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Abstract: We generate a new exact model for neutral anisotropic star using Einstein field equations. In this model, we

consider a quadratic equation of state (QEoS) and a choice of gravitational potential which generalizes the choice

formulated by Pant and Fuloria. We generate stellar masses consistent with previous findings which describe the astro-

physical objects like PSR J1614-2230, Cen X-3, Vela X-1 and Exo 1785-248. New relativistic stellar masses and surface

gravitational redshifts in acceptable ranges are also generated using our model. It is observed that the matter variables and

gravitational potentials are well behaved. The model satisfies energy and stability conditions and all forces within the

stellar object sum to zero.
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1. Introduction

The use of Einstein field equations to model compact rel-

ativistic stellar objects such as quark stars, neutron stars,

gravastars, dark energy stars and black holes is gaining

more exposure in contemporary studies. Diverse views on

the features of space-time geometry have been revealed.

By considering static and spherically symmetric spacetime,

various stellar models have been generated. Sunzu et al.

[1–3] generated anisotropic quark star models with masses

compatible with number of previous findings. Likewise

exact models by Maharaj et al. [4] are consistent with

Finch and Skea relativistic stars. Thirukkanesh and

Maharaj [5] found the realistic compact models with ani-

sotropy present. Models by Mafa Takisa and Maharaj [6]

describe the anisotropic quark star with core envelope in

the presence of the electric field. Abdalla et al. [7] found a

quark star model with anisotropy present. All these models

have astrophysical significance in describing the physical

properties and geometries of relativistic stellar objects.

Modelling anisotropic relativistic stellar spheres has

drastically drawn attention of researchers. Consideration of

pressure anisotropy in investigating the behaviour and

structure of relativistic compact stellar objects is very

significant as clearly pointed out in [8, 9]. The study by

Bowers and Liang [10] indicates that due to high

gravitational pull and density, no celestial body can have

perfectly isotropic fluid distribution. One of the earliest

works which conceptualize anisotropy in stellar fluid

spheres was performed by Ruderman [11] and Canuto and

Chitre [12]. These studies indicate that tangential and

radial pressures may not be equal. The state of pressure

imbalance influence the existence of pressure anisotropy in

a stellar object. Pressure anisotropy is also influenced by

some factors including ultra high density in the stellar core

[11, 12], pion condensations and phase transitions [13–15],

gradual fluid rotation [16], stellar sphere having type 3A

super fluid [17], etc. Other aspects related to anisotropy in

self gravitating systems can be accessed in the performance

by Herrrera and Santos [9]. The study by Bowers and Liang

[10] paved a way of searching exact models for anisotropic

stellar spheres. Various anisotropic neutral stellar models

with astrophysical significance have been generated.

Recently, Thirukkanesh et al. [18] obtained neutral stellar

models which describe the stability and improved physical

features of compact, relativistic objects with QEoS. Sunzu

[19] generated anisotropic neutral star models with iso-

tropic nature at the vanishing point of anisotropic param-

eters. Dev and Gleiser [20] shows that the mass and

gravitational redshift for relativistic stellar objects are

affected by the presence of anisotropic pressure. The study

shows that there is relationship between pressure aniso-

tropy and stability of the stellar object. Gleiser and Dev

[21] observed the impact of pressure anisotropy to the

appearance of the stellar object. The results show that
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anisotropic pressure may increase the surface redshifts

which ultimately cause stellar objects to appear closer than

their reality, a phenomena caused by anisotropic distor-

tions. The models by Sunzu et al. [1] show that the mass of

anisotropic quark star is less than the mass of isotropic

quark star. Other stellar models with anisotropy present

include models obtained by Jape et al. [22], Mathias et al.

[23], Maurya et al. [24, 25] and Jasim et al. [26].

Star models consider several forms of equations describing

the state of gravitating objects. Stellar models generated by

Jasim et al. [26, 27], Maurya and Tello-Ortiz [28], Maurya

et al. [29], Deb et al. [30], Banerjee [31], Sunzu et al. [3],

Sunzu and Danford [32] and Lobo [33] used the linear equa-

tion of state (EoS). The performance by Singh et al. [34]

applied Color-flavor locked EoS in framework of MIT bag

model to model quark stars in energy-momentum squared

gravity. Thirukkanesh et al. [18], Sharov [35], Feroze and

Siddiqui [36], Maharaj and Mafa Takisa [37], Sunzu and

Mashiku [38], Ngubelanga et al. [39] and Lobo [40] applied

the QEoS. Malaver [41, 42] and Sunzu and Mahali [43]

applied Van der Waal equation of state. Thirukkanesh and

Ragel [44], Mafa Takisa and Maharaj [45], Singh et al. [46],

Shibata [47] and Lai and Xu [48] applied polytropic equation

of state. Recently, Bhar et al. [49], Bhar [50, 51], Rahaman

et al. [52] and Benaoum [53] applied Chaplygin EoS.

We are delighted to study the physical behaviour and

geometries for neutral stars in general relativity in the

presence of pressure anisotropy using QEoS and a choice

of one of the gravitational potentials. We formulate a

model that regains a potential specified in the work by Pant

and Fuloria [54]. We also perform several physical analysis

that are rarely performed in other models with similar

approach. To achieve this objective we give fundamental

and field equations in §2. Our model is then presented in

§3. Discussion on graphs for gravitational potentials,

matter variables, speed of sound, hydrostatic equilibrium,

stability and energy conditions is given in §4. We present

tables of radii, stellar masses and surface redshifts in the

same section. The conclusion is highlighted in §5.

2. Field equations

We generate a new model for the interior of a stellar object.

We consider the spacetime geometry which is static and

spherically symmetric with the interior line element

ds2 ¼� e2mðrÞdt2 þ e2kðrÞdr2 þ r2ðdh2 þ sin2 hd/2Þ; ð1Þ

where mðrÞ and kðrÞ are gravitational potentials. We

consider the Schwarzschild exterior spacetime with the

line element given by

ds2 ¼ � 1� 2M

r

� �
dt2 þ 1� 2M

r

� ��1

dr2

þ r2ðdh2 þ sin2 hd/2Þ;
ð2Þ

where M is the total mass of the stellar object. The energy

momentum tensor for uncharged anisotropic stellar sphere

is given by

Tij ¼ diag �q; pr; pt; ptð Þ; ð3Þ

where q, pr and pt represent the energy density, radial

pressure and the tangential pressure, respectively. These

quantities are determined relative to a comoving unit

timelike fluid four-velocity, ua. In this model the coupling

constant 8pG
c4 and the speed of light c is assumed to be unity

(i.e. 8pG
c4
=1).

The field equations which describe neutral stellar objects

are given by

1

r2
1� e�2k
� �

þ 2k0

r
e�2k ¼q; ð4aÞ

� 1

r2
1� e�2k
� �

þ 2m0

r
e�2k ¼pr; ð4bÞ

e�2k m00 þ m0
2 � m0k0 þ m0

r
� k0

r

� �
¼pt; ð4cÞ

where primes indicate the derivatives of the gravitational

potentials with respect to radial distance r. The function

defining the stellar mass with uncharged matter is given by

MðrÞ ¼ 1

2

Z r

0

x2qðxÞdx: ð5Þ

For a physically realistic stellar star the matter distribution

should satisfy a barotropic EoS given by pr ¼ prðqÞ. In this

paper, we consider the stellar neutron fluid which admits

QEoS defined by

pr ¼ aq2 þ bq� c; ð6Þ

where a, b and c are real constants.

We adopt the Durgapal and Bannerji [55] transformation

for easy simplification of the field equations in the system

(4). The transformation takes the form

x ¼ Cr2; ZðxÞ ¼ e�2kðrÞ; A2y2ðxÞ ¼ e2mðrÞ; ð7Þ

where A and C are arbitrary real constants. With this

transformation, the field equations becomes

1� Z

x
� 2 _Z ¼ q

C
; ð8aÞ

4Z
_y

y
þ Z � 1

x
¼ pr

C
ð8bÞ

4xZ
€y

y
þ 4Z þ 2x _Z
� � _y

y
þ _Z ¼ pt

C
; ð8cÞ
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where dot represents differentiation with respect to x. The

line element becomes

ds2 ¼ �A2y2dt2 þ 1

4xCZ
dx2 þ x

C
ðdh2 þ sin2 hd/2Þ: ð9Þ

The mass function (5) due to this transformation becomes

MðxÞ ¼ 1

4C
3
2

Z x

0

ffiffiffiffi
x

p
qðxÞdx: ð10Þ

By incorporating the equation of state (6) in the field

equations, the system (4) is presented as

q ¼ 1� Z

x
� 2 _Z

� �
C; ð11aÞ

pr ¼aq2 þ bq� c; ð11bÞ

pt ¼pr þ D; ð11cÞ

D ¼4xCZ
€y

y
þ 2Cð2Z þ x _ZÞ _y

y
� C2a

1� Z

x
� 2 _Z

� �2

� Cb
1� Z

x
� 2 _Z

� �
þ _ZC þ c

ð11dÞ

_y

y
¼ aC
4Z

1� Z

x

� �2

þð1� bÞð1� ZÞ
4Zx

þ 2bC _Z � c
4CZ

ð11eÞ

where D ¼ pt � pr defines the quantity of pressure ani-

sotropy. The force due to anisotropy is given by 2D
r . The

study by Gokhroo and Mehra [56] indicates that when

D\0 then the anisotropic force has attractive nature and

when D[ 0 the anisotropic force is repulsive in nature.

3. The model

In order to track the system (11), we need to specify one of

the unknown variables q; pr; pt;D; Z and y. We choose a

rational form of gravitational potential Z in the form

Z ¼ 1þ k1x
2

ð1þ k2xÞ3
; ð12Þ

where k1 and k2 are real constants with k1 6¼ k2 6¼ 0. This

choice ensures regularity and continuity throughout the

interior of the stellar sphere. When k1 ¼ 0 we regain the

potential applied by Pant and Fuloria [54] in their charged

stellar model. We are motivated to use a generalized form

of potential Z to generate a neutral star model. By applying

Z specified in eq. (12) in eq. (11e), we obtain the first-order

differential equation

_y

y
¼ ð1þ k2xÞ3

4ð1þ k1x2Þ

� c
C
þ ð1þ k2xÞ3 þ k1x

2 � 1

xð1þ k2xÞ3

"

� b

ð1þ k2xÞ4
ðk1xð�5þ k2xÞ þ k2ð9þ 6k2x

þ 4k22x
2 þ k32x

3ÞÞ2 þ aC

ð1þ k2xÞ8
ðk1xð�5þ k2xÞ

þk2ð9þ 6k2xþ 4k22x
2 þ k32x

3ÞÞ2
i
;

ð13Þ

defining the metric function y.

By integrating (13) we obtain the general solution as

y ¼ Hð1þ k2xÞuð1þ k1x
2Þwexp½GðxÞ� ð14Þ

where H is a constant of integration. We have set

GðxÞ ¼ 1

8
� k32cx

2

Ck1

�

� 2k22xð3cþ Ck2ð�1þ bÞÞ
Ck1

þ 8Caðk1 � k22Þ
k2ð1þ k2xÞ3

� 18Caðk1 þ k22Þ
k2ð1þ k2xÞ4

� 4Ck2að�9k21 þ 14k1k
2
2 þ 7k42Þ

ð1þ k2xÞðk1 þ k22Þ
2

� 2 arctan½x
ffiffiffiffiffi
k1

p
�

Ck1
ffiffiffiffiffi
k1

p
ðk1 þ k22Þ

3
ð25C2k51a

þ 2Ck31k
3
2

ð�4þ 4bþ 9Ck2aÞ þ k82ð�3cþ k2ðC � CbÞÞ
� 6k21k

4
2ðk2ðC � CbÞÞ

þ k41ðcþ 3Ck2ð�1þ bÞ � 24C2k22aÞ
�k1ð8k62cþ 3C2k82aÞÞ

�
;

ð15Þ

u ¼ 2

ðk1 þ k2Þ3
k21k

2
2ð18b� 25Ck2aÞ

	

�9k1k
4
2ð�2bþ Ck2aÞ � 3k62ð�2bþ Ck2a

þk31ð6bþ 45Ck2aÞÞ
�
;

ð16Þ

w ¼ 1

Ck21ðk1 þ k22Þ
3
k92cþ Ck1k

8
2ð3� 3bþ Ck2aÞ

	

þ Ck51ð�1þ 5bþ 45Ck2aÞ
� 2k21k

5
2ð3cþ 2Ck2ð�2þ bÞÞ

þ 2k31k
3
2ð�4cþ 3Ck2ð1þ bÞ

� 3k41k2ðc� 4Ck2b

þ8C2k22aÞÞ
�
:

ð17Þ

A neutral stellar model 4061



Then the gravitational potentials and matter variables for

this model becomes

e2k ¼ð1þ k2xÞ3

1þ k1x2
; ð18aÞ

e2m ¼A2H2ð1þ k2xÞ2uð1þ k1x
2Þ2wexp½2GðxÞ�; ð18bÞ

q ¼ C

ð1þ k2xÞ4
ðk1xð�5þ k2xÞ þ k2ð9þ 6k2xþ 4k22x

2 þ k32x
3ÞÞ;

pr ¼aq2 þ bq� c;

ð18cÞ

pt ¼pr þ D; ð18dÞ

D ¼ 2C

ð1þ k1x2Þð1þ k2xÞ5

ð2� k2xþ k1x
2ð4þ k2xÞÞð _GðxÞ þ k2ðuþ x _GðxÞÞ

	
þ k1xð2wþ x _GðxÞ þ k2xðuþ 2wþ x _GðxÞÞÞ

þ 2xðð�1þ uÞð1þ k1x
2Þk2ð _GðxÞ

þ k2ðuþ x _GðxÞÞ þ k1xð2wþ _GðxÞ
þ k2xðuþ 2wþ x _GðxÞÞÞÞ þ 2xð�1þ wÞk1

ð1þ k2xð _GðxÞ þ k2ðuþ x _GðxÞÞ
þ k1xð2wþ x _GðxÞ þ k2xðuþ 2wþ x _GðxÞÞÞÞ
þ ð1þ k1x

2Þð1þ k2xÞ _GðxÞð _GðxÞ þ k2ðuþ x _GðxÞÞ
þ k2xð2wþ x _GðxÞ þ k2x

ðuþ 2wþ x _GðxÞÞÞÞ þ ð1þ k1x
2Þð1þ k2xÞðð €GðxÞ

þ k2ð _GðxÞ þ x €GðxÞÞ þ k1

ð2wþ 2x €GðxÞ þ x2ð €GðxÞ
þk2xð2uþ 4wþ 3x _GðxÞ þ x2 €GðxÞÞÞ þ FðxÞ

�
;

ð18eÞ

where,

FðxÞ ¼ Cb

ð1þ k2xÞ4
ðk1xð�5þ k2xÞ þ k2ð9þ 6k2xþ 4k22x

2 þ k32x
3ÞÞ

� C2a

ð1þ k2xÞ8
ðk1xð�5þ k2xÞ

þ k2ð9þ 6k2xþ 4k22x
2 þ k32x

3ÞÞ2

þ Cð�3k2 þ k1xð2� k2xÞÞ
ð1þ k2xÞ4

þ c:

ð19Þ

We note that the exact solution in (18) is presented in terms

of elementary functions.

The mass function in eq. (10) becomes

MðxÞ ¼ x
ffiffiffi
x

p

6
ffiffiffiffi
C

p
ð1þ k2xÞ4

k1xð�5þ k2xÞ þ k2ð3þ k2xÞð3þ k2xð1þ k2xÞÞ½ �;
ð20Þ

and the line element in eq. (1) becomes

ds2 ¼� A2H2ð1þ k2xÞ2uð1þ k1x
2Þ2wexp½2GðxÞ�dt2

þ ð1þ k2xÞ3

1þ k1x2
dr2

þ r2ðdh2 þ sin2 hd/2Þ:
ð21Þ

3.1. Compactness and redshift

The compactness factor l is defined by

l ¼ M

R
; ð22Þ

whereM is the total stellar mass and R is the stellar radius at

the boundary. By substituting eqn. (20) into (22) we obtain

lðxÞ ¼ x

6ð1þ k2xÞ4
k1xð�5þ k2xÞ þ k2ð3þ k2xÞð3þ k2xð1þ k2xÞÞ½ �:

ð23Þ

We define the surface redshift zs of a stellar sphere by

zs ¼
1ffiffiffiffiffiffiffiffiffiffiffi
1� l

p � 1; ð24Þ

where l is the compactness factor. By considering the

compactness factor lðxÞ in (23) then eqn. (24) becomes

zsðxÞ ¼ � 1þ
ffiffiffi
6

p
ð1þ k2xÞ2 6ð1þ 15k2xÞ þ 30k22x

2
	

þ20k32x
3 þ 5k42x

4 þ k1x
2ð5� k2xÞ

��1
2

ð25Þ

3.2. Hydrostatic equilibrium

The state of hydrostatic equilibrium in this model is

explored by analysing the Tolman-Oppenheimer-Volkoff

(TOV) equation defined by

p0r þ ðqþ prÞm0 �
2D
r

¼ 0: ð26Þ

For a neutral stellar object with anisotropic pressure, three

forces describing the state of hydrostatic equilibrium

include gravitational force Fg, hydrostatic force Fh and

anisotropic force Fa. These forces describe the energy

conservation in the stellar object. The forces are defined by

Fg ¼� ðqþ prÞm0; ð27aÞ

Fh ¼� p0r; ð27bÞ

Fa ¼
2D
r
: ð27cÞ

Then since the stellar object is in hydrostatic equilibrium,

eq. (26) can be written as

Fg þ Fh þ Fa ¼ 0: ð28Þ
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The expressions for the forces in (27) are given by

Fg ¼
ffiffiffi
x

p

2
ffiffiffiffi
C

p
ð1þ k1x2Þð1þ k2xÞ13

�cþ ð9Cð1þ bÞ � 8xcÞk2 þ ð81C2aþ 42Cxð1þ bÞ
	
� 28x2cÞk22 þ 2xð54C2a

þ 41Cxð1þ bÞ � 28x2cÞk32 þ x2ð108C2a

þ 89Cxð1þ bÞ
� 70x2cÞk42 þ x3ð66C2aþ 61Cxð1þ bÞ
� 56x2cÞk52 þ 28x4ðC2aþ Cxð1þ bÞ
� x2cÞk62 þ 8x5ðC2aþ Cxð1þ bÞ
� x2cÞk72 þ x6ðC2aþ Cxð1þ bÞ � x2cÞk82
þ C2x2ak21ð�5þ xk2Þ2

þ Cxk1ð�5þ xk2Þð1þ bþ 2ð9Caþ 2xð1þ bÞÞk2
þ 6xðxþ 2Caþ xbÞk22
þ 4x2ðxþ 2Caþ xbÞk32 þ x3ðxþ 2Caþ xbÞk42ÞÞð _GðxÞ
þ k2ðuþ x _GðxÞÞ þ xk1ð2wþ x _GðxÞ
þxk2ðuþ 2wþ x _GðxÞÞÞ

�
ð29Þ

Fh ¼� C

ð1þ xk2Þ9
ðbþ 2ð9Caþ 2xbÞk2½

þ 6xð2Caþ xbÞk22 þ 4x2ð2Caþ xbÞk32
þ x3ð2Caþ xbÞk42 þ 2Cxak1ð�5þ xk2ÞÞ
ðk1ð5� 17xk2 þ 2x2k22Þ þ k22ð30

þ10xk2 þ 5x2k22 þ x3k32Þ
�
;

ð30Þ

and

Fa ¼
4C

ffiffiffiffi
C

p
ffiffiffi
x

p
ð1þ k1x2Þð1þ k2xÞ5

ð2� k2xþ k1x
2ð4þ k2xÞÞð _GðxÞ þ k2ðuþ x _GðxÞÞ

	
þ k1xð2wþ x _GðxÞ þ k2xðuþ 2wþ x _GðxÞÞÞ
þ 2xðð�1þ uÞð1þ k1x

2Þk2ð _GðxÞ
þ k2ðuþ x _GðxÞÞ þ k1xð2wþ _GðxÞ
þ k2xðuþ 2wþ x _GðxÞÞÞÞ þ 2xð�1þ wÞk1
ð1þ k2xð _GðxÞ þ k2ðuþ x _GðxÞÞ þ k1xð2wþ x _GðxÞ
þ k2xðuþ 2wþ x _GðxÞÞÞÞ
þ ð1þ k1x

2Þð1þ k2xÞ _GðxÞð _GðxÞ
þ k2ðuþ x _GðxÞÞ þ k2xð2wþ x _GðxÞ þ k2x

ðuþ 2wþ x _GðxÞÞÞÞ
þ ð1þ k1x

2Þð1þ k2xÞðð €GðxÞ þ k2ð _GðxÞ þ x €GðxÞÞ þ k1

ð2wþ 2x €GðxÞ þ x2ð €GðxÞ þ k2xð2uþ 4wþ 3x _GðxÞ
þ x2 €GðxÞÞÞ þ FðxÞ�:

ð31Þ

3.3. Stability conditions

The stability of stellar models is verified under different

stability conditions. According to Zeldovich [57] a stellar

model is stable if it satisfies the inequality
pr
q
\1. In this

model

pr
q
¼ Cð1þ xk2Þ4ðxk1ð�5þ xk2Þ



þk2ð9þ 6xk2 þ 4x2k22 þ x3k32ÞÞ
��1ð�cþ ð9Cb

� 8xcÞk2 þ ð81C2aþ 42Cxb

� 28x2cÞk22 þ 2xð54C2aþ 41Cxb� 28x2cÞk32
þ x2ð108C2a

þ 89Cxb� 70x2cÞk42 þ x3ð66C2aþ 61Cxb

� 56x2cÞk52 þ 28x4ðC2aþ Cxb� x2cÞk62
þ 8x5ðC2aþ Cxb� x2cÞk72 þ x6ðC2a

þ Cxb� x2cÞk82 þ C2x2ak21ð�5þ xk2Þ2

þ Cxk1ð�5þ xk2Þðbþ 2ð9Caþ 2xbÞk2
þ 6xð2Caþ xbÞk22 þ 4x2ð2Caþ xbÞk32
þ x3ð2Caþ xbÞk42ÞÞ:

ð32Þ

The radial adiabatic index is significant in investigating the

stability of stellar configurations. The works performed by

Heintzmann and Hillebrandt [58] and Bondi [59] indicate

that the collapsing condition for non-relativistic sphere

with isotropic matter distribution is given by C\ 4
3
. On the

other hand, Chan et al. [60, 61] indicated that the

collapsing condition for relativistic spheres is given by

C\
4

3
þ 1

3
j
q0pr0
jp0r0j

þ 4

3

pt0 � pr0
jp0r0jr

� �
max

;

where
1

3
j
q0pr0
jp0r0j

is the relativistic correction and
4

3

pt0 � pr0
jp0r0jr

is the anisotropic correction. Chandrasekhar [62, 63] assert

that the relativistic correction may cause instability within

the compact stellar sphere. Moustakidis [64] discussed

another strict condition that the critical value Cc for radial

adiabatic index is given by

Cc ¼
4

3
þ 19

21
l: ð33Þ

According to Chandrasekhar [62, 63], adiabatic index C of

a stable stellar model satisfies the inequality C[ 4
3
.

However, by considering the critical value Cc, the

stability condition is modified to C�Cc where C is

defined by

C ¼ qþ pr
pr

� �
dpr
dq

: ð34Þ
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The expression for C in this model is then given by

C ¼ ð1þ xk2Þ4ð�cþ Cb

ð1þ xk2Þ4
ððxk1ð�5þ xk2Þ

 

þ k2ð9þ 6xk2 þ 4x2k22:

þ x3k32ÞÞÞ þ
C2a

ð1þ xk2Þ8Þ
ðxk1ð�5þ xk2Þ

þk2ð9þ 6xk2 þ 4x2k22 þ x3k32ÞÞ
2Þ
��1

ðbþ 2ð9Caþ 2xbÞk2 þ 6xð2Caþ xbÞk22
þ 4x2ð2Caþ xbÞk32 þ x3ð2Ca
þ xbÞk42 þ 2Cxak1ð�5þ xk2ÞÞ

ð�cþ C

ð1þ xk2Þ4
ðxk1ð�5þ xk2Þ þ k2ð9þ 6xk2

þ 4x2k22 þ x3k32ÞÞ
Cb

ð1þ xk2Þ4
ðxk1ð�5þ xk2Þ

 

þ k2ð9þ 6xk2 þ 4x2k22 þ x3k32ÞÞ
�

þ C2a

ð1þ xk2Þ8

xk1ð�5þ xk2Þ þ k2ð9þ 6xk2 þ 4x2k22 þ x3k32Þ
� �2

:

ð35Þ

This model indicates that the speed of sound v2r within the

stellar sphere is less than the speed of light. This implies

that 0� v2r � 1 where v2r ¼
dpr
dq . This behaviour is physically

realistic for stable stellar models. In this model

v2r ¼
1

ð1þ xk2Þ4
ðbþ 2ð9Caþ 2xbÞk2

þ 6xð2Caþ xbÞk22 þ 4x2ð2Caþ xbÞk32
þ x3ð2Caþ xbÞk42 þ 2Cxak1ð�5þ xk2ÞÞ:

ð36Þ

3.4. Energy conditions

This model satisfies the null, dominant and trace energy

conditions given as q� 0, for null energy condition (NEC),

q� pr � 0 and q� pt � 0 for dominant energy condition

(DECr and DECt) and q� pr � 2pt � 0 for trace energy

condition (TEC) respectively.

3.5. Matching conditions

It is significant to match the interior solution to exterior

Schwarzchild solution at the boundary of the stellar sphere.

The conditions for continuity of metric coefficients from

the line elements (1) and (2) across the junction (r ¼ R) are

given by

e2mðRÞ ¼1� 2M

R
ð37aÞ

e2kðRÞ ¼ 1� 2M

R

� ��1

ð37bÞ

respectively. Likewise, the radial pressure at the boundary

of the stellar sphere should vanish which implies

prðr¼RÞ ¼ 0. Applying the expressions for metric

potentials (18a) and (18b), the mass function in eq. (20)

and the transformation in eq. (7), the system (37) and the

radial pressure becomes

0 ¼1� ð3ð1þ CR2k2Þ4Þ�1

ðCR2ðCR2k1ð�5þ CR2k2Þ þ k2ð9þ 6CR2k2

þ 4C2R4k22 þ C3R6k32ÞÞÞ
� A2H2ð1þ C2R4k1Þ2wð1þ CR2k2Þ2u

exp½2GðRÞ�;

ð38aÞ

0 ¼½3ð1þ CR2k2Þ4ð3ð1þ CR2k2Þ4

� CR2ðCR2k1ð�5þ CR2k2Þ;
þ k2ð9þ 6CR2k2 þ 4C2R4k22 þ C3R6k32ÞÞÞ

�1�
� ½ð1þ C2R4k1Þ�1

ð1þ 3CR2k2 þ 3C2R4k22 þ C3R6k32Þ;

ð38bÞ

0 ¼ 2C2R2

ð1þ CR2k2Þ9
ðbþ 2Cð9aþ 2R2bÞk2

þ 6C2R2ð2aþ R2bÞk42ak1
ð�5þ CR2k2ÞÞ þ 2C2R2ðk1ð5� 17CR2k2 þ 2C2R4k22Þ

þ k22ð30þ 10CR2k2 þ 5C2R4k2 þ C3R6k32ÞÞ;
ð38cÞ

respectively where

GðRÞ ¼ 1

8
� k32cCR

4

k1

�

� 2k22R
2ð3cþ Ck2ð�1þ bÞÞ

k1

þ 8Caðk1 � k22Þ
k2ð1þ k2CR2Þ3

� 18Caðk1 þ k22Þ
k2ð1þ k2CR2Þ4

� 4Ck2að�9k21 þ 14k1k
2
2 þ 7k42Þ

ð1þ k2CR2Þðk1 þ k22Þ
2

� 2 arctan½CR2
ffiffiffiffiffi
k1

p
�

Ck1
ffiffiffiffiffi
k1

p
ðk1 þ k22Þ

3
ð25C2k51aþ 2Ck31k

3
2

ð�4þ 4bþ 9Ck2aÞ þ k82ð�3cþ k2ðC � CbÞÞ
� 6k21k

4
2ðk2ðC � CbÞÞ

þ k41ðcþ 3Ck2ð�1þ bÞ � 24C2k22aÞ
�k1ð8k62cþ 3C2k82aÞÞ

�
:

The system (38) indicates the matching condition for the

exact solutions obtained in system (18). The parameters

involved are C, R, k1, k2, A, H, a, b and c. We note in
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system (38), that there are sufficient free parameters which

satisfy the matching conditions.

4. Results and discussion

In this section we show that the exact model obtained in

§3 is well behaved within the interior of the stellar sphere.

Mathematical computations have been achieved by using

Mathematica software while the graphical plots have been

generated using Python programming language. All the

graphs are plotted against the radial distance r. We gen-

erated graphs by specifying values for the constants as

a ¼ 14:1, b ¼ 1:0� 10�6, c ¼ 1:9� 10�3, C ¼ 1:25�
10�3 k1 ¼ 1:0, k2 ¼ 2:5 and H ¼ 1:0.

Figs 1 and 2 indicate that the gravitational potentials are

regular, continuous and finite throughout the stellar inte-

rior. We also note that these profiles are monotonically

increasing with positive values at the centre. This feature is

physical for well behaved stellar models. Similar profiles

can be observed in studies conducted by Maurya et al.

[65–68], Sunzu and Mashiku [38], Jasim et al. [69] and

Kileba Matondo et al. [70].

We observe in Figs 3, 4 and 5 that q, pr and pt are

monotonically decreasing functions such that q0\0, p0r\0

and p0t\0. Similar profiles are evident in recent works by

Mafa Takisa et al. [71], Das et al. [72], Komathiraj et al.

[73], Maurya and Nag [74] and Maurya et al. [75]. The

profile for the pressure anisotropy in Fig. 6 shows this

ingredient vanishes at the centre of the star then decreases

at some interval within the core and then increases as it

approaches the surface. It is physically realistic D ¼ 0 at

the centre of the star. Similar feature is found in recent

performance by Thirukkanesh et al. [76]. We find that in

Fig. 7 the stellar mass M increases with radial distance.

This model also satisfies the causality condition for sta-

bility. Fig. 8 indicates that the speed of sound inside the

Fig. 1 The potential em against the radial distance r

Fig. 2 The potential ek against the radial distance r

Fig. 3 Energy density q against the radial distance r

Fig. 4 Radial pressure pr against radial distance r
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Fig. 5 Tangential pressure pt against radial distance r

Fig. 6 Measure of anisotropy D against radial distance r

Fig. 7 Mass M against radial distance r

Fig. 8 Speed of Sound v2r against radial distance r

Fig. 9 Compactness l against radial distance r

Fig. 10 Redshift zs against radial distance r
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stellar fluid v2r � 0:3172. It implies that 0� v2r � 1. This

result indicates that the speed of sound inside the stellar

sphere is less than the speed of light. In Fig. 9 we observe

that the maximum value of compactness l ¼ 0:1538 which

is less than 8
9
a maximum value proposed by Buchdahl [77]

for neutral compact stars. Fig. 10 shows that the surface

redshift zs � 0:08711. This value is less than 2 which was

determined by Mafa Takisa et al. [78] to be the maximum

value for realistic compact stars. In Fig. 11 we observe that

the condition for hydrostatic equilibrium is satisfied. All

the forces involved sum to zero. This implies that the

energy within the stellar sphere is conserved.

This model satisfies different stability conditions.

Fig. 12 shows that Pr

q \1. This implies that the model is

stable as proposed by Zeldovich [57]. The adiabatic sta-

bility condition imposed by Moustakidis [64] is also sat-

isfied. Fig. 13 shows that adiabatic index C� 3:20378 and

0\Cc � 1:4725. This implies that C[Cc which is the

condition for stability of the stellar models. Our model

satisfies different energy conditions which include null

(q� 0), dominant (q� pr � 0 and q� pt � 0) and trace

(q� pr � 2pt � 0) energy conditions as shown in Fig. 14.

We have obtained stellar masses and radii compatible

with the compact stars PSR J1614-2230 with r ¼ 9:69 km

and M ¼ 1:97M� and Cen X-3 with r ¼ 9:178 km and

M ¼ 1:49M�, Vela X-1 with r ¼ 9:56 km and M ¼
1:77M� and Exo 1785-248 with r ¼ 8:849 km and M ¼

Fig. 11 Variation of forces in TOV-equation against radial distance r

Fig. 12 Equation of state pr
q against radial distance r

Fig. 13 Adiabatic index C against radial distance r

Fig. 14 Energy conditions against radial distance r

Table 1 Stellar masses consistent with observations

k1 k2 C r(km) MðM�Þ Star

3.0 0.308 1.0 9.69 1.97 PSR J1614-2230

2.99 0.362 1.4 9.178 1.49 Cen X-3

2.8 0.313 1.2 9.56 1.77 Vela X-1

2.5 0.42 1.1 8.849 1.3 Exo 1785-248

A neutral stellar model 4067



1:3M� as obtained in Demorest et al. [79], Rawls et al. [80]

and Özel et al. [81] respectively. We also generate new

stellar masses in the range ð1:298� 1:97ÞM� and surface

redshifts in the range 0:0849� 0:1607 which are accept-

able ranges for stellar objects. The values used to generate

these stellar masses, radii and surface redshifts are pre-

sented in Tables 1 and 2.

5. Conclusions

In this paper, we have found an exact model for uncharged

stellar object by using QEoS. The model has been obtained

by specifying one of the gravitational potentials which

generalizes the choice by Pant and Fuloria [54]. The state

of hydrostatic equilibrium in our model has been examined

by analysing TOV equation. We observe that at some

interval from the centre of the stellar star the radial pres-

sure overrides the tangential pressure ðpr [ ptÞ yielding

negative pressure anisotropy. This exhibit attractive ani-

sotropic force within this interval. However, closer to the

stellar surface the stellar interior experiences positive

pressure anisotropy ðpt [ prÞ implying existence of

repulsive nature of anisotropic force. Nevertheless, the

quantities of hydrostatic and gravitational forces within the

stellar sphere are balanced with anisotropic force for

hydrostatic equilibrium. The graphs for gravitational

potentials, matter variables, compactness, redshifts,

hydrostatic equilibrium, stability and energy conditions are

well behaved. We have generated stellar masses and radii

compatible with the findings in the past including obser-

vations by Demorest et al. [79], Rawls et al. [80] and Özel

et al. [81]. Our model described stars like PSR J1614-2230,

Cen X-3, Vela X-1 and Exo 1785-248. New stellar masses,

radii and surface redshifts generated in our model are in

acceptable range for realistic stars.
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