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Abstract: In this paper, we consider static self-gravitating spherical space-time and determine various anisotropic solu-

tions through the extended gravitational decoupling technique in f ðR; T ;RknT
knÞ gravity to analyze the influence of

electromagnetic field on them. We construct two different sets of modified field equations by employing the transfor-

mations on both radial as well as temporal metric potentials. The first set symbolizes the isotropic fluid distribution, thus we

take Krori-Barua solution to deal with it. The indefinite second sector comprises the influence of anisotropy. In this regard,

we apply some constraints to determine unknowns. Further, we observe the impact of charge as well as decoupling

parameter f on the developed physical variables (such as energy density, radial and tangential pressures) and anisotropy.

We also analyze other physical features of the compact geometry like mass, compactness and redshift along with the

energy conditions. Eventually, we find that our both solutions show less stable behavior for higher values of charge near the

boundary in this gravity.

Keywords: f ðR; T ;RknT
knÞ gravity; Anisotropy; Gravitational decoupling; Self-gravitating systems

1. Introduction

The composition of our universe is well-structured yet

inscrutable, comprising of heavily geometrical objects like

stars, galaxies and other unfathomable ingredients. The

study of physical features of such massive structures plays

an important role to figure out cosmic evolution. Einstein

developed first general relativity (GR) which allows sci-

entists to get better understanding of both cosmological as

well as astrophysical phenomena. Several cosmological

experiments have been performed on the distant galaxies

which indicate that our universe is in the state of acceler-

ating expansion. This expansion is thought to be executed

by the dark energy which is repulsive in nature. The

modifications to GR have therefore been identified highly

significant to reveal mysterious characteristics of our cos-

mos. The simplest modification to GR is obtained by

replacing the Ricci scalar R with its generic function in an

Einstein–Hilbert action, named as f ðRÞ theory. Numerous

research [[1]–[4]] has been done in this theory to analyze

the physical feasibility of compact structures through

different techniques. The Lané–Emden equation in f ðRÞ
theory has been employed by Capozziello et al. [[5]] to dis-

cuss the stability of various mathematical models. Many

authors [[6]–[13]] studied different astronomical objects and

examined their formation as well as stable configuration.

Initially, the concept of matter-geometry coupling was

introduced by Bertolami et al. [[14]]. They studied the

effects of coupling in f ðRÞ gravity by taking the Lagran-

gian as a function of R and Lm. This kind of interaction in

modified theories has prompted many researchers to put

their concentration on accelerating nature of cosmic

expansion. Many other modified theories have been

developed in the last decade to investigate the role of

arbitrary matter-geometry interaction on massive struc-

tures, one of them is the f ðR; T Þ theory introduced by

Harko et al. [[15]] in which T expresses trace of the stress-

energy tensor. Such interaction provides the non-conserved

energy-momentum tensor which may lead to the acceler-

ated expansion of universe. Later, another theory involving

more complex functional was presented by Haghani et al.

[[16]], named as f ðR; T ;QÞ gravity, where Q � RknT
kn.

The conserved equations of motion have also been found

through Lagrange multiplier approach in this theory. In this

scenario, Sharif and Zubair assumed some mathematical
*Corresponding author, E-mail: msharif.math@pu.edu.pk

Indian J Phys (December 2022) 96(14):4373–4390

https://doi.org/10.1007/s12648-022-02339-7

� 2022 IACS

http://crossmark.crossref.org/dialog/?doi=10.1007/s12648-022-02339-7&amp;domain=pdf
https://doi.org/10.1007/s12648-022-02339-7


models in FRW space-time and figured out the black hole

laws of thermodynamics [[17]] as well as energy bounds

[[18]].

The development of this modified gravity was premised

on the insertion of the factor Q which ensures the presence

of strong non-minimal matter-geometry coupling in self-

gravitating systems. The modification in the Einstein–Hil-

bert action may help in explaining the role of dark energy

and dark matter, without resorting to exotic fluid distribu-

tion. Some other extensions to GR like f ðR;LmÞ and

f ðR; T Þ gravitational theories also comprise the matter

Lagrangian involving such arbitrary interaction but we

cannot consider their functionals as the most generalized

form that provide proper understanding to the influence of

coupling on self-gravitating objects in some scenarios. It

must be noted here that the factorRknT
kn could explain the

impact of non-minimal interaction in the situation where

f ðR; T Þ theory breaks down to achieve such results. In

particular, f ðR; T Þ theory does not provide coupling

effects on the gravitational model for the case when trace-

free energy-momentum tensor (i.e., T ¼ 0) is considered,

however, this phenomenon can be explained by f ðR; T ;QÞ
gravity. Due to the non-conservation of energy-momentum

tensor in this theory, an additional force is present due to

which the motion of test particles in geodesic path comes to

an end. This force also helps to elucidate the galactic

rotation curves.

Haghani et al. [[16]] considered three different models

such as Rþ .Q; Rð1þ .QÞ and Rþ c
ffiffiffiffiffiffiffiffiffiffi

j T j
p

þ .Q in

this framework and discussed their cosmological applica-

tions, where . and c are arbitrary coupling constants. The

dynamics and cosmic evolution has been explored with

respect to these models with and without considering the

energy conservation. Odintsov and Sáez-Gómez [[19]]

studied various models in f ðR; T ;QÞ theory and solved

their corresponding gravitational equations through

numerical methods. They also highlighted some serious

issues linked with the matter instability. Ayuso et al. [[20]]

obtained the conditions for different compact objects to be

stable in this theory by considering some suitable scalar

and vector fields. They concluded that the existence of

matter instability is necessary for the case of vector field.

For FRW geometry, Baffou et al. [[21]] incorporated the

perturbation functions to calculate the solution of modified

field equations and checked their viability. Yousaf et al.

[[22]–[27]] studied the evolution of charged/uncharged

spherical as well as cylindrical geometries with the help of

effective structure scalars.

The existence of electromagnetic field in celestial

structures helps to understand their expansion and stability

in a better way. Numerous investigations have been per-

formed in GR as well as modified theories to analyze the

role of charge on different physical properties of celestial

objects. The Einstein field equations coupled with the

charge are known as Einstein–Maxwell equations whose

solution has been found by Das et al. [[28]] through

matching the static interior space-time with exterior

Reissner–Nordström. Sunzu et al. [[29]] examined the

quark stars influenced from charge by utilizing the mass-

radius relation. Murad [[30]] analyzed the charged strange

stars having anisotropic configuration and studied its

physical characteristics. Many authors [[31]–[38]] ana-

lyzed different stellar structures and observed their more

stable behavior due to the presence of charge.

The nature of field equations corresponding to the self-

gravitating body is highly nonlinear, thus it is much diffi-

cult task to obtain their exact solution. There has been

various techniques to solve these equations in the literature

corresponding to the celestial objects coupled with iso-

tropic as well as anisotropic configurations. Sharif and

Waseem [[39], [40]] investigated the viability and stability

of several compact objects in curvature-matter coupled

gravity by using Krori-Barua ansatz. They found that

solutions for anisotropic matter distribution are stable,

while isotropic configured stars are shown to be unsta-

ble near the core. Maurya et al. [[41]] considered the

minimal coupling model as f ðR; T Þ ¼ Rþ 2vT (v is

served as the coupling parameter) and examined the

physical viability of anisotropic structures through

embedding class one condition along with MIT bag model.

Several compact anisotropic configurations have been

discussed by Shamir and Fayyaz [[42]] in f ðRÞ theory by

taking different models. The newly developed method,

namely minimal geometric deformation (MGD) by means

of gravitational decoupling, has been found to be signifi-

cant to develop physically feasible solutions in the field of

cosmology and astrophysics. This technique was initially

introduced by Ovalle [[43]] in the braneworld scenario to

develop exact solutions for spherical interstellar structures.

The formulation of analytical solutions for isotropic

geometry has been done by Ovalle and Linares [[44]] in the

context of braneworld. They also shown their compatibility

with the Tolman IV solution. Casadio et al. [[45]] calcu-

lated a new solution for spherical exterior geometry which

shows singular behavior at Schwarzschild radius.

Ovalle [[46]] utilized the decoupling scheme to obtain

anisotropic exact solution for a compact sphere. Ovalle

et al. [[47]] considered the isotropic solution and extended

it to various anisotropic solutions whose feasibility has

been analyzed graphically. Gabbanelli et al. [[48]] formu-

lated physically acceptable anisotropic solution by assum-

ing Duragpal-Fuloria isotropic ansatz. Estrada and Tello-

Ortiz [[49]] considered Heintzmann solution for isotropic

distribution and found different physically viable aniso-

tropic solutions. Sharif and Sadiq [[50]] employed Krori-
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Barua anstaz and determined two anisotropic solutions

through this method. They also analyzed the influence of

decoupling parameter and charge on physical parameters as

well as energy bounds. Sharif and his collaborators

[[51]–[54]] generalized different anisotropic solutions to

modified theories such as f ðGÞ and f ðRÞ, where G repre-

sents the Gauss-Bonnet invariant. Singh et al. [[55]] uti-

lized class one condition to obtain various anisotropic

solutions with the help of same strategy. Hensh and Stu-

chlı́k [[56]] constructed different feasible anisotropic

solutions by employing a suitable deformation function on

the field equations along with Tolman VII solution.

Although the MGD technique (in which the radial

metric component is transformed only, while the temporal

component remains preserved) is an immensely valuable

approach to find exact feasible solutions of the complicated

field equations. This is nevertheless possible only if energy

is not exchanged from one source to another. Ovalle [[57]]

addressed this issue by proposing a novel strategy, named

as extended gravitational decoupling (EGD). This tech-

nique transforms both (radial and temporal) metric poten-

tials and also works for any choice of fluid distribution for

all space-time regions. Through this scheme, Contreras and

Bargueño [[58]] presumed vacuum BTZ solution corre-

sponding to the 2þ 1-dimensional geometry and found its

extension for the charged case. Sharif and Ama-Tul-

Mughani have employed this method along with the iso-

tropic Tolman IV [[59]] as well as charged Krori-Barua

[[60]] anstaz and constructed various anisotropic solutions.

Sharif and Saba [[61]] calculated anisotropic spherical

solutions by considering Tolman IV in f ðGÞ gravity. We

have recently checked the physical feasibility of two

charged/uncharged anisotropic solutions obtained through

MGD approach in f ðR; T ;QÞ theory [[62], [63]]. Sharif

and Majid [[64]–[66]] formulated various cosmological

solutions by extending the isotropic Krori-Barua and Tol-

man IV solutions with the help of MGD as well as EGD

techniques in the framework of Brans-Dicke gravity.

This paper examines the effects of charge on various

anisotropic solutions constructed through EGD technique

in f ðR; T ;QÞ scenario. The paper has the following

structure. In the next section, we shall present some fun-

damental terminologies of this modified theory. Section 3

discusses the EGD technique which helps to split the field

equations into two independent sets by deforming the

radial as well as temporal metric components. We assume

the Krori-Barua solution in Sect. 4 and employ some

additional constraints to formulate two anisotropic solu-

tions. We also discuss their viability and stability by means

of graphs. Lastly, we sum up our results in Sect. 5.

2. The f ðR; T ;QÞ gravity

The modified Einstein–Hilbert action (with j ¼ 8p) influ-
enced by an additional source is given as [[19]]

Sf ðR;T ;RknT
knÞ

¼
Z

f ðR; T ;RknT
knÞ

16p
þ Lm þ LE þ fL!

" #

ffiffiffiffiffiffiffi�g
p

d4x;

ð1Þ

where Lm; LE and L! indicate the Lagrangian densities of

matter configuration, electromagnetic field and new

gravitationally coupled source, respectively. In this case,

we take Lm ¼ �l, l is the energy density of the fluid. The

field equations analogous to the action (1) have the form as

Gkn ¼ 8pT ðtotÞ
kn : ð2Þ

The geometry of the celestial structure is expressed by an

Einstein tensor Gkn whereas T
ðtotÞ
kn is the energy-momentum

tensor including all sources. We further write it as

T
ðtotÞ
kn ¼ T

ðeff Þ
kn þ f!kn ¼ � 1

LmfQ � fR
T

ðmÞ
kn þ Ekn

� �

þ T
ðDÞ
kn þ f!kn:

ð3Þ

The presence of new source !kn via certain scalar, vector

or tensor field generates anisotropy in the self-gravitating

body. The decoupling parameter f measures how much that

source affects the geometry. In addition, the quantity T
ðeff Þ
kn

can be viewed as the stress-energy tensor in f ðR; T ;QÞ
gravity which comprises the usual physical variables as

well as modified correction terms. In this scenario, the

modified sector T
ðDÞ
kn takes the form

T
ðDÞ
kn ¼� 1

8p
�

LmfQ� fR
� fT þ1

2
RfQ

� �

T
ðmÞ
kn

	

þ R

2

f

R
� fR

� �

�LmfT




�1

2
rqrgðfQT qgÞ

�

gkn�
1

2
hðfQT knÞ

�ðgknh�rkrnÞfR�2fQRqðkT
q
nÞ þrqrðk½T q

nÞfQ�

þ2ðfQRqgþ fT g
qgÞ o2Lm

ogknogqg

�

;

ð4Þ

where fR; fT and fQ show the derivatives of functional

f ðR; T ;QÞ with respect to their subscripts. Moreover, rn

indicates the covariant derivative and h � gknrkrn.

The stress-energy tensor for perfect matter is given as
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T
ðmÞ
kn ¼ ðlþ pÞKkKn þ pgkn; ð5Þ

where p indicates the isotropic pressure and Kk is the four-

velocity. The following equation provides the trace of

f ðR; T ;QÞ field equations as

3rnrnfR þR fR � T

2
fQ

� �

� T ðfT þ 1Þ þ 1

2
rnrnðfQT Þ

þ rkrnðfQT knÞ � 2f þ ðRfQ þ 4fT ÞLm þ 2RknT
knfQ

� 2gqg
o2Lm

ogqgogkn
fT g

kn þ fQR
kn

� �

¼ 0:

The assumption Q ¼ 0 in the above equation vanishes

strong matter-geometry interaction in a self-gravitating

object and provides f ðR; T Þ theory, whereas one can

retrieve f ðRÞ theory by considering vacuum scenario. The

electromagnetic energy-momentum tensor takes the form

Ekn ¼ � 1

4p
1

4
gknF

qgF qg � F g
kF ng

	 �

;

where the Maxwell field tensor is defined as

F kn ¼ xn;k � xk;n, in which xn ¼ xðrÞd0n is the four

potential. This tensor must satisfy the following equations

F kn
;n ¼ 4pJ k; F ½kn;g� ¼ 0:

The current density J k can be expressed as J k ¼ .Kk,

where . is the charge density.

We consider a geometry which is separated into two

regions, namely interior and exterior at the hypersurface R.
The static spherically symmetric astrophysical structure is

expressed by the metric as follows

ds2 ¼ �evdt2 þ ebdr2 þ r2dh2 þ r2 sin2 hdu2; ð6Þ

where v ¼ vðrÞ and b ¼ bðrÞ. The above metric produces

the Maxwell field equations as

x00 þ 1

2r



4� rðv0 þ b0Þ
�

x0 ¼ 4p.e
v
2
þb; ð7Þ

which after integration produces

x0 ¼ q

r2
e
vþb
2 ; ð8Þ

where q shows the charge in the interior geometry (6).

Here, 0 ¼ o
or. The four-velocity involves single nonzero

component due to the consideration of comoving

framework. Thus, it has the form

Kn ¼ ðe
�v
2 ; 0; 0; 0Þ: ð9Þ

We establish the field equations in f ðR; T ;QÞ theory

corresponding to sphere (6) as

8p ~lþ s2

8pr4
� T

0ðDÞ
0 � f!0

0

� �

¼ e�b b0

r
� 1

r2

� �

þ 1

r2
;

ð10Þ

8p ~p� s2

8pr4
þ T

1ðDÞ
1 þ f!1

1

� �

¼ e�b v0

r
þ 1

r2

� �

� 1

r2
;

ð11Þ

8p ~pþ s2

8pr4
þ T

2ðDÞ
2 þ f!2

2

� �

¼ e�b

4
2v00 þ v02 � v0b0 þ 2v0

r
� 2b0

r

	 �

;

ð12Þ

where ~l ¼ 1
ðfRþlfQÞ l, ~p ¼ 1

ðfRþlfQÞ p and s
2 ¼ 1

ðfRþlfQÞ q
2. The

inclusion of charge as well as modified corrections

T
0ðDÞ
0 ; T

1ðDÞ
1 and T

2ðDÞ
2 produce much complications in the

field equations (10)–(12). The values of these components

are presented in ‘‘Appendix’’.

The existence of matter-geometry coupling in this

gravitational theory assures the nonvanishing divergence of

stress-energy tensor, (i.e., rkT
kn 6¼ 0) in contrast to GR

and f ðRÞ theory which results in violation of the equiva-

lence principle. This violation generates an additional force

in the system due to which the particles moving in the

gravitational field do not obey geodesic path. Therefore we

obtain

rk
�

T kn þ Ekn þ !kn
�

¼ 2

2fT þRfQ þ 16p
rnðLmfT Þ þ rkðfQRqkT qnÞ


� 1

2
ðfT gqg þ fQRqgÞrnT

qg � GknrkðfQLmÞ

� 1

2

�

rkðRfQÞ þ 2rkfT
�

T kn

�

:

ð13Þ

Using the above equation, the condition for hydrostatic

equilibrium becomes

dp

dr
þ f

d!1
1

dr
� ss0

4pr4
þ v0

2
lþ pð Þ � 2f

r
!2

2 � !1
1

� �

� fv0

2
!0

0 � !1
1

� �

¼ X;

ð14Þ

where X appears due to the condition (13). Its value is

casted in ‘‘Appendix’’. Equation (14) can be pointed out as

the generalization of Tolman–Opphenheimer–Volkoff

(TOV) equation. This equation plays a key role in studying

the systematic changes in spherically self-gravitating

configurations.

The complex differential equations (10)–(12) and (14)

are found to be highly nonlinear involving eight unknowns

ðv; b; l; p; s;!0
0;!

1
1;!

2
2Þ which make the system indefinite.

Thus we utilize the systematic strategy [[47]] to close the
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system and then calculate the unknowns. We express the

modified physical variables appear in the field equations

(10)–(12) as

l̂ ¼ ~l� f!0
0; p̂r ¼ ~pþ f!1

1; p̂? ¼ ~pþ f!2
2: ð15Þ

This indicates that the new source !n
k causes anisotropy

inside a self-gravitating system. We thus define it as

P̂ ¼ p̂? � p̂r ¼ f !2
2 � !1

1

� �

; ð16Þ

which vanishes for f ¼ 0.

3. Extended gravitational decoupling

We now work out the system (10)–(12) to determine

unknown quantities through an innovative algorithm

referred to gravitational decoupling through EGD tech-

nique. The effective field equations are therefore trans-

formed through this method such that the additional source

!n
k may guarantee the existence of anisotropy in the inner

geometry. The key element of this technique is the ideal

fluid solution ð/;w; l; p; sÞ, so let us begin with the metric

given as

ds2 ¼ �e/ddt2 þ ewdr2 þ r2dh2 þ r2 sin2 hdu2; ð17Þ

where / ¼ /ðrÞ and w ¼ wðrÞ ¼ 1� 2mðrÞ
r þ s2

r2
. Here, m(r)

indicates the Misner-Sharp mass of the spherical

distribution (6). Further, we reconstruct the metric

potentials by taking two geometrical transformations on

them and evaluate the influence of a source !n
k on isotropic

solution in the presence of charge. Thus the

transformations are

/ ! v ¼ /þ fl; e�w ! e�b ¼ e�w þ fn; ð18Þ

where l ¼ lðrÞ and n ¼ nðrÞ confirm their correspondence

with temporal and radial metric functions, respectively.

Therefore, EGD technique ensures that both components

are translated.

We require the solution of complex field equations, thus

for our ease, we divide them into two different sets by

imposing the overhead transformations on system (10)–

(12). For f ¼ 0, the first set takes the form as

8p ~lþ s2

8pr4
� T

0ðDÞ
0

� �

¼ 1

r2
þ e�w w0

r
� 1

r2

� �

; ð19Þ

8p ~p� s2

8pr4
þ T

1ðDÞ
1

� �

¼ � 1

r2
þ e�w /0

r
þ 1

r2

� �

; ð20Þ

8p ~pþ s2

8pr4
þT

2ðDÞ
2

� �

¼ e�w /00

2
þ/02

4
�/0w0

4
þ/0

2r
�w0

2r

� �

;

ð21Þ

and the second set which engages the source !n
k as well as

transformation functions becomes

8p!0
0 ¼

n0

r
þ n

r2
; ð22Þ

8p!1
1 ¼ n

v0

r
þ 1

r2

� �

þ e�wl0

r
; ð23Þ

8p!2
2 ¼

n

4
2v00 þ v02 þ 2v0

r

� �

þ e�w

4
2l00 þ fl02 þ 2l0

r
þ 2/0l0 � w0l0

� �

þ n0

4
v0 þ 2

r

� �

:

ð24Þ

The field equations for ideal fluid configuration vary from

Eqs. (22)–(24) only by few terms. These equations can

therefore be marked as the typical anisotropic field

equations corresponding to spherical space-time stated as

!�n
k ¼ !n

k �
1

r2
d0kd

n
0 � A1 þ

1

r2

� �

d1kd
n
1 �A2d

2
kd

n
2; ð25Þ

with precise notations

!�0
0 ¼ !0

0 �
1

r2
; ð26Þ

!�1
1 ¼ !1

1 � A1 þ
1

r2

� �

; ð27Þ

!�2
2 ¼ !2

2 �A2; ð28Þ

where

A1 ¼
e�wl0

r
; A2 ¼

e�w

4
2l00 þ fl02 þ 2l0

r
þ 2/0l0 � w0l0

� �

:

As a consequence, an indefinite system (10)–(12) has been

divided into two sectors in which the first set (19)–(21)

exhibits the equations of motion for isotropic fluid

ð~l; ~p; v; b). It is observed that the second sector (22)–(24)

obeys the anisotropic system (25) involving five unknowns

(l; n;!0
0;!

1
1;!

2
2). Eventually, we have decoupled the sys-

tem (10)–(12) successfully.

Several constraints on the boundary surface ðRÞ play a

vital role to explore basic characteristics of massive

structures. These constraints are termed as junction con-

ditions which help us to match the inner and outer regions

of the compact object at the boundary. Thus the interior

geometry is taken as
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ds2 ¼� evdt2 þ 1

1� 2m
r þ s2

r2
þ fn

� � dr2

þ r2dh2 þ r2 sin2 hdu2:

ð29Þ

We take exterior space-time corresponding to the geometry

(6) so that we can match it smoothly with the interior

geometry (29). The first fundamental form of the junction

conditions ensures the equivalence of both inner and outer

geometries at the hypersurface, i.e., ð½ds2�R ¼ 0Þ yields

/þ flðHÞ ¼ v�ðHÞ ¼ vþðHÞ;

1� e�bþðHÞ ¼ 2M

H
� S2

H2
� fnðHÞ;

ð30Þ

where the symbols - and þ indicate that the metric

components correspond to the inner and outer space-times,

respectively. Moreover, M ¼ mðHÞ; S2 ¼ s2ðHÞ, lðHÞ
and nðHÞ define the total mass, charge and deformation

functions of spherical body at the boundary. Likewise, the

second form
�

½T ðtotÞ
kn Wn�R ¼ 0; where Wn ¼

ð0; e�b
2 ; 0; 0Þis the four-vector

�

delivers

~pðHÞ � S2

8pH4
þ f !1

1ðHÞ
� �

�þ T
1ðDÞ
1 ðHÞ

� �

�

¼ f !1
1ðHÞ

� �

þþ T
1ðDÞ
1 ðHÞ

� �

þ
:

ð31Þ

The above equation takes the form after using Eq. (30) as

~pðHÞ � S2

8pH4
þ f !1

1ðHÞ
� �

�¼ f !1
1ðHÞ

� �

þ;
ð32Þ

which can further be expressed as

~pðHÞ � S2

8pH4
þ f
8p

nðHÞ v0ðHÞ
H

þ 1

H2

� �

þ e�wH
l0H
H

	 �

¼ f
8p

	

n�ðHÞ

� 1

H2
þ 1

H2

2 �MH � 2 �S
2

H2 � 2 �MH þ �S
2

 !( )

þ e�wH
l�0H
H

�

:

ð33Þ

The term �M presents the mass, �S is the charge and l� as

well as n� are the temporal and radial deformations of the

outer Reissner–Nordström geometry which is affected by

!kn (source). Hence the metric is described as

ds2 ¼ � 1� 2 �M

r
þ

�S
2

r2
þ fl�ðrÞ

 !

dt2

þ 1

1� 2 �M
r þ �S

2

r2
þ fn�

� � dr2 þ r2dh2 þ r2 sin2 hdu2:

ð34Þ

Equations (30) and (33) provide certain suitable conditions

which interlink the EGD inner spherical structure with

outer Reissner–Nordström geometry, both of which are

filled with source ð!knÞ.

4. Anisotropic solutions

Our goal is to construct two anisotropic solutions with the

help of EGD approach and utilize different constraints to

close the system. To make this happen, we require isotropic

solution of the field equations (19)–(21) in f ðR; T ;QÞ
scenario. Thus we continue our study by considering the

non-singular Krori-Barua solution for isotropic configura-

tion [[67]] which takes the form in this gravity as

ev ¼ eAr
2þC; ð35Þ

eb ¼ ew ¼ eBr
2

; ð36Þ

~l ¼ 1

16p
e�Br2 5B� Ar2ðA� BÞ � 1

r2


 �

þ 1

r2

	 �

þ T
0ðDÞ
0 � 1

2
� T

1ðDÞ
1 � T

2ðDÞ
2

� �

;

ð37Þ

~p ¼ 1

16p
e�Br2 4A� Bþ Ar2ðA� BÞ þ 1

r2


 �

� 1

r2

	 �

� 1

2
� T

1ðDÞ
1 þ T

2ðDÞ
2

� �

;

ð38Þ

s2 ¼ � r2

2
e�Br2 1þ Br2 þ Ar4ðB� AÞ

� �

� 1
h i

þ 4pr4 � T
1ðDÞ
1 � T

2ðDÞ
2

� �

:

ð39Þ

The above set of equations exhibits three constant A, B

and C as unknowns whose values are calculated at the

boundary r ¼ H by employing continuity of metric

functions ðgtt; grr and gtt;rÞ as

A ¼ 1

H2

M

H
� S2

H2

� �

1� 2M

H
þ S2

H2

� ��1

; ð40Þ

B ¼� 1

H2
ln 1� 2M

H
þ S2

H2

� �

; ð41Þ

C ¼ ln 1� 2M

H
þ S2

H2

� �

� MH � S2

H2 � 2MH þ S2
; ð42Þ

where compactness factor is defined as 2M
H \ 8

9
. The com-

patibility of interior isotropic solution (35)–(39) with the

exterior Reissner–Nordström geometry is pledged by

Eqs. (40)–(42) at the boundary ðr ¼ HÞ, that may be

modified in the interior due to the incorporation of addi-

tional source !kn. The anisotropic solutions for inner
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space-time can be developed by utilizing the temporal and

radial metric components in terms of Krori-Barua ansatz

(35) and (36). Equations (22)–(24) connect the source !kn

with geometric deformations l and n in an interesting way

and we determine their solution by making use of certain

conditions.

In the following, some constraints are considered to find

two anisotropic charged solutions and we check their fea-

sibility as well through graphical behavior.

4.1. Solution I

Here, we employ a linear equation of state to calculate first

anisotropic solution as

!0
0 ¼ s!1

1 þ t!2
2: ð43Þ

We consider another constraint on !1
1 to calculate l; n and

!n
k. We set s ¼ 1 and t ¼ 0 for our convenience, thus the

relation (43) takes the form !0
0 ¼ !1

1. We take the

constraint ~pðHÞ � S2

8pH4 þ T
1ðDÞ
1 ðHÞ� � f !1

1ðHÞ
� �

� which

assures the compatibility between interior isotropic

composition and exterior Reissner–Nordström. The

forthright choice which meets this requirement is [[47]]

�~pþ s2

8pr4
� T

1ðDÞ
1 ¼ !1

1: ð44Þ

After using the field equations (20), (22) and (23) in

constraints (43) and (44) we have deformation functions as

lðrÞ ¼
Z

1� nðrÞ þ eb
� �

rv0ev þ 1ð Þ
r fnðrÞ þ ebð Þ dr; ð45Þ

nðrÞ ¼1� 1

r

Z

eb rv0ev þ 1ð Þdr; ð46Þ

which take the form in terms of Krori-Barua ansatz (35)

and (36) as

l ¼
Z

1

r-

ffiffiffi

p
p

eBr
2ðAþ BÞ 2Ar2 þ 1

� �

erf
ffiffiffi

B
p

r
� �h

�2
ffiffiffi

B
p

r A 2Ar2 þ 1
� �

þ B 2Ar2 eBr
2 þ 1

� �

þ 1
� �n oi

dr;

ð47Þ

n ¼ 1�
ffiffiffi

p
p

Aþ Bð Þerf
ffiffiffi

B
p

r
� �

2B3=2r
þ Ae�Br2

B
; ð48Þ

where

- ¼ 2
ffiffiffi

B
p

r BfeBr
2 þ Bþ Af

� �

�
ffiffiffi

p
p

f Aþ Bð ÞeBr2erf
ffiffiffi

B
p

r
� �

:

The temporal and radial components thus become

v ¼ Ar2 þ C

þ f
Z

1

r-

ffiffiffi

p
p

eBr
2ðAþ BÞ 2Ar2 þ 1

� �

erf
ffiffiffi

B
p

r
� �h

� 2
ffiffiffi

B
p

r A 2Ar2 þ 1
� �

þ B 2Ar2 eBr
2 þ 1

� �

þ 1
� �on i

dr;

ð49Þ

e�b ¼ e�Br2

þ f 1�
ffiffiffi

p
p

Aþ Bð Þerf
ffiffiffi

B
p

r
� �

2B3=2r
þ Ae�Br2

B

 !

:
ð50Þ

The above expressions will reduce to the standard Krori-

Barua solution corresponding to the ideal spherical fluid

ðf ¼ 0Þ.
We utilize the matching criteria at hypersurface R to

investigate the impact of pressure anisotropy on triplet

(A, B, C). We also obtain the following relations from first

fundamental form of junction conditions as

ln 1� 2M

H
þ S2

H2

� �

¼ AH2 þ C

þ f
Z

1

r-

ffiffiffi

p
p

eBr
2ðAþ BÞ 2Ar2 þ 1

� �

h

	

� erf
ffiffiffi

B
p

r
� �

� 2
ffiffiffi

B
p

r B 2Ar2 eBr
2 þ 1

� �

þ 1
� �n

þ A 2Ar2 þ 1
� ���

dr
�

r¼H
;

ð51Þ

and

1� 2M

H
þ S2

H2
¼ e�BH2

þ f 1�
ffiffiffi

p
p

Aþ Bð Þerf
ffiffiffi

B
p

H
� �

2B3=2H
þ Ae�BH2

B

 !

:

ð52Þ

On the other hand, the second fundamental form ð~pðHÞ �
S2

8pH4 þ T
1ðDÞ
1 ðHÞ þ f !1

1ðHÞ
� �

�¼ 0Þ yields

~pðHÞ � s2

8pr4
þ T

1ðDÞ
1 ðHÞ ¼ 0

) B ¼ ln 1þ 2AH2ð Þ
H2

:

ð53Þ

Equation (53) shows the relation between two constants A

and B. Equations (51)–(53) supply certain

suitable conditions through which we can smoothly

match both regions of spherical geometry at the

boundary. Finally, the constraints (43) and (44) together

with the field equations as well as Eq. (15) produce the

following anisotropic solution in the presence of charge as
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l̂ ¼ 1

16p
e�Br2 B 5þ Ar2

� �

þ A 4f� Ar2
� ��

h

� 1

r2
1� 2fð Þ

�

þ 1

r2

� ð1� 2fÞ þ 16pT 0ðDÞ
0 � 8p T

1ðDÞ
1 � T

2ðDÞ
2

� �i

;

ð54Þ

p̂r ¼
1

16p
e�Br2 A 4þ Ar2 � 4f

� �

� B 1þ Ar2
� ��

h

þ 1

r2
1� 2fð Þ

�

� 1

r2

� ð1� 2fÞ � 8p T
1ðDÞ
1 þ T

2ðDÞ
2

� �i

;

ð55Þ

p̂?¼ 1

8p
e�Br2

2
Ar2ðA�BÞ�Bþ4Aþ 1

r2

� �

"

� 1

2r2
þ f

4B3=2r3
e�Br2 Ar2

�

þ1Þ
ffiffiffi

p
p

ðAþBÞeBr2erf
ffiffiffi

B
p

r
� ��

�2
ffiffiffi

B
p

r 2ABr2þAþB
� �

�

þfA� Ar2þ2
� �

1�
ffiffiffi

p
p

ðAþBÞerf
ffiffiffi

B
p

r
� �

2B3=2r
þAe�Br2

B

 !

þ f
4-

2Be�Br2
n

�
ffiffiffi

p
p

ðAþBÞeBr2 2Ar2þ1
� �

erf
ffiffiffi

B
p

r
� ��

�2
ffiffiffi

B
p

r B 2Ar2 eBr
2 þ1

� ���

þ1ÞþA 2Ar2þ1
� ����

þ e�Br2

4r2-2
4Br2 4B3r2eBr

2

fþ2ðf�1ÞAr2
� �

�n

�B2 4A2r4 eBr
2 þ1

� �

f eBr
2 �1

� �

þ2
� ��

þ4Ar2 eBr
2ðfþ2Þþ2

�

þ2fe2Br
2
�

�2feBr
2 þf�2

�

�2AB 4A2r4 feBr
2 þ1

� ��

þ4Ar2� 2feBr
2 þfþ1

� �

�feBr
2 �1

�

þfA2 �4A2r4�8Ar2þ1
� ��

�4
ffiffiffi

p
p ffiffiffi

B
p

rðAþBÞeBr2erf
ffiffiffi

B
p

r
� �

2B2ðf�1Þr2 2Ar2þ1
� ��

�B 4A2r4 feBr
2 þ1

� �

þ4Ar2 2feBr
2 þfþ1

� �

�feBr
2 �1

� �

þfA �4A2r4�8Ar2þ1
� ��

�pfðAþBÞ2e2Br2 4A2r4þ8Ar2�1
� �

erf
ffiffiffi

B
p

r
� �2

�

�4p T
1ðDÞ
1 þT

2ðDÞ
2

� �i

;

ð56Þ

s2 ¼ r2

2
� 1

2
e�Br2 ABr6 þ Br4 � A2r6 þ r2

� �

� 2pr2ð1� 2fÞ

þ 2pr4e�Br2 � �B Ar2 þ 1
� �

þ A �4fþ Ar2 þ 4
� ��

þ 1� 2f
r2

�

� 2pr2 þ 2pr4e�Br2 Ar2ðA� BÞ � Bþ 4Aþ 1

r2

� �

þ fpr4

B3=2r3
e�Br2 Ar2 þ 1

� �

�
ffiffiffi

p
p

ðAþ BÞeBr2erf
ffiffiffi

B
p

r
� ��

�2
ffiffiffi

B
p
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� �

�

þ 4pAr4

� Ar2 þ 2
� �

1�
ffiffiffi

p
p

ðAþ BÞerf
ffiffiffi

B
p

r
� �

2B3=2r
þ Ae�Br2

B
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þ 2pBfr4e�Br2

-
�

ffiffiffi

p
p

ðAþ BÞeBr2 2Ar2 þ 1
� �

erf
ffiffiffi

B
p

r
� �n

�2
ffiffiffi

B
p

r B 2Ar2 eBr
2 þ 1

� �

þ 1
� �

þ A 2Ar2 þ 1
� �

� �o

þ e�Br2

r2-2
4Br2 4B3r2eBr

2
�h

fþ 2ðf� 1ÞAr2
� �

� B2 4A2r4 eBr
2 þ 1

� �

f eBr
2 � 1

� �

þ 2
� ��

þ 4Ar2ð2fe2Br2 þ ðfþ 2Þ � eBr
2 þ 2Þ � 2feBr

2

þf� 2Þ � 2AB 4A2r4 feBr
2 þ 1

� �
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2 � 1

�

þ 4Ar2 2feBr
2 þ fþ 1

� ��

þ fA2 �4A2r4 � 8Ar2 þ 1
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� 4B3r2 4A2r4
�
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2 þ 1

� �
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�
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� �
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� ��

� ðf� 1Þ � B 4A2r4 feBr
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� �
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2 � 1

�
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� ��

� pfðAþ BÞ2e2Br2 4A2r4 þ 8Ar2 � 1
� �
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ffiffiffi

B
p

r
� �2

��

þ 4pr4 T
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1 � T

2ðDÞ
2

� �

;

ð57Þ

and the pressure anisotropy is

4380 M Sharif and T Naseer



P̂ ¼ 1

8p
e�Br2
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"
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þ f

4B3=2r3
e�Br2ðAr2 þ 1Þ

ffiffiffi

p
p

ðAþ BÞeBr2erf
ffiffiffi

B
p

r
� ��

�2
ffiffiffi

B
p

r 2ABr2 þ Aþ B
� �

�

þ fA

� Ar2 þ 2
� �

1�
ffiffiffi

p
p

ðAþ BÞerf
ffiffiffi

B
p

r
� �

2B3=2r
þ Ae�Br2

B

 !

þ f
4-

2Be�Ar2 �
ffiffiffi

p
p

ðAþ BÞeBr2 2Ar2 þ 1
� �

erfð
ffiffiffi

B
p

rÞ
�n

�2
ffiffiffi

B
p

r B 2Ar2 eBr
2 þ 1

� �

þ 1
� �

þ A 2Ar2 þ 1
� �

� ��o

þ e�Br2

4r2-2
4Br2 4B3r2eBr

2

fþ 2ðf� 1ÞAr2
� �

�n

� B2ð4A2r4ðeBr2 þ 1ÞðfðeBr2 � 1Þ þ 2Þ

þ 4Ar2 eBr
2ðfþ 2Þ þ 2þ 2fe2Br

2
� �

� 2feBr
2 þ f� 2

�

� 2AB 4A2r4 feBr
2 þ 1

� ��

þ 4Ar2 � 2feBr
2 þ fþ 1

� �

� feBr
2 � 1

�

:

þfA2 �4A2r4 � 8Ar2 þ 1
� ��

� 4
ffiffiffi

p
p

�
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B
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B
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� �
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r
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A 4þ Ar2 � 4f
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þ 1
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1� 2fð Þ

�
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ð58Þ

4.2. Solution II

To determine another solution for the modified field

equations involving anisotropic source, we take density-

like restraint as

~lþ s2

8pr4
� T

0ðDÞ
0 ¼ !0

0: ð59Þ

Combining the field equations (19), (22) and (23) with

Eqs. (43) and (59), we get

l ¼�
Z

beb þ 1� eb
� �

v0ev

f 1� ebð Þ þ eb
dr; ð60Þ

n ¼1� eb; ð61Þ

which can also be written together with Eqs. (35) and (36)

as

l ¼
Z 2r �AeBr

2 þ Aþ B
� �

f eBr2 � 1ð Þ þ 1
dr; ð62Þ

n ¼1� eBr
2

: ð63Þ

Moreover, the matching conditions become for this

solution as

ln 1� 2M

H
þ S2

H2

� �

¼ AH2 þ C

þ f
Z 2r �AeBr

2 þ Aþ B
� �

f eBr2 � 1ð Þ þ 1
dr

2

4

3

5

r¼H

;

ð64Þ

B ¼ � 1

H2
ln 1� 1

1� f
2M

H
� S2

H2

� �	 �

: ð65Þ

Finally, we formulate the charged anisotropic solution

(such as matter variables and anisotropic factor) for

constraints (43) and (59) as

l̂ ¼ 1

16p

	

e�Br2 B 5� 4fð Þ � Ar2 A� Bð Þ � 1

r2
1� 2fð Þ


 �

þ 1

r2
ð1� 2fÞ þ 16pT 0ðDÞ

0 � 8p T
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1 � T

2ðDÞ
2

� �

�

;

ð66Þ

p̂r ¼
1
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e�Br2 A 4þ Ar2
� ��

þB 4f� 1� Ar2
� �
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�
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2

� �

�

;

ð67Þ
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ð68Þ
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4.3. Physical analysis of the developed solutions

The mass of spherically symmetric bodies can be written as

mðrÞ ¼ 4p
Z H

0

r2l̂dr: ð71Þ

We calculate the mass of corresponding geometry (6) by

applying numerical technique on Eq. (71) and use an initial

condition mð0Þ ¼ 0. A self-gravitating system can be

described by its various physical properties, one of them is

the compactness parameter
�

rðrÞ
�

which presents the ratio

of mass and radius of that system. The maximum value of

parameter rðrÞ was found by Buchdahl [[68]] by calcu-

lating the matching conditions of corresponding inner and

outer geometries at the hypersurface. He observed that this

limit should not be greater than 4
9

for the case of

stable configuration. A celestial structure having a robust

gravitational pull diffuses electromagnetic radiations due to

some reactions occurring in the core of that body. The

wavelength of such radiations increases with time and this

can be computed by a redshift parameter
�

DðrÞ
�

. It is

characterized as DðrÞ ¼ 1
ffiffiffiffiffiffiffiffi

1�2r
p � 1. Buchdahl restricted its

value as DðrÞ\2 for ideal stable configuration, while it

was observed to be 5.211 for the case of matter distribution

involving pressure anisotropy [[69]].

Another phenomenon of great importance in astro-

physics is the energy conditions. The agreement with such

constraints guarantees the presence of usual matter as well
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as viable solutions. The matter variables which represent

the interior configuration of a compact object (involving

ordinary matter) must satisfy these bounds. The energy

conditions are classified into four types which take the

form in f ðR; T ;QÞ gravitational theory as

l̂þ s2

8pr4
� 0; l̂þ p̂r � 0;

l̂þ p̂? þ s2

4pr4
� 0; l̂� p̂r þ

s2

4pr4
� 0;

l̂� p̂? � 0; l̂þ p̂r þ 2p̂? þ s2

4pr4
� 0:

ð72Þ

The stability of cosmological solutions plays a crucial role

in the field of astrophysics to check their feasibility. In this

regard, we utilize two different approaches to investigate

the regions in inner space-time where both of the obtained

solutions are stable. Firstly, we employ causality condition

[[70]] which declares that the squared sound speed should

be within (0, 1), i.e., 0\v2s\1. The Herrera’s cracking

approach states that absolute value of the difference

between squared sound speeds in both tangential ðv2s? ¼
dp̂?
dl̂ Þ and radial directions ðv2sr ¼

dp̂r
dl̂ Þ should be less than 1

for the case of stable anisotropic configuration [[71]].

Mathematically, the compact object is stable if 0\ j
v2s? � v2sr j \1 holds. Another key factor which is used to

determine the stability of compact geometry is the

adiabatic index ðKÞ. An astronomical object is stable in

the domain where the index ðKÞ gains its value greater than
4
3
[[72]–[74]]. For this gravity, K is defined as

K̂ ¼ l̂þ p̂r
p̂r

dp̂r
dl̂

� �

: ð73Þ

The f ðR; T ;QÞ theory comprises the complicated

equations of motion due to the factor Q ¼ RknT
kn.

Therefore for our convenience, we choose a linear model

[[16]] to explore physical features of the developed

solutions by taking arbitrary values of constant . as

f ðR; T ;RknT
knÞ ¼ Rþ .RknT

kn: ð74Þ

The contraction of energy-momentum tensor with the Ricci

tensor in the above model ensures that massive test parti-

cles in the gravitational field of self-gravitating model still

entails the effects of non-minimal matter-geometry inter-

action. Here, the value of . can be negative or positive. The
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Fig. 1 Plots of mass (in km) (a), compactness (b) and redshift (c) parameters corresponding to S ¼ 0:1; f ¼ 0:5 (pink), f ¼ 0:9 (green) and

S ¼ 0:8; f ¼ 0:5 (red), f ¼ 0:9 (black) for solution-I
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positive values of this arbitrary constant provide unac-

ceptable behavior of the matter variables such as energy

density and radial/tangential pressures corresponding to

both the obtained solutions, as their values appear in neg-

ative range. Consequently, the solutions are no more viable

as well as stable. Thus, we have the only choice for its

negative values. First, we check the physical behavior of

solution-I for . ¼ �0:1 and the constant B defined in

Eq. (53). The other two constants A and C are shown in

Eqs. (40) and (42). We plot the graphs for mass, com-

pactness and redshift of compact sphere (6) corresponding

to the decoupling parameter f ¼ 0:5 and 0.9 in Fig. 1. The

mass shows increasing behavior with rise in f while charge
decreases its value linearly. The particular values of f as

well as charge confirm the compactness and redshift factors

within their required limits, as shown in Fig. 1(b), (c).

The values of material variables (pressure and energy

density) for feasible structures should be maximum, posi-

tive and finite at the center while they show decreasing

behavior towards the boundary of a star. Figure 2(a) indi-

cates the maximum value of energy density in the middle,

whereas it shows decreasing behavior with the increment in

r as well as charge. Also, the behavior of effective energy

density is monotonically rising as the decoupling parameter

enhances which represents the more dense star for larger

values of f. Figure 2 displays that the plots of radial and

tangential pressures show similar pattern for the parameter

.. Both graphs demonstrate the decrement with rise in all

factors such as r, f and charge. The anisotropy P̂ disap-

pears throughout the region for the decoupling parameter

f ¼ 0 and enhances as f increases which confirms that the

additional source produces stronger anisotropy in the sys-

tem. Evaluating the fundamental features of a self-gravi-

tating star graphically by choosing different values of the

coupling constant ., we deduce that very small negative

values of . provide the suitable behavior of physical

variables. All energy conditions (72) corresponding to

solution-I are satisfied, hence it is physically viable as

illustrated in Fig. 3. Figure 4 guarantees the stability of

solution-I for different considered values of charge and the

decoupling parameter. From Fig. 4(a), we find that the

Fig. 2 Plots of energy density

(in km�2) (a), radial pressure (in

km�2) (b), tangential pressure

(in km�2) (c) and anisotropy (in

km�2) (d) versus r and f with

S ¼ 0:1 (blue), S ¼ 0:8 (red),

M ¼ 1MJ and H ¼
ð0:2Þ�1MJ for solution-I
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system becomes less stable with increment in charge near

the boundary.

We now examine the feasibility of the obtained solution-

II for . ¼ �0:05. Equations (40) and (65) depict the con-

stants A and B. We analyze the mass of geometry (6) for

two values of the decoupling parameter f ¼ 0:1 and

f ¼ 0:25, as given in Fig. 5(a). It is found that the mass

increases with increasing f, while the higher value of

charge yields decreasing behavior. Figure 5(b), (c) also

shows that the compactness ðrðrÞÞ and redshift (D(r)) meet

their required criteria for both values of charge. Figure 6

illustrates the physical behavior of different substantial

variables as well as anisotropic factor. The effective energy

density and both components of effective pressure show the

Fig. 3 Plots of energy

conditions (in km�2) versus r
and f with S ¼ 0:1 (blue), S ¼
0:8 (red), M ¼ 1MJ and H ¼
ð0:2Þ�1MJ for solution-I (a–f)
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same behavior as for the solution-I for particular values of

charge and f. In the absence of f, anisotropy does not

appear in the whole domain, while it increases with

increase in f, as shown in Fig. 6(d). Figure 7 guarantees

the viability of our second solution as all energy conditions

(72) are fulfilled. Figure 8 confirms the stability of solu-

tion-II for particular values of the parameter f. It is noted
from Fig. 8(a) that increment in charge leads to the less

stable system for larger values of f near the boundary.

Fig. 4 Plots of jv2s? � v2srj (a)
and adiabatic index (b) versus r
and f with S ¼ 0:1 (blue), S ¼
0:8 (red), M ¼ 1MJ and H ¼
ð0:2Þ�1MJ for solution-I
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Fig. 5 Plots of mass (in km) (a), compactness (b) and redshift (c) parameters corresponding to S ¼ 0:1; f ¼ 0:1 (pink), f ¼ 0:25 (green) and

S ¼ 0:8; f ¼ 0:1 (red), f ¼ 0:25 (black) for solution-II
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5. Conclusions

This paper aims to investigate various anisotropic solutions

for a compact spherically symmetric geometry (6) with the

help of EGD strategy. For this analysis, we take a linear

model Rþ .Q in f ðR; T ;QÞ gravitational theory. The

corresponding field equations have been developed and

further split into two sets through the deformation func-

tions. The first set represents an isotropic configuration, for

which we have taken the isotropic Krori-Barua ansatz in

this theory. The unknowns A, B and C are computed using

the matching conditions. To work out the second sector

(22)–(24) involving five unknowns, we have used two

constraints to make the system definite. The first one is the

equation of state !0
0 ¼ s!1

1 þ t!2
2, where s and t are kept

fixed, while the other is taken as pressure-like or density-

like, leading to solutions-I and II, respectively.

To inspect the influence of the decoupling parameter as

well as charge on the obtained solutions, we have discussed

the graphical behavior of effective material variables

ðl̂; p̂r; p̂?Þ, pressure anisotropy ðP̂Þ and energy conditions

(72) for . ¼ �0:1 and �0:05. The redshift and

compactness factors have also been found within their

respective bounds. The compact geometry (6) becomes

more massive with the increment of the decoupling

parameter f for the both solutions, whereas the structure

becomes less dense by increasing charge. We have utilized

two different approaches to analyze the stability of these

solutions. It is found that both solutions provide viable as

well as stable geometry for particular values of f and

charge. It is worthwhile to mention here that solution-I

remains stable for the considered values of charge and f,
whereas solution-II becomes less stable with the increment

in both these quantities near the boundary. However, the

large values of charge may yield unstable system analo-

gous to the first solution. We would like to mention here

that this technique provides unstable solution correspond-

ing to the density-like constraint in GR [[59], [60]] as well

as f ðGÞ theory [[61]]. However, our resulting solutions

show physically stable behavior even for larger values of f.
Moreover, the anisotropy does not vanish at the center in

GR unlike f ðR; T ;QÞ framework. Thus we conclude that

this modified gravity produces more suitable results. It can

be said that extra force existing in f ðR; T ;QÞ theory could

Fig. 6 Plots of energy density

(in km�2) (a), radial pressure (in

km�2) (b), tangential pressure

(in km�2) (c) and anisotropy (in

km�2) (d) versus r and f with

S ¼ 0:1 (blue), S ¼ 0:8 (red),

M ¼ 1MJ and H ¼
ð0:2Þ�1MJ for solution-II
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be the reason that offers differences of the consequences in

this gravity from those in GR and other modified theories.

Finally, for . ¼ 0, all our results reduce to GR.

Appendix

The modified matter components appearing in the field

equations (10)–(12) are given as

Fig. 7 Plots of energy

conditions (in km�2) versus r
and f with S ¼ 0:1 (blue), S ¼
0:8 (red), M ¼ 1MJ and H ¼
ð0:2Þ�1MJ for solution-II (a–

f)

Fig. 8 Plots of jv2s? � v2sr j (a) and adiabatic index (b) versus r and f

with S ¼ 0:1 (blue), S ¼ 0:8 (red), M ¼ 1MJ and H ¼
ð0:2Þ�1MJ for solution-II
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The term X in Eq. (14) which occurs due to modified

gravity is

X ¼ 2

RfQ þ 2ð8pþ fT Þð Þ f 0Qe
�b p� q2

8pr4

� �	

1
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� eb
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