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Abstract: The present research paper attempts to study the relativistic Klein–Gordon and Dirac equations which are

subjected to the action of a uniform electromagnetic field which is added to a confining scalar potential within the context

Magueijo–Smolin model and in momentum space. In both cases, the energy spectrum of the mentioned equations and their

corresponding eigenfunctions are obtained. The limiting cases are then deduced for a small parameter of deformation; in

addition to that, a numerical study of the energy is presented.
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1. Introduction

All approaches that are allowed to construct the deformed

algebra theory in physics have been continuously devel-

oped and became of great interest to prospect of research

principally in physics and mathematical physics. Conse-

quently, a considerable amount of literature and a class of

models have been presented in this regard. Among which:

Snyder model, the latter is proposed as the first example of

a noncommutative geometry [1, 2]. Furthermore, the gen-

eralized uncertainty principle GUP has been proposed to

incorporate gravity into quantum mechanics [3–6]. Another

specific model is called the (anti)-de Sitter background, and

it is associated with the topology of the physical space used

for this purpose. This approach is known as the Extended

Uncertainty Principle EUP [7–14]. Following that, it is

important in this regard to highlight that these models are

conducted through a deformed algebra that is characterized

by certain physical parameters, and defined in their asso-

ciated commutation relation and reflecting the effects of

certain phenomena observed at different scales in the

physical world.

Approximately ten years ago, Amelino-Camelia [15]

followed by Magueijo–Smolin [16] suggested a new theory

with two observed independent parameters: the speed of

light c and an energy scale identified with Planck energy j.

This proposal is motivated by the consideration that the

Planck energy sets a limit above which causes quantum

gravity effects to become important, alongside and its rate.

Therefore, it must not depend on the specific observer, and

the same goes for special relativity case. On that account,

this postulate should be introduced in such a manner that

the relativity principle, i.e., the equivalence of all inertial

observers, stays valid. The idea based on this supposition is

called doubly special relativity (DSR). The majority of the

work on the DSR has been performed in the context of

algebraic construction based on the deformation of the

standard Poincaré algebra of special relativity, and their

principal physical effects are the modification of the stan-

dard dispersion relations and the existence of a nonlinear

addition law for the momenta.

DSR is closely related to noncommutative (NC) geom-

etry [17], where the standard Poisson brackets of phase

space variables is replaced by a more complicated algebra.

This is satisfying due to the existence of a fundamental

length scale needed to deal with quantum gravity theory.

This fundamental length scale can be introduced by an NC

space-time via generalized uncertainty relation [3–5]. The

study of theoretical and physical implications of the DSR is

still a controversial topic. Various problems with great

physical interest have been studied in connection with the
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DSR. As examples, we can mention quantum uncertainty

in DSR [18], noncommutative space-time of DSR [19], the

Magueijo–Smolin model of DSR from five dimensions

[20], DSR and photons at the Planck scale [21] and cos-

mological constant and Planck scale phenomenology [22],

the black hole thermodynamics in DSR-GUP [23, 24] and

the relativistic oscillators in the context of DSR noncom-

mutative model [25, 26].

In relativistic and nonrelativistic quantum mechanics,

the solutions of the wave equation with external fields play

a central role in various domains of physics, since they

contain all the necessary information to understand the

quantum behavior of physical models [27–31]. Moreover,

the solutions of the wave equations have been used to study

the behavior and dynamics of some physical systems such

as thermodynamic properties [32, 33], Shannon entropy

and Fisher information [34, 35].

Based on the above, the present research paper aims to

study the relativistic Klein–Gordon KG and Dirac particles

within the context of the DSR model in the presence of

orthogonal electric and magnetic fields with confining

scalar potentials. Additionally, it is worth noting that the

same current work in the ordinary case without DSR was

reviewed in [36].

This paper is organized as follows: Sect. 2 contains a

review of the MS model and some relations necessary to

the calculation. Section 3 is devoted to the determination

of the energy eigenvalues and the corresponding eigen-

vectors of the KG equation in the momentum space within

the framework of the MS model in the presence of

orthogonal electric and magnetic fields with confining

scalar potentials. Following the same method, in Sect. 4,

the exact solutions of the Dirac equation are determined.

Section 5 is given to results and discussion. Finally, in

Sect. 6, conclusions are going to be presented.

2. Review of MS model

The modified dispersion relation in the DSR model can be

collectively expressed in the following form :

f 2
1 E

2 � f 2
2 P

2

i ¼ M2 ð1Þ

in which functions f1and f2 are specified by various DSR

models [16, 37–39]:

DSR model Function f1 Function f2

j-Poincaré [37] f 2
1 ¼ 2j2 cosh E=jð Þ

E2
f 2
2 ¼ exp E=jð Þ

Magueijo–Smolin [16] f1 ¼ 1 � E=jð Þ�1 f2 ¼ 1 � E=jð Þ�1

Herranz [38] f1 ¼ j exp E=jð Þ�1ð Þ
E

f2 ¼ 1

DSR model Function f1 Function f2

Heuson [39] f1 ¼ 1 � P2

i =j
2ð Þ�1=2

f2 ¼ 1 � P2

i =j
2ð Þ�1=2

where j is the Planck energy (1
j � 10�35m) and the special

relativity is recovered in the limit j ! 1. Recently, Ghosh

and Pal [40] have shown that the operators of the position

Xl and the momentum Pl in the MS model can be repre-

sented on a standard Hilbert space of functions of a

canonical momentum variable as

Xl ¼ ð1 þ E

j
Þxl ¼ i 1 þ E

j

� �
o

opl
; ð2Þ

Pl ¼ pl
ð1 þ E

jÞ
; ð3Þ

where the operators xl; pl abide by the usual canonical

commutation relations ½xl; pl� ¼ iglm. This representation

leads to the following commutation relations [41, 42]:

½Xi;Xj� ¼ 0; ½P0;Pi� ¼ ½Pi;Pj� ¼ 0; ½Xi;P0� ¼ 0;

½Xi;X0� ¼
i

j
Xi; ½Pi;X0� ¼ � i

j
Pi; ½Xi;Pj� ¼ idij;

½X0;P0� ¼ �i 1 � P0

j

� �
;

ð4Þ

In this model, the measure for which the operators Xl are

symmetric is given by

Dp ¼
dp

1 þ p0

j

: ð5Þ

3. Solution of Klein–Gordon equation

3.1. Bound states

The movement of charged KG particles in (3 þ 1) dimen-

sions in the presence of an electromagnetic field repre-

sented by the four-vector AlðV;AiÞ and the scalar potential

S Xð Þ, is described by the following equation :

Pi � eAi Xð Þð Þ2þ mþ S Xð Þð Þ2� P0 � V Xð Þð Þ2
h i

w ¼ 0:

ð6Þ

Preliminary to proceeding with studying the equation

above in the framework of DSR theory, which advocates

Planck scale modifications of the energy–momentum dis-

persion relation, it is worth noting that the classical and

quantum studies are established on this model in a series of

papers [40, 43] that prove the equivalence between the

dispersion relation and the deformed free Klein–Gordon
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equation in the considered DSR scheme. It is shown

through the action formulation of the deformed free parti-

cle j. It is also demonstrated that the solutions meet the set

expectations of the correct dispersion relation. Previous

studies can be extended to include interactions directly

following different approaches.

On the same line of thoughth, we are interested in the

following choice:

Ai ¼ k 0;X; 0ð Þ; S ¼ lX; V ¼ cX; ð7Þ

where Ai, S and V vary linearly (with) in x. Ai is the

electromagnetic potential describing a uniform magnetic

field B
!

along the z axis. The linear potential is an impor-

tant quantum mechanical model, it allows a quark-confin-

ing as it describes motion in a uniform gravitational or

electrical field [44].

Now to derive the differential equation governing the

motion of a system in question, this could be done by

substituting the expression of AmðV;AÞ, S Xð Þ in Eq. (6),

using the representation for Xm Eq. (2) and Pm Eq. (3), as it

has been mentioned before. We then obtain the following

differential equation in momentum space:

e2k2 þ l2 � c2
� � d2

dp2
1

� 2i Mlþ cE � kebp2ð Þ
�

d

dp1

� -4p2
1 þ E2 �M2 � bp2

2 � bp2
3

�
w ¼ 0;

ð8Þ

using the following ansatz w ¼ ew p1ð Þ exp i p2y� p3zð Þ½ �;
hence, both p2 and p3 become constants of motion, where

the coefficients M, bp2, bp3, and E are given by:

E ¼ E

1 þ p0

j

� �2
; bp2 ¼ p2

1 þ p0

j

� �2
; bp3 ! p3

1 þ p0

j

� �2
;

M ¼ m

1 þ p0

j

� � ; - ¼ 1

1 þ p0

j

� � :
ð9Þ

For the particular case e2k2 þ l2 ¼ c2, Eq. refsps8) will be

reduced to a differential equation of the first order:

2i Mlþ cE � kebp2ð Þ d

dp1

þ -4p2
1

�

� E2 �M2 � bp2
2 � bp2

3

� 	iew ¼ 0;

ð10Þ

whose solution is

ew p1ð Þ ¼ ew 0ð Þ exp

ip1

-4p2
1 � 3 E2 �M2 � bp2

2 � bp2
3

� 	
6 Mlþ cE � kebp2ð Þ

2
4

3
5; ð11Þ

when we take the limit (j ! 1), we obtain,

limj!1 ew p1ð Þ ¼ ew 0ð Þeip1

p2
1
þ3 p2

3
þp2

2
þm2�E2ð Þ

6 mlþEc�ekp2ð Þ , which is exactly

the ordinary result [45]. Now, in the case when

e2k2 þ l2 [ c2, the electrostatic potential becomes weak

compared to the scalar and the magnetic potentials.

By introducing the following change of variables:

u ¼ -

e2k2 þ l2 � c2
� �1=4

p1: ð12Þ

Equation (8) can be written in the following new form:

d2

du2
� 2if

d

du
� u2 þ E2 �M2 � bp2

2 � bp2
3

-2 e2k2 þ l2 � c2
� �1=2

2
4

3
5

ew uð Þ ¼ 0;

ð13Þ

where f ¼ MlþcE�kebp2ð Þ
- e2k2þl2�c2ð Þ3=4.

In order to solve Eq. (13), we make the following

substitution,

ew uð Þ ¼ eifu�
u2

2 U uð Þ; ð14Þ

and a straightforward calculation gives the following

differential equation:

d2

du2
� 2u

d

du
þ E2 �M2 � bp2

2 � bp2
3

-2 e2k2 þ l2 � c2
� �1=2

2
4

þ Mlþ cE � kebp2ð Þ2

-2 e2k2 þ l2 � c2
� �3=2

� 1

3
5U ¼ 0:

ð15Þ

We identify this differential equation as the Hermite

equation whose solution can be expressed in terms of the

Hermite polynomials

U ¼ Hn�1 uð Þ; ð16Þ

with n which is a nonnegative integer:

2n� 2 ¼ E2 �M2 � bp2
2 � bp2

3

-2 e2k2 þ l2 � c2
� �1=2

þ Mlþ cE � kebp2ð Þ2

-2 e2k2 þ l2 � c2
� �3=2

� 1;

ð17Þ

or, equivalently:

Eek� bp2cð Þ2þ ElþMcð Þ2� Mekþ bp2lð Þ2

� e2k2 þ l2 � c2
� �bp2

3 ¼ 2n� 1ð Þ e2k2 þ l2 � c2
� �3=2

:

ð18Þ

Then, solving Eq. (18) for the energy eigenvalues, we

obtain the following:
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which the terms 41, 42 and 43; X are given by:

41 ¼ mekþ lp2ð Þ2þ e2k2 þ l2
� �

p2
3 þ 2n� 1ð Þ

ffiffiffiffi
X

ph i
;

42 ¼ 2mlc p2
2 þ p2

3

� �
þ 2cekp2 m2 þ 2n� 1ð Þ

ffiffiffiffi
X

ph i
;

43 ¼ p2
2 c2m2 � l2 � c2

� �
2n� 1ð Þ

ffiffiffiffi
X

ph i
þ p2

3

m2 e2k2 � c2
� �

þ 2n� 1ð ÞX3
2

h i
;

X ¼ e2k2 þ l2 � c2;

ð20Þ

where the eigenvalues of energy depend on the parameters

k, c and l, in addition to the index n which represents the

principal quantum number. It must be emphasized that the

energy spectrum contains an additional correction term that

depends on the deformation parameter j and is not

symmetrical. This effect is due to the modification of the

standard Heisenberg algebra. So, for n ! 1, it is remarked

that the energy spectrum becomes bounded:

lim
n!1

En ¼ �j: ð21Þ

Thus, the spectrum energy in the MS model is not allowed

to decrease indefinitely, but approaches a finite value.

However, if we remove the deformation by setting j ! 1,

the energy in the large n becomes En ¼ 1:

In addition, in the limit case j ! 1, comparing the

expression of the energy spectrum

En ¼
�c ml� ekp2ð Þ �

ffiffiffiffi
X

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mekþ lp2ð Þ2þ e2k2 þ l2

� �
p2

3 þ 2n� 1ð Þ
ffiffiffiffi
X

p� �q
e2k2 þ l2
� �

ð22Þ

it goes hand in hand with Dominguez findings [36]. By

expanding (19) to the first order in 1
j, we get

En ¼ En þ
1

j
DEð Þn ð23Þ

The first term can be obtained from Eq. (22), while the

second term represents the correction due to the DSR

effect, it takes the following form:

4En ¼
m2 e2k2 � c2
� �

þ mlekp2 þ 2n� 1ð ÞX3
2

e2k2 þ l2

þ 2mlc2 ml� ekp2ð Þ
e2k2 þ l2
� �2

�
ffiffiffiffi
X

p
42

2
ffiffiffiffiffiffiffi
41

p
e2k2 þ l2
� �� 2mlc2

ffiffiffiffiffiffiffiffiffiffi
X41

p

e2k2 þ l2
� �2

" #
:

ð24Þ

We can analyze the Eq. (19) according to different

limits taken by the parameters (l,k; c).

1. In the absence of electromagnetic fields, k ¼ c ¼ 0,

the energy level for a linear scalar potential is

El
n ¼

2n�1ð Þ
j �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

2 þ p2
3 þ 1 þ p2

3
�p2

2

j2

� 	
2n� 1ð Þ lj j

r

1 � 2n�1ð Þ
j2 lj j

;
ð25Þ

note that the energy levels become independent of particle

mass. If we remove the deformation of the spectrum,

limj!1 El
n ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

2 þ p2
3 þ 2n� 1ð Þ lj j

p
, it can be noticed

that the same result given in [36], is obtained.

2. In the presence of a uniform magnetic field, k 6¼ 0,

Eq. (19) is reduced to:

Ek
n ¼

m2þ 2n�1ð Þ ekj j
j �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

3 1 þ m2

j2

� �
þ 1 þ p2

3

j2

� 	
2n� 1ð Þ ekj j

r

1 � m2þ 2n�1ð Þ ekj j
j2

;

ð26Þ

in the case of j ! 1 the energy level becomes

Ek
n ! �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

3 þ 2n� 1ð Þ ekj j
q

ð27Þ

the result expressed by the last Eq. (27) seems to be cor-

responding with the results given in [36] as mentioned

earlier.

3.2. Scattering states

In order to calculate the pair creation rate, we have at our

disposal many different methods at our disposal such as the

Feynman path-integral method [45, 46], the Hamiltonian

diagonalization technique [47, 48], the Schwinger method

[49, 50] and the ‘‘in’’ and ‘‘out’’ formalism [51] which is

used in this subsection.

En ¼
j m2 e2k2 � c2

� �
þ mlekp2 þ 2n� 1ð ÞX3

2

h i
� j2c ml� ekp2ð Þ �

ffiffiffiffi
X

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j4 41 þj3 42 þj243

p
j2 e2k2 þ l2
� �

þ 2jmlc� m2 e2k2 � c2
� �

� 2n� 1ð ÞX3
2

; ð19Þ
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In the case of c2 [ e2k2 þ l2, the situation is quite

different, and therefore, the Klein–Gordon equation can be

written as:

d2

dp2
1

þ Mlþ cE � kebp2ð Þ2

c2 � e2k2 � l2
� �2

"

þ -4

c2 � e2k2 � l2
� � p2

1 �
E2 �M2 � bp2

2 � bp2
3

� 	
c2 � e2k2 � l2
� �

3
5F p1ð Þ ¼ 0;

ð28Þ

where we have used

w ¼ e
ip1

MlþcE�kebp2

� �
c2�e2k2�l2ð Þ F :

ð29Þ

Now, to reduce the Eq. (28) to a class of known differential

equations, the change of variable is introduced as follows:

q ¼
ffiffiffi
2

i

r
-

c2 � e2k2 � l2
� �1=4

p1; ð30Þ

Then, the new form of Eq. (28) is

d2

dq2
� 1

4
q2 þ vþ 1

2

� �
F ¼ 0; ð31Þ

where

v ¼ � 1

2
þ i

2-2

Mlþ cE � kebp2ð Þ2

c2 � e2k2 � l2
� �3=2

2
4

þM2 þ bp2
2 þ bp2

3 � E2

c2 � e2k2 � l2
� �1=2

3
5:

ð32Þ

According to [52], the exact solutions of the above

differential equation can be written in terms of parabolic

cylinder functions as

F qð Þ ¼ Dv qð Þ; Dv �qð Þ; D�v�1 iqð Þ; D�v�1 �iqð Þ:
ð33Þ

These four solutions are linearly dependent. Now,

according to [53] the classification of these solutions as

‘‘in’’ and ‘‘out’’ states is as follows

wþ
in ¼ Dv qð Þ; ð34Þ

w�
in ¼ D�v�1 iqð Þ; ð35Þ

wþ
out ¼ Dv �iqð Þ; ð36Þ

w�
out ¼ D�v�1 �qð Þ: ð37Þ

The positive frequency mode wþ
in can be expressed in terms

of the positive wþ
out and negative w�

out frequency modes via

the Bogoliubov transformation

wþ
in ¼ awþ

out þ bw�
out

w�
in ¼ a�w�

out þ b�wþ
out

(
; ð38Þ

where a and b are the Bogoliubov coefficients. In order to

find the relation between w�
in and w�

out states, we use the

relation between parabolic cylinder functions

Dv qð Þ ¼ eipvDv �qð Þ þ
ffiffiffiffiffiffi
p2

p

C �vð Þ e
ip
2
vþ1ð ÞD�v�1 �iqð Þ; ð39Þ

which results in:

wþ
in ¼ eipvw�

out þ
ffiffiffiffiffiffi
p2

p

C �vð Þ e
ip
2
vþ1ð Þwþ

out: ð40Þ

On this basis, the Bogoliubov coefficients are then

b ¼ eipv; a ¼
ffiffiffiffiffiffi
p2

p

C �vð Þ e
ip
2
vþ1ð Þ: ð41Þ

We can derive the density of created particles as

N ¼ bj j2 ¼ exp � p
-2

Mlþ cE � kebp2ð Þ2

c2 � e2k2 � l2
� �3=2

2
4

8<
:

þM2 þ bp2
2 þ bp2

3 � E2

c2 � e2k2 � l2
� �1=2

3
5
9=
;:

ð42Þ

We see that the expression of the density of created

particles depends on the deformation parameters j; in

addition to that, when j ! 1, we obtain the result

associated with the constant electromagnetic field:

N j!1 ¼ exp �p
lmþ cE � kep2ð Þ2

c2 � e2k2 � l2
� �3=2

2
4

8<
:

þ m2 þ p2
2 þ p2

3 � E2

c2 � e2k2 � l2
� �1=2

3
5
9=
;;

ð43Þ

as it has been noticed, the effects of deformation have

disappeared. When c ¼ 0, we have N ¼ 0: On the other

hand, the density of created particles will be equal to zero

when c is equal to zero. This confirms that the magnetic

fields cannot influence the creation of the particles. In

addition, in the presence of constant electric fields, the

density of the created particles is reduced to

N ¼ exp �p
M2 þ bp2

2 þ bp2
3

c-2

( )
: ð44Þ

In the limit j ! 1, we obtain the usual result associated

with the constant electric field:
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N j!1 ¼ e�p
m2þp2

2
þp2

3
c : ð45Þ

Mathematically, the Klein–Gordon equation case study

is the easiest model, which opens the way for the study of

the Dirac equation, where the results of the latter lead to

similar results to the case of the former equation. In the

next section, we will discuss the Dirac equation in the

effect of the MS model.

4. Solution of Dirac equation

In order to illustrate the effect of the MS model on the

Dirac particle in a constant electromagnetic field and scalar

potential, we will proceed in the same way as in the case of

the KG equation. The stationary Dirac equation is given by

ai Pi � eAið Þ þ b mþ Sð Þ � P0 � eA0ð Þ½ �w ¼ 0; ð46Þ

where the matrices a and b are represented by:

ai ¼
0 ri
ri 0

� �
; b ¼

I2 0

0 �I2

� �
: ð47Þ

And I2 indicates the 2 � 2 identity matrix and r ¼
rx; ry; rz
� �

are the Pauli matrices. In order to solve

Eq. (46), it is more convenient to use the squared Dirac

equation

e2k2 þ l2 � c2
� � d2

dp2
1

� 2i Mlþ cE � kebp2ð Þ
�

d

dp1

� -4p2
1 þ E2 �M2 � bp2

2 � bp2
3 � N

�
W ¼ 0

ð48Þ

where the fermion field w can be obtained as

w ¼ ai Pi � eAið Þ þ b mþ Sð Þ þ P0 � Vð Þ½ �W; ð49Þ

and N is a 4 � 4 matrix defined as:

N ¼ ia1a2ek� ia1cþ ba1il

¼ i

iek 0 0 cþ l

0 �iek cþ l 0

0 c� l iek 0

c� l 0 0 �iek

0
BBB@

1
CCCA;

ð50Þ

whose eigenvalues are s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2k2 þ l2 � c2

p
with s ¼ �1. So,

W can be decomposed as

W ¼ vsus p1ð Þ; ð51Þ

where

vþ ¼ i keþs
ffiffiffi
X

p

c�l v1

v2

 !
; v�

�i ke�s
ffiffiffi
X

p

c�l v1

v2

 !
;

v1 ¼
1

0

� �
; v2 ¼

0

1

� �
; s ¼ �1

ð52Þ

and us meet the goals of the equations

d2

dp2
1

� 2i
Mlþ cE � kebp2ð Þ
e2k2 þ l2 � c2
� � d

dp1

"

þ E2 �M2 � bp2
2 � bp2

3 � -4p2
1

e2k2 þ l2 � c2
� � � sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e2k2 þ l2 � c2
p

#
us ¼ 0:

ð53Þ

This equation is similar to the case discussed in Sect. 3,

and consequently, the obtained results are the same as

those of Eq. (13); then, the solution of Eq. (48) can be

written

W� eifu�
u2

2 Hn uð Þvs; ð54Þ

and the corresponding energy spectrum is

where

En ¼
j m2 e2k2 � c2

� �
þ mlekp2 þ 2nþ 1 � sð ÞX3

2

h i
� j2c ml� ekp2ð Þ �

ffiffiffiffi
X

p
j4 e41 þ j3 e42 þ j2 e43

� 	1
2

j2 e2k2 þ l2
� �

þ 2jmlc� m2 e2k2 � c2
� �

� 2nþ 1 � sð ÞX3
2

ð55Þ
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e41 ¼ mekþ lp2ð Þ2þ e2k2 þ l2
� �

p2
3 þ 2nþ 1 � sð ÞX1

2

h i
;

e42 ¼ 2mlc p2
2 þ p2

3

� �
þ 2cekp2 m2 þ 2nþ 1 � sð ÞX1

2

h i
;

e43 ¼ p2
2 c2m2 � l2 � c2

� �
2nþ 1 � sð ÞX1

2

h i

þ p2
3 m2 e2k2 � c2

� �
þ 2nþ 1 � sð ÞX3

2

h i
:

ð56Þ

The following remark can be applied to the Dirac

equations, and the first-order corrections in 1
j, on the

energy spectrum, take the same form as the corrections to

the Klein–Gordon spectrum Eqs. (22), (23) and (24). Only

the quantum number n will be changed by n� s
2
. In the

limit j ! 1, one recovers the results of [36]. So, the

expression (55) of the energy spectrum is written by:

2 nþ 1

2
� s

2

� �
X

3
2 ¼ Eek� cp2ð Þ2þ Elþ mcð Þ2

� ekmþ lp2ð Þ2�p2
3X

ð57Þ

and is independent of particle mass, whereas for n ! 1,

one obtains the energy spectrum

lim
n!1

En ¼ �j ð58Þ

Let us consider the following particular cases:

1. In the absence of electromagnetic fields, k ¼ c ¼ 0,

the energy levels for a linear scalar potential are:

in the limit j ! 1, one recovers the results of [36],

En ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

3 þ p2
2 þ 2nþ 1 � sð Þ lj j

q
; ð60Þ

2. In the case of the particle in a uniform magnetic field

(k 6¼ 0 and l ¼ c ¼ 0), the energy spectrum becomes:

3. In the limit j ! 1, we have

En ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

3 þ 2nþ 1 � sð Þ ekj j
q

: ð61Þ

5. Results and discussion

In the present research paper, we study the Klein–Gordon

and Dirac equations in the electromagnetic field with

confining scalar potential in doubly special relativity and in

momentum space . The analytical expressions for the rel-

ativistic energy eigenvalues and the corresponding eigen-

functions are given in Eqs. (25) and (26), respectively.

Numerical results of the positive energies corresponding to

positive particles with arbitrary quantum numbers are

presented.

The effects of quantum number n on the bound state

energy eigenvalues for the particle are given in Figs. 1

and 2. In Fig. 1, we plot the energy levels for a linear

scalar potential Eq. (25) with quantum numbers n for dif-

ferent values of deformation parameters j: From the results

shown in Fig. 1, it is seen that the energy eigenvalues

El
n

� �þ
increase monotonically as n increases for various

values of deformation parameters j. We also note that for a

fixed value of n, the energy levels increase when the

deformation parameter j decreases. This trend is also

shown in Fig. 2, as the bound state energy eigenvalues vary

with n for various values of j.

Furthermore, Fig. 3 shows the variation of the density of

created particles as a function of the variable c for various

values of x ¼ E
j : As a result, we observe that the density of

created particles increases monotonically with variable c in

all cases. Moreover, for a fixed value of j, the free energy

function decreases when the deformation parameter j
grows.

En ¼
lj j
j 2nþ 1 � sð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

3 þ p2
2 þ 2nþ 1 � sð Þ lj j þ 1

j2 p2
3 � p2

2

� �
2nþ 1 � sð Þ lj j

q

1 � lj j
j2 2nþ 1 � sð Þ

; ð59Þ

En ¼
m2þ 2nþ1�sð Þ ekj j

j �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

3 þ 2nþ 1 � sð Þ ekj j þ p2
3

j2 m2 þ 2nþ 1 � sð Þ ekj j½ �
q

1 � m2þ 2nþ1�sð Þ ekj j
j2
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As a general result, we observed that the effect of the

DSR model is very significant, and in the limit j ! 1, all

curves agree with the standard case.

6. Conclusions

Based on the aforementioned, we have solved exactly and

analytically the relativistic KG and Dirac equations sub-

jected to the action of a uniform electromagnetic field in

addition to a linear scalar potential in the context of MS in

the momentum space. For the KG equation case, the

solutions for bound and states are determined. By using

these scattering states we derived the density of created

particles via the Bogoliubov transformations technique and

by using these bound states the solution obtained is

expressed by Hermite polynomials. Following the same

method, the Dirac equation case is established. For both

cases, the deformed expressions of energy spectra in the

MS model are deduced and are not symmetrical, they

contained corrections of all orders of ð1
jÞ and vary with the

power of n. Some limiting cases are evaluated: For

example, in the case when e2k2 þ l2 ¼ c2 there are no

bound state and no confining; for j ! 1 we recover

exactly the same result without deformed uncertainty

relation, which has been done by Dominguez-Adame and

Méndez [36]. Moreover, we mention that the close relation

connecting the principles of relativity to the gauge invari-

ance in the Klein–Gordon (6) and Dirac (46) equations

have not been explored sufficiently in the existing literature

and the difficulties and the ambiguities remain. Therefore,

our work lies in the solution of the problem in question

within the limit of an approximation model. Finally, the

numerical study of the energy El
n;j and the density of

created particles N for some j value is exposed.
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