)
where u is the compactness factor. By considering the

compactness factor u(x) in (23) then eqn. (24) becomes
25(x) = — 1+ V6(1 + kox)*[6(1 + 15kox) + 30k3x°
_1
+20k5x° + Skox* + ki (5 — kox)]
(25)

3.2. Hydrostatic equilibrium

The state of hydrostatic equilibrium in this model is
explored by analysing the Tolman-Oppenheimer-Volkoff
(TOV) equation defined by

P+ (p+p)V f%: 0. (26)
For a neutral stellar object with anisotropic pressure, three
forces describing the state of hydrostatic equilibrium
include gravitational force F,, hydrostatic force F; and
anisotropic force F,. These forces describe the energy
conservation in the stellar object. The forces are defined by

Fe=—(p+p,)V, (27a)

Fr= _p:v (27b)

F, :% (27¢)
r

Then since the stellar object is in hydrostatic equilibrium,
eq. (26) can be written as

Fo+ Fy+F, =0. (28)
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The expressions for the forces in (27) are given by
NE:
T2VE( + k) (1 + ko)
[+ (9C(1 + B) — 8xp)ka + (81C2a + 42Cx(1 + )
— 28x%9)k3 + 2x(54Ca.
+41Cx(1 + ) — 28x*p)k3 + x*(108Ca
+89Cx(1 + p)
— 70x%9)k5 + x*(66C% 0 + 61Cx(1 + )
— 56x%y)k5 + 28x* (C*o + Cx(1 + B)
— )k 4 8x° (C?a 4 Cx(1 + )
— X*P)k) +x°(C*o 4 Cx(1 + B) — X*9)kS
+ C2xPak3 (=5 + xky )
+ Cxky (=5 + xka) (1 + B+ 2(9Co 4 2x(1 + B))kz
+ 6x(x + 2Co + xB)K3
+ do® (x + 2Co + xB)k3 + X (x + 2Cao + xB)k3)) (G(x)
+ ko (@ + xG(x)) + xk; (29 + xG(x)
+axka (¢ + 24 + xG(x)))]

8§

(29)

Fp=-— [(ﬁ + 2(9CO€ + 2xﬁ)k2

(1 + xky)°
+ 6x(2C0 + xp)k3 + 4x*(2Co + xP)k3
40200+ P + 20k (=5 + ko)) OO
(k1 (5 — 17xky + 2x%k3) + k3(30

+10xk, + 5x°k3 + X°K3)]

and

4cyVc

VE(L 4 kix?) (1 + kox)®
[(2 — kox + kix* (4 + kox) ) (G(x) + ka (¢ + xG(x))

+ kix(2y 4 xG(x) + kox(¢ 4 24 + xG(x)))

£ 2x((—1 + 9)(1 + ks (G0

+ ko +xG(x)) + kix(2y + G(x)

+ kox(@ + 20 + xG(x)))) + 2x(—1 + )k

(1+ kax(G(x) + ko (¢ + xG(x)) + k1x(2¢ + xG(x)

+ kax( + 2y + xG(x))))

+ (14 ki?) (1 + k2x) G(x) (G (x)

+ ko (@ + xG(x)) + kax(20 + xG(x) + kax
(¢ + 2y +xG(x))))

+ (14 k) (1 + kox) ((G(x) + ka(G(x) + xG(x)) + ky
(24 + 2xG(x) + x*(G(x) + kox(2¢ + 4 + 3xG(x)
T+ 2G() + F).

a —

(31)

3.3. Stability conditions

The stability of stellar models is verified under different
stability conditions. According to Zeldovich [57] a stellar

model is stable if it satisfies the inequality Pr < 1. In this
p

model
’% - (C(l ¥ xka)* (k1 (=5 + xko)

ko (9 + 6xky + 42K + °K2))) T (= + (9CRB

— 8xy)ky + (81C%a + 42Cxp

— 28x?)k3 + 2x(54C% o + 41CxB — 28x%))k3

+ x*(108Cx

+ 89Cxf — 70x*y)k;5 + x* (66C% 0 + 61Cxp

— 56x%)k; + 28x*(C?a + Cxp — x*9)kS

+ 8x° (C%o + CxB — x*y)k; + x°(C*a

+ Cxp — xS 4 CHPak® (=5 + xky)*

+ Cxky (=5 + xky ) (B + 2(9Ca + 2xf) ks

+ 6x(2Co + xB)k; + 4x*(2Co + xP)k;

+x° (2Co + xB)k3)).

(32)

The radial adiabatic index is significant in investigating the
stability of stellar configurations. The works performed by
Heintzmann and Hillebrandt [58] and Bondi [59] indicate
that the collapsing condition for non-relativistic sphere
with isotropic matter distribution is given by I' < %. On the

other hand, Chan et al. [60, 61] indicated that the
collapsing condition for relativistic spheres is given by

r<d, 1 Popro+fpt0—l7r0

3 |pr0 ‘ 3 |pr0 |r max

4 — Pr
PaPro ; is the relativistic correction and _/—Po
P}ol 3 |pylr
is the anlsotroplc correction. Chandrasekhar [62, 63] assert
that the relativistic correction may cause instability within
the compact stellar sphere. Moustakidis [64] discussed
another strict condition that the critical value I', for radial
adiabatic index is given by
4 19
I'i=-+—n 33
3T A (33)
According to Chandrasekhar [62, 63], adiabatic index I" of

a stable stellar model satisfies the inequality I > ;—‘.

1
where — K

However, by considering the critical value I, the
stability condition is modified to I'>T, where I' is
defined by

P +Pr> dp,
r= : 34
( pr ) dp (34)
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The expression for I' in this model is then given by

I = ((1 +xk2)4(—y + ((xk1 (—5 +Xk2)

(1 + xky)*
+ k2 (9 + 6xky + 4x°K3.
C%u
(1 4 xky)®)
o (9 + 6xky + 4x%KE + x3k§))2)) o
(B + 2(9Ca + 2xB)ky + 6x(2Ca + xB)k3
+ 4x*(2Ca + xB)k3 + x*(2Ca
+ xP)ks + 2Cxok; (—5 + xky))

+x°63))) + (xky (=5 + xky)

C
(—y + m (xky (=5 + xka) + k(9 + 6xky
2

+ 4%k + xX°K3)) (C—ﬁ4
(14 xk2)
+ k(9 + 6xky + 4x%k; +x°K3)))
C%u
(14 xky)®
(xk1 (=5 + xka) + ka (9 + 6xky + 42K + £°K3))”.
(35)

(xky (=5 + xkz)

This model indicates that the speed of sound v? within the
stellar sphere is less than the speed of light. This implies

that 0 <v? < 1 where v? = ‘g;)". This behaviour is physically

realistic for stable stellar models. In this model
1
2
v, =———(f + 2(9Ca + 2xP)k
(1 +xk2)4 (ﬁ ( B) 2
+ 6x(2C0 + xP)k3 + 4x* (2Co + xp)k3
+ X7 (2Co + xP)k; + 2Cxoky (=5 + xk2)).

(36)

3.4. Energy conditions

This model satisfies the null, dominant and trace energy
conditions given as p > 0, for null energy condition (NEC),
p—pr>0and p — p, >0 for dominant energy condition
(DEC, and DEC,) and p — p, — 2p, >0 for trace energy
condition (TEC) respectively.

3.5. Matching conditions

It is significant to match the interior solution to exterior
Schwarzchild solution at the boundary of the stellar sphere.
The conditions for continuity of metric coefficients from
the line elements (1) and (2) across the junction (r = R) are
given by

2 2M

=1 — —

R (37a)

~1
R) <1 _ %M) (37b)

respectively. Likewise, the radial pressure at the boundary
of the stellar sphere should vanish which implies
Pri—r) = 0. Applying the expressions for metric
potentials (18a) and (18b), the mass function in eq. (20)
and the transformation in eq. (7), the system (37) and the
radial pressure becomes

0=1—(3(1+ CR*,)"™"
(CR*(CR%ki (=5 + CR?ky) + k2(9 4 6CR*k>
+4C?R*K; + CPR°K3)))
— AH2(1 + C’R*Kk)* (1 + CR*k,)*
exp[2G(R)],

(38a)

0 =[3(1 + CR*;)*(3(1 + CR*,)*
— CR*(CR* (=5 + CR*ky),
+ k(9 + 6CR?ky + 4CPRYE + C3ROK3))) ']
— (1 + C*R*ky) ™!
(1 +3CR?*ky + 3C*R*k; + C°R°K3),

(38b)

2C?R?
0=———5(B+2C(9 +2R*B)k
(1 + CR2k2)9 (ﬁ ( ﬁ) 2
+ 6C?R* (20 + R B)k5 ks
(=5 + CR%*k3)) + 2C*R?* (ki (5 — 17CR?*ky + 2C*R*K3)

+K3(30 + 10CR?*k; + 5C*R*ky + C*R°K3)),

(38¢)
respectively where
1[ kyCR*
G(R) == | -2
(R) =3 T
_ 2BR*(3y + Chka (=1 + B))

ky
8Ca(k; — k) 18Ca(k, + k3)
k(1 +k2CR?  ka(1 + ko CR2)*
4Chkyol(—9Kk7 + 14ki k3 + TKk3)
(11 kCR)(k + K2)?
2 arctan[CR*\/k; ]
 ChivE (ky + )
(=4 + 4B + 9Ckyot) + k5(—3y + ko (C — CP))
— 6kik; (ka(C = CP))
+ &l (y +3Cka(—1 + B) — 24C%k30)
—k1 (8kSy + 3C*K30))] .

(25C%k}o + 2Cki k3

The system (38) indicates the matching condition for the
exact solutions obtained in system (18). The parameters
involved are C, R, ki, k;, A, H, o, f and y. We note in
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system (38), that there are sufficient free parameters which
satisfy the matching conditions.

4. Results and discussion

In this section we show that the exact model obtained in
§3 is well behaved within the interior of the stellar sphere.
Mathematical computations have been achieved by using
Mathematica software while the graphical plots have been
generated using Python programming language. All the
graphs are plotted against the radial distance r. We gen-
erated graphs by specifying values for the constants as
x=14.1, f=10x10"° 7=19x1073, C=125x%
103k = 1.0, k, =2.5 and H = 1.0.

Figs 1 and 2 indicate that the gravitational potentials are
regular, continuous and finite throughout the stellar inte-
rior. We also note that these profiles are monotonically

1.0

0.8 1

0.6 1

el)

0.4 1

0.2 1

0.0

r

Fig. 1 The potential ¢" against the radial distance r

2.00

1.75 1
1.50
1.25 4

v 1.00
0.75 1
0.50 1

0.25 4

0.00 T T T T

Fig. 2 The potential ¢* against the radial distance r

0.040

0.035 4

0.030 -

0.025 A

Q. 0.020 A
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0.010 A

0.005 A

0.000

r

Fig. 3 Energy density p against the radial distance r

0.010

0.008 -

0.006 -

pr

0.004

0.002 4

0.000 T T T T
0

Fig. 4 Radial pressure p, against radial distance r

increasing with positive values at the centre. This feature is
physical for well behaved stellar models. Similar profiles
can be observed in studies conducted by Maurya et al.
[65—-68], Sunzu and Mashiku [38], Jasim et al. [69] and
Kileba Matondo et al. [70].

We observe in Figs 3, 4 and 5 that p, p, and p, are
monotonically decreasing functions such that p’ <0, p/. <0
and p; <0. Similar profiles are evident in recent works by
Mafa Takisa et al. [71], Das et al. [72], Komathiraj et al.
[73], Maurya and Nag [74] and Maurya et al. [75]. The
profile for the pressure anisotropy in Fig. 6 shows this
ingredient vanishes at the centre of the star then decreases
at some interval within the core and then increases as it
approaches the surface. It is physically realistic A =0 at
the centre of the star. Similar feature is found in recent
performance by Thirukkanesh et al. [76]. We find that in
Fig. 7 the stellar mass M increases with radial distance.
This model also satisfies the causality condition for sta-
bility. Fig. 8 indicates that the speed of sound inside the
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Fig. 12 Equation of state % against radial distance r
stellar fluid v2 <0.3172. It implies that 0 <v? < 1. This
result indicates that the speed of sound inside the stellar
sphere is less than the speed of light. In Fig. 9 we observe
that the maximum value of compactness ¢t = 0.1538 which
is less than g a maximum value proposed by Buchdahl [77]
for neutral compact stars. Fig. 10 shows that the surface
redshift z; <0.08711. This value is less than 2 which was
determined by Mafa Takisa et al. [78] to be the maximum
value for realistic compact stars. In Fig. 11 we observe that
the condition for hydrostatic equilibrium is satisfied. All
the forces involved sum to zero. This implies that the
energy within the stellar sphere is conserved.

This model satisfies different stability conditions.
Fig. 12 shows that % < 1. This implies that the model is

stable as proposed by Zeldovich [57]. The adiabatic sta-
bility condition imposed by Moustakidis [64] is also sat-
isfied. Fig. 13 shows that adiabatic index I" > 3.20378 and
0<T'.<1.4725. This implies that I" > I, which is the

Fig. 14 Energy conditions against radial distance r

condition for stability of the stellar models. Our model
satisfies different energy conditions which include null
(p>0), dominant (p —p,>0 and p —p, >0) and trace
(p — pr — 2p; > 0) energy conditions as shown in Fig. 14.

We have obtained stellar masses and radii compatible
with the compact stars PSR J1614-2230 with r = 9.69 km
and M =1.97M, and Cen X-3 with r =9.178 km and
M =1.49M,, Vela X-1 with r=9.56 km and M =
1.77M, and Exo 1785-248 with r = 8.849 km and M =

Table 1 Stellar masses consistent with observations

ky ky C r(km) M(M.,) Star

3.0 0.308 1.0 9.69 1.97 PSR J1614-2230
2.99 0.362 1.4 9.178 1.49 Cen X-3

2.8 0.313 1.2 9.56 1.77 Vela X-1

2.5 0.42 1.1 8.849 1.3 Exo 1785-248
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Table 2 New stellar masses and surface redshift

kl kz C r(km) M(M@) s

2.6 0.25 1.4 7.65 1.97 0.1607
3.0 0.35 1.6 7.92 1.38 0.1005
4.0 0.33 1.5 8.02 1.69 0.126
1.6 0.33 1.41 8.63 1.298 0.0849

1.3M, as obtained in Demorest et al. [79], Rawls et al. [80]
and Ozel et al. [81] respectively. We also generate new
stellar masses in the range (1.298 — 1.97)M, and surface
redshifts in the range 0.0849 — 0.1607 which are accept-
able ranges for stellar objects. The values used to generate
these stellar masses, radii and surface redshifts are pre-
sented in Tables 1 and 2.

5. Conclusions

In this paper, we have found an exact model for uncharged
stellar object by using QEoS. The model has been obtained
by specifying one of the gravitational potentials which
generalizes the choice by Pant and Fuloria [54]. The state
of hydrostatic equilibrium in our model has been examined
by analysing TOV equation. We observe that at some
interval from the centre of the stellar star the radial pres-
sure overrides the tangential pressure (p, > p;) yielding
negative pressure anisotropy. This exhibit attractive ani-
sotropic force within this interval. However, closer to the
stellar surface the stellar interior experiences positive
pressure anisotropy (p; > p,) implying existence of
repulsive nature of anisotropic force. Nevertheless, the
quantities of hydrostatic and gravitational forces within the
stellar sphere are balanced with anisotropic force for
hydrostatic equilibrium. The graphs for gravitational
potentials, matter variables, compactness, redshifts,
hydrostatic equilibrium, stability and energy conditions are
well behaved. We have generated stellar masses and radii
compatible with the findings in the past including obser-
vations by Demorest et al. [79], Rawls et al. [80] and Ozel
et al. [81]. Our model described stars like PSR J1614-2230,
Cen X-3, Vela X-1 and Exo 1785-248. New stellar masses,
radii and surface redshifts generated in our model are in
acceptable range for realistic stars.
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