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Abstract: We state three different familiar definitions of electromagnetic field tensor in curvilinear coordinates and curved

spacetimes, and we show the relation between these definitions. As two explicit examples, we give expressions for the

electromagnetic field tensor and electromagnetic field equations for a general comoving observer in the Schwarzschild and

Kerr backgrounds in terms of noncoordinate components of fields. We show that ignoring differentiation between coor-

dinate and noncoordinate bases could lead to inconsistent and confusing results. Finally, because of its practical aspects, we

obtain the electromagnetic field tensor and field equations in terms of noncoordinate components in the spacetime of a

Galilean rotating observer.
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1. Introduction

In the presence of gravitational fields, as well as in non-

inertial reference frames, one should find and employ the

electromagnetic field tensor, the Maxwell equations, and

constitutive equations in a curved spacetime or a curved

3-space with the corresponding line element expressed in a

curvilinear coordinate system adapted to its symmetries

[1–3]. An example that clearly demonstrates such a

necessity is to obtain the electromagnetic field tensor and

the Maxwell equations in a rotating frame. [4–11]. To

encounter this problem, one needs to specify what is meant

by space and spatial metric in a curved spacetime or a

spatially non-Euclidean flat spacetime. When dealing with

stationary spacetimes such as the spacetime of a rotating

source, the decomposition of the line element into spatial

and temporal sections is not a trivial task, and one has to

choose a decomposition formalism. Here, we show how the

electromagnetic field equations defined by this decompo-

sition are consistent with those based on coordinate and

non-coordinate bases in a 4-dimensional treatment

In this paper, we will express our final results in terms of

the noncoordinate components of the fields. We remind

that noncoordinate (physical) components of tensors are

the component values that can be measured by experiment

with standard physical instruments. But coordinate com-

ponents are used in tensor analysis in a coordinate system

and vary with the coordinate chosen. For the particular case

where our metric is Minkowski metric in Cartesian coor-

dinates, these components are the same, i.e. coordinate

components equal the physical components we measure.

But in other cases, we need to know how to find physical

components from coordinate components. Hence, calcu-

lating physical components from coordinate components is

essential for comparing experiments with theory. Of

course, we know invariant quantities are the same for any

coordinate system. They are not components of tensors,

and they are equivalent to physically measured values

[12–14].

The familiar covariant forms of electromagnetic field

equations in curved spacetime are given by

1
ffiffiffiffiffiffiffi�g

p olð
ffiffiffiffiffiffiffi�g

p
FlmÞ ¼ jm; Flm;k þ Fmk;l þ Fkl;m ¼ 0 ð1Þ

These equations are usable in a coordinate basis

(‘‘Appendix A’’). To have the explicit form of

electromagnetic field equations, we should write the

electromagnetic field tensor in a coordinate system and

then insert the result in(1). But we usually encounter

electromagnetic field tensor in flat spacetime in Cartesian

coordinate, which is given by
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F0i ¼ �Ei; Fij ¼ �ijkBk ð2Þ

and the explicit forms of electromagnetic tensor and field

equations in curved spacetimes or even in curvilinear

coordinates in flat spacetimes are less familiar. For exam-

ple, if we want to obtain electromagnetic field equations in

cylindrical coordinates in flat spacetime or Schwarzschild

spacetime, a more general definition than (2) is needed. In

these coordinates and spacetimes, unlike Cartesian coor-

dinate in flat spacetime, the coordinate and non-coordinate

components of electromagnetic field tensor are not the

same. We need to have a general definition in the coordi-

nate basis to use (1). But there are different definitions of

electromagnetic field tensor in curved spacetime in the

literature. The relationship between these definitions is

usually unclear, and each leads to different field equations.

Moreover, the distinction between coordinate and non-co-

ordinate components of the field is essential, and ignoring

it leads to some confusion. Sometimes we encounter dif-

ferent field tensor and field equations for an observer. For

example, in the case of the Galilean rotating observer,

which is more interested, electromagnetic field tensor and

equations are given in different forms in [15, 16, 18],

without mentioning the relation between them or explain-

ing differences. Here, we will show that these definitions

can have the same explicit form for general comoving

observers if we state them in terms of non-coordinate basis

components of fields. In addition, in some cases, there are

errors in the final form of the equations relating to the

Galilean rotating observer. We will present the explicit

form of these equations in Sect. 4.

In summary, this article is written for the following

purposes:

1. In this paper, three different definitions of field ten-

sors are expressed together, and the relationship between

them is explained. Usually, only one of these definitions is

used in the literature, and the relationship between them is

unclear.

2. The relationship between the noncoordinate (physi-

cal) and coordinate components of electromagnetic fields is

considered, and all final results are expressed in terms of

physical components. In some papers, the relationship

between coordinate and noncoordinate components of

electromagnetic field is unclear. Sometimes the noncoor-

dinate form of electromagnetic field tensor is used in a

coordinate analysis, which is ambiguous. Some articles in

electrical engineering use Landau formalism for electro-

magnetic field tensor and field equations. Although the

determination of noncoordinate components is vital in this

area, the relationship between field components in Landau

formalism and noncoordinate components is not specified

in these articles.

3. In this paper, the electromagnetic field equations in

Schwarzschild and Kerr spacetimes, as well as in the

rotating observer spacetime, are explicitly expressed in

terms of noncoordinate components of electromagnetic

field. In previous papers, these results are usually expressed

in terms of coordinate components.

4. It is a straightforward translation among different

conventions. It would be helpful for a student trying to use

sources with different conventions.

The plan of the paper is as follows. In the next section,

we review three definitions of electromagnetic field tensor

in curvilinear coordinates and curved spacetimes in the

literature. In Sect. 3, we show the relation between these

definitions. As explicit examples, we give expressions for

the electromagnetic field tensor and Maxwell equations for

the general comoving observer in the Schwarzschild and

Kerr backgrounds in terms of noncoordinate components of

fields. We show that these results are the same as those

obtained using coordinate tetrad or vielbein. We also

explain the relationship between the components of the

field in Landau formalism and the noncoordinate compo-

nents of the field. In Sect. 4, we obtain the electromagnetic

field tensor and field equations in terms of non-coordinate

components in the spacetime of a Galilean rotating obser-

ver. In the final section, we will present a summary of the

discussion.

2. Three definitions of electromagnetic field tensor

We can find three definitions for electromagnetic field

tensor in the literature. Here we outline them:

Definition 1 Using the relation between the tensor com-

ponents in the coordinate and noncoordinate bases via the

properties of coordinate tetrad [15, 19];

First, the noncoordinate field tensor is defined as

Fð0iÞ ¼ �EðiÞ; FðijÞ ¼ �ijkBðkÞ ð3Þ

then the coordinate field tensor is obtained using the

relation between the components of tensor in the

coordinate and noncoordinate bases

Flm ¼ hl
ðaÞh

m
ðbÞF

ðabÞ ð4aÞ

Flm ¼ h ðaÞ
l h ðbÞ

m FðabÞ ð4bÞ

in which h
ðaÞ
l (with mixed indices) are called coordinate

tetrad or vielbein and their inverse denoted by h l
ðaÞ. These

tetrads can be obtained from the metric (see ‘‘Appendix

A’’). The advantage of this definition is that its final form is

expressed in terms of non-coordinate (physical [20])

components of fields.
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Definition 2 The electromagnetic field tensor in 1?3

formalism [21, 22];

From theories of relativity, both special and general, we

know that physical phenomena happen in an arena called

spacetime, a new entity that was introduced by fusing the

concepts of space and time. But when it comes to the

measurements of these phenomena, it is their spatial and

temporal characters which are being analyzed. So a

decomposition of spacetime into space and time is a

necessity if we are going to measure 3-dimensional

quantities such as spatial distances and velocities. There

are two well known formalisms called 3þ 1 or foliation

decomposition and 1þ 3 or threading decomposition.

Here, we are interested in the second approach to obtain

electromagnetic field tensor and field equations. Ellis [22]

formulate the electromagnetic field tensor in curved

spacetimes based on the 4-velocity of a timelike observer.

It is also called field tensor relative to a fundamental

observer [23] and is given by

Flm ¼ ulEm � umEl þ glmabuaBb ð5Þ

in which ua is a timelike tangent vector not necessarily

orthogonal to the surface of constant time, and the 1?3

splitting is made relative to it. The projection tensor h,

projecting into the three-dimensional tangent plane

orthogonal to ua, is given by

hlm ¼ glm � ulum ð6Þ

and E and B are defined to be orthogonal to ua.

Definition 3 Landau definition;

Landau and Lifshitz [24] in their very physical approach

to spacetime decomposition, which among other things

enables one to express Einstein field equations in the so-

called quasi-Maxwell form in the context of the so-called

gravitoelectromagnetism [25], introduce a three-dimen-

sional form of Maxwell equations and an alternative form

for the electromagnetic field tensor in stationary space-

times. Their definitions, which are seemingly ad hoc, are as

follows,

ELi ¼ F0i; DL
i ¼ � ffiffiffiffiffiffi

g00
p

F0i; Bij ¼ Fij;

Hij ¼ ffiffiffiffiffiffi

g00

p
Fij

BL
i ¼ � 1

2
ffiffiffi

c
p �ijkBjk;

HLi ¼ � 1

2

ffiffiffi

c
p

�ijkHjk ði; j; k ¼ 1; 2; 3Þ

ð7Þ

in which EL and BL are vectors in three-dimensional space,

and the index L refers to Landau definition. Although we

sometimes refer to this definition as 1?3 definition, there

are some differences between this definition and definition

2 that we will mention later. The electromagnetic field

tensor in Landau definition can be written as

Flm ¼

0 � EL1 � EL2 � EL3

EL1 0
ffiffiffi

c
p

B3
L � ffiffiffi

c
p

B2
L

EL2 � ffiffiffi

c
p

B3
L 0

ffiffiffi

c
p

B1
L

EL3
ffiffiffi

c
p

B2
L � ffiffiffi

c
p

B1
L 0

0

B

B

B

@

1

C

C

C

A

ð8Þ

Substituting this definition into (1), we will have usual

three-dimensional form of Maxwell equations

divB ¼ 0; curlE ¼ � 1
ffiffiffi

c
p

o

ot
ð ffiffiffi

c
p

BÞ

divD ¼ 0; curlH ¼ 1
ffiffiffi

c
p

o

ot
ð ffiffiffi

c
p

DÞ:
ð9Þ

in which div and curl are three-dimensional operators and c
is space metric were defined in ‘‘Appendix B’’. For

example divD ¼ 0 and (81) give

o

oxi
ð ffiffiffi

c
p

DiÞ ¼ 0 ð10Þ

and substituting Di ¼ � ffiffiffiffiffiffi

g00
p

F0i and (82) in (10), one ends

up with the same equation obtained from(1) and (8) for

m ¼ 0. It seems that obtaining this three-dimensional form

provided the motivation for Landau to define such a dif-

ferent definition of electromagnetic tensor.

These definitions have been used and have led to

different explicit forms for electromagnetic tensor and

electromagnetic field equations. For example, in [15]

(using the first definition) and [16] (using third definition),

we find two different forms for the electromagnetic tensor

in the spacetime correspond to a rotating observer who uses

Galilean rotational transformation. But the relationship

between these two forms is unclear. We will show the

relationship between them as well as the final corrected

forms in Sect. 4.

As mentioned in [26], the covariant form of Maxwell’s

equations does not uniquely determine the three-vector

explicit forms of electromagnetic tensor and field equations

in curved spacetimes or accelerated frames. So there are

few applications of these three-vector formulations. How-

ever, some applications of this formalism have been

discussed by some authors. In [27], using definition 1,

the electrostatic field of a point charge at rest in the

Schwarzschild metric is given in algebraic form, and the

magnetostatic field of a current loop surrounding a black

hole is given in the integral form. In [28], a procedure for

calculating the Debye potential corresponding to a station-

ary axisymmetric distribution of charges and currents in the

Kerr metric is given. In [29], using definition 2, the authors

derive the equations of motion of charged particles around

The relation between different definitions of electromagnetic field tensor and Maxwell’s equations 4349



a magnetized rotating star. In [30], using definition 2,

Rezzolla et al. present analytic solutions of Maxwell

equations in the internal and external background space-

time of a slowly rotating magnetized neutron star.

The most obvious application of these definitions is in

electrodynamics of accelerated media. Electrical engineers

are often confronted with configurations involving rotating

bodies, and the solution of electromagnetic problems

involving rotating bodies is of fundamental importance

for those concerned with rotating machinery [17]. For

example in [16], using definition 3, Bladel illustrates the

solution of Maxwell’s equations by evaluating the fields

scattered by a rotating cylinder. In [15], using definition 1,

a plane wave scattered by a rotating sphere is solved in the

laboratory frame.

3. The relation between different definitions

of electromagnetic field tensor

First, to distinguish physical quantities from coordinate

quantities, it is necessary to express the final form of the

field tensor and field equations in terms of noncoordinate

components of fields. So the noncoordinate definition (3) is

our basic definition, and all other definitions are expressed

in terms of its components. In the first definition, the final

form is expressed in terms of noncoordinate components of

fields. But in the second and third definitions, the compo-

nents of fields are not noncoordinate components. So to be

able to compare the final forms, we have to express all the

components of the field in terms of non-coordinate

components.

3.1. The relation between definitions 1 and 2

Definition 2 depends on the timelike tangent vector ul. In

general, if we choose the timelike tangent vector ul in the

second definition as the timelike basis vector h
ð0Þ
l of tetrad

in the first definition (Or equivalently ul as inverse timelike

basis vector hl
ð0Þ), then the electromagnetic field tensor

obtained from the two methods will have the same explicit

form. In other words, in the first definition we set h l
ð0Þ ¼ ul

and then we define the three spacelike unit vectors upon it.

We will then see that the results obtained from the two

definitions are exactly the same. This is because in Ellis

formalism, the velocity ul on which the decomposition is

performed acts as a timelike tetrad vector. If we use the

general comoving observer velocity in definition 2, the

tetrad based on which it is made is the same as the coor-

dinate tetrad (vielbein) obtained directly from the metric

according to the relations (46). Therefore, if we use the

general comoving observer velocity in definition 2 and the

coordinate tetrad in definition 1, the results of the two

approaches will be the same. This similarity arises from the

properties of the general comoving observer. It can be said

that the metric of a curved spactime (such as Schwarzschild

spacetime) is written from the point of view of the general

comoving observer. Therefore, the results obtained for field

tensor from the point of view of a general comoving

observer based on Ellis’s formalism are the same as those

obtained by the first definition with the help of coordinate

tetrad.

As important examples, we obtain the electromagnetic

field tensor for the general comoving observer in the

Schwarzschild and Kerr backgrounds. In [30] another

example for zero angular momentum observers (ZAMO) in

a slow rotation metric is given by some approximations.

The velocity of the general comoving observer is given

by

ul ¼ ð1= ffiffiffiffiffiffi

g00
p

; 0; 0; 0Þ ð11Þ

and the Schwarzschild metric in spherical coordinates

ðt; r; h;/Þ is given by

ds2¼ 1�2m

r

� �

dt2� 1�2m

r

� ��1

dr2� r2dh2� r2sin2hd/2

ð12Þ

Using equations (51) and choosing the general comoving

observer velocity (11) as hl
ð0Þ, the coordinate tetrad for this

metric is obtained as follows (As we mentioned before,

these tetrads can be obtained directly from the metric (12)

according to the relations (46))

h ðaÞ
l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2m
r

q

0 0 0

0 1
ffiffiffiffiffiffiffiffi

1�2m
r

p 0 0

0 0 r 0

0 0 0 rsin h

0

B

B

B

B

B

@

1

C

C

C

C

C

A

h l
ðaÞ ¼

1
ffiffiffiffiffiffiffiffi

1�2m
r

p 0 0 0

0
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2m
r

q

0 0

0 0 1
r 0

0 0 0 1
rsin h

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A

ð13Þ

The electromagnetic tensor in a general noncoordinate

basis is given by equation (3). To transform it into

spherical coordinates, we choose

q0 ¼ t; q1 ¼ r q2 ¼ h; q3 ¼ /; ð14Þ

so that
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Eð1Þ ¼ Er; Eð2Þ ¼ Eh; Eð3Þ ¼ E/: ð15Þ

then using (4a) and (4b), the electromagnetic field tensor in

a Schwarzschild background is given by

Flm ¼

0 Er
Eh

r
ffiffiffiffiffiffiffiffi

1�2m
r

p E/

rsin h
ffiffiffiffiffiffiffiffi

1�2m
r

p

�Er 0
B/

ffiffiffiffiffiffiffiffi

1�2m
r

p
r

�Bh

ffiffiffiffiffiffiffiffi

1�2m
r

p
rsin h

� Eh

r
ffiffiffiffiffiffiffiffi

1�2m
r

p �B/

ffiffiffiffiffiffiffiffi

1�2m
r

p
r 0 Br

r2 sin h

�E/

rsin h
ffiffiffiffiffiffiffiffi

1�2m
r

p Bh

ffiffiffiffiffiffiffiffi

1�2m
r

p
rsin h

�Br

r2sinh 0

0

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

A

ð16Þ

Flm¼

0 �Er �r
ffiffiffiffiffiffiffiffiffiffiffiffi

1�2m
r

q

Eh �rsinh
ffiffiffiffiffiffiffiffiffiffiffiffi

1�2m
r

q

E/

Er 0
rB/
ffiffiffiffiffiffiffiffi

1�2m
r

p � rsinhBh
ffiffiffiffiffiffiffiffi

1�2m
r

p

r
ffiffiffiffiffiffiffiffiffiffiffiffi

1�2m
r

q

Eh
�rB/
ffiffiffiffiffiffiffiffi

1�2m
r

p 0 r2 sinhBr

rsinh
ffiffiffiffiffiffiffiffiffiffiffiffi

1�2m
r

q

E/
rsinhBh
ffiffiffiffiffiffiffiffi

1�2m
r

p �r2 sinhBr 0

0

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

A

ð17Þ

On the other hand for general comoving observe by (5),

(11) and (12) we have

F0i ¼
ffiffiffiffiffiffi

g00

p
Ei; Fij ¼

ffiffiffi

c
p

�ij0kBk ð18Þ

in which g00c ¼ g and

glmab ¼ ffiffiffiffiffiffiffi�g
p

�lmab ð19Þ

But the field components in (5) are not noncoordinate

components, and we can write them in terms of

noncoordinate components as below

Ei ¼ h
ðaÞ
i EðaÞ; Bi ¼ hi

ðaÞB
ðaÞ ð20Þ

Then we can see that the field tensor is the same as (17). As

an example

F12 ¼
ffiffiffi

c
p

B3 ¼ ffiffiffi

c
p

h3
ð3ÞB

ð3Þ ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2m
r

q Bu
ð21Þ

Now we obtain the electromagnetic field equations. By

working on a coordinate basis, that is, using equations (1)

and (16), we have the following vacuum electromagnetic

field equations in the Schwarzschild metric

sin h orðr2ErÞ þ
r
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2m
r

q ohðsin hEhÞ þ
r
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2m
r

q o/E/ ¼ 0

ð22aÞ

r sin h otEr �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2m

r

r

ohðsin hB/Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2m

r

r

o/Bh ¼ 0

ð22bÞ

r sin h
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2m
r

q otEh þ sin h or r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2m

r

r

B/

 !

� o/Br ¼ 0

ð22cÞ

r
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2m
r

q otE/ � or r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2m

r

r

Bh

 !

þ ohBr ¼ 0 ð22dÞ

for m ¼ 0; 1; 2; 3, respectively. For the source free

equations by using (1) and (17) we have

sin horðr2BrÞ þ
r
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2m
r

q ohðsin hBhÞ þ
r
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2m
r

q o/B/ ¼ 0

ð23aÞ

r sin h otBr þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2m

r

r

ohðsin hE/Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2m

r

r

o/Eh ¼ 0

ð23bÞ

r sin h
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2m
r

q otBh � sin h or r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2m

r

r

E/

 !

� o/Er ¼ 0

ð23cÞ

r
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2m
r

q otB/ þ or r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2m

r

r

Eh

 !

� ohEr ¼ 0 ð23dÞ

It can easily be seen that by setting m ¼ 0, all the equa-

tions reduce to those expected in flat spacetime in spherical

coordinates. Ignoring the difference between coordinate

and noncoordinate bases has led to confusing expressions

in the literature. As an example, in [27], without men-

tioning that equations (1) are expressed in a coordinate

basis, the definition of the field tensor in a non-coordinate

basis has been used to obtain the electromagnetic field

equations in the Schwarzschild background. Therefore, the

results presented for the field equations there (relations 7

and 11 in [27]) are not the same as Equations (22) and (23)

here.

Now we check our idea for another example. The weak

field, slow rotation limit of the Kerr metric representing the

spacetime of a spherically symmetric rotating mass m with

angular momentum per unit mass a in spherical (Sch-

warzschild-type) coordinates is given by,

ds2 ¼ 1� 2m

r

� �

dt2 � 1þ 2m

r

� �

½dr2 þ r2ðdh2 þ sin2 hd/2Þ�

þ 4ma

r
sinðhÞ2d/dt

ð24Þ

Again we choose the general comoving observer velocity

(11) as h l
ð0Þ and so we have
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h � h ðaÞ
l

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2m
r

q

0 0 0

0
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2m
r

q

0 0

0 0 r
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2m
r

q

0

2am sin2ðhÞ
r
ffiffiffiffiffiffiffiffi

1�2m
r

p 0 0 r sinðhÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r4�4r2m2þ4m2a2 sin2ðhÞ
r3ðr�2mÞ

q

0

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

A

ð25aÞ
h�1 � h l

ðaÞ

¼

1
ffiffiffiffiffiffiffiffi

1�2m
r

p 0 0 0

0 1
ffiffiffiffiffiffiffiffi

1þ2m
r

p 0 0

0 0 1

r
ffiffiffiffiffiffiffiffi

1þ2m
r

p 0

�2am sinðhÞ

rðr�2mÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r4�4r2m2þ4m2a2 sin2ðhÞ
r3ðr�2mÞ

q 0 0 1

r sinðhÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r4�4r2m2þ4m2a2 sin2ðhÞ
r3ðr�2mÞ

q

0

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

A

ð25bÞ

and the electromagnetic field tensor in this background,

using Flm ¼ h�1T
FðabÞh�1, is given by

F01 ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4m2

r2

q Er

� 2am sinðhÞ

r2 1� 2m
r

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2m
r

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r4�4r2m2þ4m2a2 sin2ðhÞ
r3ðr�2mÞ

q Bh

F02 ¼ 1

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4m2

r2

q Eh

þ 2am sinðhÞ

r3 1� 2m
r

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2m
r

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r4�4r2m2þ4m2a2 sin2ðhÞ
r3ðr�2mÞ

q Br

F03 ¼ 1

sinðhÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2m
r

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r4�4r2m2þ4m2a2 sin2ðhÞ
r3ðr�2mÞ

q E/;

F12 ¼ 1

rð1þ 2m
r Þ

B/

F13 ¼� 1

r sinðhÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2m
r

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r4�4r2m2þ4m2a2 sin2ðhÞ
r3ðr�2mÞ

q Bh

F23 ¼ 1

r2 sinðhÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2m
r

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r4�4r2m2þ4m2a2 sin2ðhÞ
r3ðr�2mÞ

q Br

ð26Þ

and

F01 ¼�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4m2

r2

r

Er; F02 ¼�r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4m2

r2

r

Eh

F03 ¼� r sinðhÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2m

r

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r4 � 4r2m2 þ 4m2a2 sin2ðhÞ
r3ðr � 2mÞ

s

E/;

F12 ¼r 1þ 2m

r

� �

B/

F13 ¼
2am sin2ðhÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4m2

r2

q

r � 2m
Er

� r sinðhÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2m

r

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r4 � 4r2m2 þ 4m2a2 sin2ðhÞ
r3ðr � 2mÞ

s

Bh

F23 ¼
2amr sin2ðhÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4m2

r2

q

r � 2m
Eh

þ r2 sinðhÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2m

r

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r4 � 4r2m2 þ 4m2a2 sin2ðhÞ
r3ðr � 2mÞ

s

Br

ð27Þ

On the other hand, for general comoving observe in this

stationary spacetime, we have

ul ¼ gl0
ffiffiffiffiffiffi

g00
p ð28Þ

by substituting this in (5) and using (24), we repeat what

was done for the Schwarzschild metric, and we can again

see that definition 2 leads to the same result as definition 1

for the electromagnetic field tensor in Kerr background.

Here we obtain two components of field tensor by

definition 2:

F02 ¼u0E2 ¼ u0h
ð2Þ
2 Eð2Þ ¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4m2

r2

r

Eh

F13 ¼� u3E1 þ g1302u0B2 ¼ �u3h
ð1Þ
1 Eð1Þ þ

ffiffiffi

c
p

h2
ð2ÞB

ð2Þ

¼
2am sin2ðhÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4m2

r2

q

r � 2m
Er

� r sinðhÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2m

r

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r4 � 4r2m2 þ 4m2a2 sin2ðhÞ
r3ðr � 2mÞ

s

Bh

ð29Þ

Electromagnetic field equations in Kerr background can

also be obtained using (1), (26) and (27). For example

setting m ¼ 0 in the left hand side of equation (1) gives
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or �
ð1þ2m

r ÞsinðhÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r4�4r2m2þ4m2a2 sin2ðhÞ
q

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1�4m2

r2

q Er

2

6

4

þ2amsin2ðhÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

rþ2m

r�2m

r

Bh

#

þoh �
ð1þ2m

r ÞsinðhÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r4�4r2m2þ4m2a2 sin2ðhÞ
q

r
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1�4m2

r2

q Eh

2

6

4

�2amsin2ðhÞ
r

ffiffiffiffiffiffiffiffiffiffiffiffiffi

rþ2m

r�2m

r

Br

#

þo/ r2ð1þ2m

r
ÞE/

� �

¼0

ð30Þ

in the vacuum. And setting l;m;k¼1;2;3 in the right-hand

side of equation (1), we have

or

2amr sin2ðhÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4m2

r2

q

r � 2m
Eh

2

4

þr2 sinðhÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2m

r

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r4 � 4r2m2 þ 4m2a2 sin2ðhÞ
r3ðr � 2mÞ

s

Br

3

5

� oh
2am sin2ðhÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4m2

r2

q

r � 2m
Er

2

4

�r sinðhÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2m

r

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r4 � 4r2m2 þ 4m2a2 sin2ðhÞ
r3ðr � 2mÞ

s

Bh

3

5

þ o/ r 1þ 2m

r

� �

B/

� �

¼ 0

ð31Þ

Again it can be easily seen that if we set m ¼ 0, all the

equations reduce to those expected in flat spacetime in

spherical coordinates.

3.2. The relation between definitions 2 and 3

Landau and Lifshitz introduce the definitions of the elec-

tromagnetic field in a curved background in terms of a field

tensor without referring to a specified frame. In this sub-

section, we show how their definitions are related to those

given by Ellis [22] in terms of the 4-velocity of a timelike

observer in its comoving frame. Definitions 2 and 3 are

both based on 1?3 decomposition. In [22] an approach to

this decomposition is given that focuses on applications of

the 1 ? 3 decomposition in relativistic cosmology. We

refer to it as Ellis formalism. Another approach that we

refer to as Landau formalism has been discussed in

‘‘Appendix B’’. It is easy to show that if we use Ellis

formalism for general comoving observers, then we will

have Landau formalism. If we substitute the velocity of the

general comoving observer (11) into projecting tensor (6),

we obtain the spatial tensor introduced by Landau

c00 ¼ 0; c0i ¼ 0; cij ¼ gij þ
g0ig0j

g00
ð32Þ

So we can say that Landau formalism is a special case of a

general definition in Ellis formalism. But the interesting

point is that by substituting the general comoving observer

velocity in definition(5), the Landau definition for elec-

tromagnetic field tensor (8) is not obtained. In other words,

although inserting the velocity of the general comoving

observer into (6) gives the Landau projecting tensor, we

can not obtain Landau definition for electromagnetic ten-

sor(8) from Ellis definition (5) in the same way. So Landau

definition is a particular case and we should classify it as a

different definition. Using this definition, Landau and Lif-

shitz introduce a three-dimensional form of Maxwell

equations and an alternative form for the electromagnetic

field tensor in stationary spacetimes [24]. It seems that the

purpose of Landau definition is to introduce electromag-

netic field equations in a way that is similar to the usual

three-dimensional form of Maxwell equations, and so the

start point of Landau is (9).

Now the question arises as to what is the relation

between field components in Landau definition and the

corresponding components in a noncoordinate basis. For

example, what is the relation between ELi and Er? To

answer this question, we take equation (8) as the electro-

magnetic field tensor in the coordinate basis. As an

example, in the case of Schwarzschild metric, we set

equations (8) and (17) equal to each other and find the

following relations

EL1 ¼� F01 ¼ Er; EL2 ¼ �F02 ¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2m

r

r

Eh

EL3 ¼� F03 ¼ r sin h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2m

r

r

E/

BL
1 ¼ 1

ffiffiffi

d
p F23 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2m

r

r

Br; BL
2 ¼ � 1

ffiffiffi

d
p F31 ¼

Bh

r

BL
3 ¼ 1

ffiffiffi

d
p F12 ¼

B/

r sin h

ð33Þ

along with using equations (7) to get,
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D1
L ¼� ffiffiffiffiffiffi

g00

p
F01 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2m

r

r

Er;

D2
L ¼� ffiffiffiffiffiffi

g00

p
F02 ¼ Eh

r

D3
L ¼� ffiffiffiffiffiffi

g00

p
F03 ¼ E/

r sin h
H1L ¼ ffiffiffi

c
p ffiffiffiffiffiffi

g00
p

F23 ¼ Br;

H2L ¼ ffiffiffi

c
p ffiffiffiffiffiffi

g00
p

F31 ¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2m

r

r

Bh

H3L ¼ ffiffiffi

c
p ffiffiffiffiffiffi

g00

p
F12 ¼ r sin h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2m

r

r

B/

ð34Þ

in which for the Schwarzschild metric we have used:

ffiffiffi

c
p ¼ r2 sin h

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2m
r

q ð35Þ

Now setting from (33) and (34) into (9) and using (81), one

can obtain the electromagnetic field equations in

Schwarzschild metric, which are the same as the

equations we obtained before. For example, by using

these equations, one gets

orH2 � ohH1 ¼ otð
ffiffiffi

c
p

D3Þ )

or r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2m

r

r

Bh

 !

� ohðBrÞ ¼ ot
r
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2m
r

q E/

0

B

@

1

C

A

ð36Þ

which is the same as (22d), i.e. the two formalisms are

equivalent, leading to the same field equations. This is a

consistency check for the applicability of 1þ 3 formula-

tion and its definition of 3-space as the arena where the 3-

objects E and B play their physical role.

4. Electromagnetic field tensor and field equations

for Galilean rotating observer

The electrodynamics of rotating frames has been studied

because of its practical aspects, especially in electrical

engineering [1, 10, 15–18, 31, 32]. In these works, the

Galilean rotational transformation (GRT) and the three-

dimensional form of the field equations are usually used. In

[33, 34] Nouri-Zonoz et al. have shown the properties,

limitations and problems of GRT. It has been demonstrated

that GRT can only be used for the centric rotating obser-

vers. However, here we obtain electromagnetic field tensor

and field equations in the Galilean rotating observer’s

frame, as a particular case of a stationary spacetime. We

use definition 1 introduced in 2. It should be noted that

these equations are obtained in [16, 17] based on definition

3, but like most works in this field, the relationship between

their field components and the non-coordinate field com-

ponents is not clear.

Due to the axial symmetry of the problem, one naturally

employs cylindrical coordinates, assigning events in the

non-rotating frame with coordinatesðt0; q0;/0; z0Þ and in the

one rotating with constant angular velocity X around their

common axis with ðt; q;/; zÞ. In the simplest rotational

transformation, these are related through the Galilean

rotational transformation [24],

t ¼ t0; q ¼ q0; / ¼ /0 � Xt; z ¼ z0 ð37Þ

or in its differential form

dt ¼ dt0; dq ¼ dq0; d/ ¼ d/0 � Xdt; dz ¼ dz0:

ð38Þ

So that the line element from the spatially Euclidean flat

spacetime in cylindrical coordinates, i.e.

ds2 ¼ dt0
2 � dq02 � q02d/02 � dz2; ð39Þ

transforms into

ds2 ¼ ð1� X2q2Þdt2 � 2Xq2dtd/� dq2 � q2d/2 � dz2;

ð40Þ

which is the spatially non-Euclidean flat spacetime in a

rotating frame. The corresponding coordinate tetrad is

given by

h � h ðaÞ
l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� q2X2
p

0 0 0

0 1 0 0
�q2X
ffiffiffiffiffiffiffiffiffiffiffiffi

1�q2X2
p 0 q

ffiffiffiffiffiffiffiffiffiffiffiffi

1�q2X2
p 0

0 0 0 0

0

B

B

B

B

@

1

C

C

C

C

A

ð41aÞ

h�1 � h l
ðaÞ ¼

1
ffiffiffiffiffiffiffiffiffiffiffiffi

1�q2X2
p 0 0 0

0 1 0 0

qX
ffiffiffiffiffiffiffiffiffiffiffiffi

1�q2X2
p 0

ffiffiffiffiffiffiffiffiffiffiffiffi

1�q2X2
p

q 0

0 0 0 1

0

B

B

B

B

B

@

1

C

C

C

C

C

A

ð41bÞ

so that the electromagnetic field tensor in this background,

using Flm ¼ h�1T
FðabÞh�1, is given by
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F01 ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� q2X2
p Eq �

qX
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� q2X2
p Bz

F02 ¼ 1

q
E/

F03 ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� q2X2
p Ez þ

qX
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� q2X2
p Bq;

F12 ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� q2X2
p Bz

F13 ¼� B/

F23 ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� q2X2
p Bq

ð42Þ

and

F01 ¼�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� q2X2

q

Eq; F02 ¼ �qE/

F03 ¼�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� q2X2

q

Ez;

F12 ¼
qX
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� q2X2
p Bz �

q2X
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� q2X2
p Eq

F13 ¼� B/

F23 ¼
qX
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� q2X2
p Bq þ

q2X
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� q2X2
p Ez

ð43Þ

in the coordinate basis, by using left-hand side equation of

(1) and (42), we have the following vacuum

electromagnetic field equations

oq
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� q2X2
p ðEq � qXBzÞ
" #

þ o/E/ þ q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� q2X2
p oz

ðEz þ qXBqÞ ¼ 0

ð44aÞ
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� q2X2
p o/Bz � ozB/ ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� q2X2
p otðEq þ qXBzÞ

ð44bÞ

oq
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� q2X2
p Bz

 !

� q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� q2X2
p ozBq ¼ �otE/

ð44cÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� q2X2
p

q
oqðqB/Þ � o/Bq ¼ otðEz þ qXBqÞ ð44dÞ

for m ¼ 0; 1; 2; 3, respectively. For the source free

equations by using right-hand side equation of (1) and

(43) we have

oq
qX
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� q2X2
p ðBq þ qEzÞ
" #

þ o/B/ þ qX
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� q2X2
p oz

ðBz � qEqÞ ¼ 0

ð45aÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� q2X2

q

o/Ez � qozE/ ¼ � qX
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� q2X2
p otðBq þ qEzÞ

ð45bÞ

oqð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� q2X2

q

BzÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� q2X2

q

ozEq ¼ otB/ ð45cÞ

oqðqE/Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� q2X2

q

o/Eq ¼
qX
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� q2X2
p otð�Bz þ qEqÞ

ð45dÞ

It can easily be seen that by setting m ¼ 0 all the equations

reduce to those expected in flat spacetime in cylindrical

coordinates.

5. Conclusions

Clarifying the roles of coordinate (holonomic) and non-

coordinate (anholonomic) bases in the presentation of the

electromagnetic field tensor and Maxwell equations, we

stated that three different often-used definitions of elec-

tromagnetic field tensor in curvilinear coordinates and

curved spacetimes can have the same explicit final forms.

If we choose tetrad in definition 1 ( the definition uses

tetrad formalism) so that its timelike basis vector h
ð0Þ
l be

equal to the timelike tangent vector ul in definition 2 (via

Ellis formalism), and then state them in terms of nonco-

ordinate basis components of fields, the final form of the

equations will be the same. Moreover, the results obtained

for field tensor from the point of view of general comoving

observer based on Ellis’s formalism are the same as those

obtained by the first definition with the help of coordinate

tetrad. Definition 3 (via Landau formalism) is a particular

definition that its components can be obtained in terms of

noncoordinate components by comparison with other def-

initions. We checked our idea for the general comoving

observer in two backgrounds: Schwarzschild and weak

Kerr spacetimes. Finally, we obtained the electromagnetic

field tensor and field equations in terms of noncoordinate

components in the spacetime of a Galilean rotating

observer.

It should be noted that from the physical point of view,

the components of the fields that are measured in an

experiment are those components introduced in the non-

coordinate basis. For example in a cylindrically symmetric

distribution of charges, the azimuthal electromagnetic

fields in the noncoordinate basis, e.g. E/ � Eð2Þ ¼ h
ð2Þ
2 E2
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and B/ � Bð2Þ ¼ h
ð2Þ
2 B2, are the so-called physical or

ordinary components [20, 35]. Some of the results of this

article could be found in different books and papers, and

one of our goals is to gather them in a systematic way in

one place so that they could be easily accessible to those

interested. Also, it is a straightforward translation among

different conventions.

Appendix A: Coordinate and noncoordinate bases

In this appendix, we give a brief account of coordinate and

noncoordinate bases and the relation between the compo-

nents of a tensor in the two bases.

A.1: Coordinate or holonomic basis

In a coordinate basis (also called holonomic basis) [35–37]

the basis vectors and their duals are denoted by êl and êl,

respectively. They are unit vectors and satisfy the follow-

ing inner product relations,

êl � êm ¼ glm ð46aÞ

êl � êm ¼ glm ð46bÞ

êl � êm ¼ dml ð46cÞ

where glm and glm are the metric components. In this basis,

the vector V and the second rank tensor T, in terms of their

covariant and contravariant components, are given by

V ¼ Vlêl ¼ Vlêl; T ¼ Tlmêl � êm ¼ Tlmê
l � êm ð47Þ

raising and lowering of the indices are done with the help

of the general metric components glm and glm, respectively.

A.2: Non-coordinate or anholonomic basis

In a noncoordinate basis (also called orthonormal or

anholonomic basis) [35–37], the basis vectors and their

duals, denoted by �̂ðaÞ and �̂ðaÞ, respectively, are given by

tangent and cotangent vectors of unit length satisfying the

following inner product relations

�̂ðaÞ � �̂ðaÞ ¼ 1 ð48aÞ

�̂ðaÞ � �̂ðbÞ ¼ gðabÞ ð48bÞ

�̂ðaÞ � �̂ðbÞ ¼ gðabÞ ð48cÞ

�̂ðaÞ � �̂ðbÞ ¼ dðaÞðbÞ ð48dÞ

where gðabÞ is the flat spacetime metric in Cartesian

coordinates. For example, in such a basis, a vector V and a

second rank tensor T are written as as follows

V ¼V ðaÞ ^�ðaÞ ¼ VðaÞ�̂
ðaÞ;

T ¼T ðabÞ�̂ðaÞ � �̂ðbÞ ¼ TðabÞ�̂
ðaÞ � �̂ðbÞ

ð49Þ

Raising and lowering of the indices are done with the

Minkowski metric elements gðabÞ and gðabÞ, respectively. A

very important point that should be emphasized here is that

the components of T and V in a noncoordinate basis ( i.e

VðaÞ, VðaÞ, TðabÞ and TðabÞ ) all are scalars under coordinate

transformation. Later we will obtain the components of the

same tensors T and V in other bases in terms of these

components.

One can express coordinate basis vectors in terms of the

noncoordinate basis vectors as follows

êl ¼ h ðaÞ
l �̂ðaÞ ð50Þ

where h
ðaÞ
l (with mixed indices) are called tetrads and with

their inverses denoted by h l
ðaÞ satisfy the following relations

glm ¼ h ðaÞ
l h ðbÞ

m gðabÞ ð51aÞ

hl
ðaÞh

ðaÞ
m ¼ dlm ð51bÞ

hðaÞ
l hl

ðbÞ ¼ dðaÞðbÞ ð51cÞ

gðabÞ ¼ glmh
l
ðaÞh

m
ðbÞ ð51dÞ

hl
ðaÞ ¼ glmgðabÞh

ðbÞ
m ð51eÞ

A.3: Covariant and contravariant components of tensors

in the two bases

According to the definitions given in the previous subsec-

tions, we have the following relations between con-

travariant and covariant components in the two bases

V ðaÞ ¼ hðaÞ
l Vl ð52aÞ

VðaÞ ¼ h l
ðaÞVl ð52bÞ

T ðabÞ ¼ hðaÞ
l hðbÞ

m Tlm ð52cÞ

TðabÞ ¼ hl
ðaÞh

m
ðbÞTlm ð52dÞ

The inverse relations are

Vl ¼ hl
ðaÞV

ðaÞ ð53aÞ

Vl ¼ h ðaÞ
l VðaÞ ð53bÞ

Tlm ¼ hl
ðaÞh

m
ðbÞT

ðabÞ ð53cÞ

Tlm ¼ h ðaÞ
l h ðbÞ

m Tab ð53dÞ

The divergence of a vector in the coordinate basis with

generalized coordinates ql can be written as follows
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r � V ¼ ðêi5iÞ � ðVjêjÞ ¼ oVj=oqj þ VjCi
ij ð54Þ

where (46c) was used and Ck
ij is also defined by

5iêj ¼ oêj=oqi ¼ êkC
k
ij; i; j; k ¼ 1; 2; 3 ð55Þ

Using the relation og
oqk ¼ 2gCi

ik in (54) we end up with the

well known relation for the divergence of a vector

r � V ¼ Vi
;i ¼

1
ffiffiffiffiffiffiffi�g

p
o

oqk
ð ffiffiffiffiffiffiffi�g
p

VkÞ ð56Þ

In the same way, for the gradient operator we have

rV ¼ ðê jojÞ � ðViêiÞ ¼ ðojV
j þ Ci

jcV
kÞê j � êi ð57Þ

And for the covariant derivative of a second rank tensor T,

we have

rT ¼ðocêcÞ � ðTlmêl � êmÞ
¼ðocTlm þ Cl

dcT
dm þ Cm

dcT
ldÞêc � êl � êm

ð58Þ

The expression in parenthesis gives the components of the

covariant derivative of T. Finally for the divergence of a

tensor T denoted by r � T we have:

r � T ¼ðolTlm þ Cl
clTcm þ Cm

clTlcÞêm

¼ 1
ffiffiffiffiffiffiffi�g

p olð
ffiffiffiffiffiffiffi�g

p
TlmÞ þ Cm

clTlc

� �

êm
ð59Þ

If Tlm ¼ �Tml then

r � T ¼ 1
ffiffiffiffiffiffiffi�g

p olð
ffiffiffiffiffiffiffi�g

p
TlmÞ

� �

êm; ð60Þ

as expected. In other words, the familiar relations that are

employed for covariant derivative or divergence of a tensor

are obtained in a coordinate basis.

Example: Cylindrical coordinate and noncoordinate

bases in flat 3-space

As an example of the above discussions in a curvilinear

coordinate, we introduce cylindrical coordinate and non-

coordinate bases in flat three-dimensional Euclidean space.

Using q, / and z as the coordinates, the line element of

such a space is given by

ds2 ¼ dq2 þ q2d/2 þ dz2 ð61Þ

Then by using equation (51a) we obtain the tetrad

components

h
ð1Þ
1 ¼ 1 h

ð2Þ
2 ¼ q h

ð3Þ
3 ¼ 1 and h

ðjÞ
i ¼ 1 if i 6¼ j ð62Þ

and their inverses

hð1Þ
1 ¼ 1 hð2Þ

2 ¼ 1=q hð3Þ
3 ¼ 1 and hðiÞ

j ¼ 1 if i 6¼ j:

ð63Þ

Now the holonomic basis vectors are chosen to be

ê1 ¼ q̂ ê2 ¼ /̂ ê3 ¼ ẑ ð64Þ

and a vector V is represented by

V ¼ V1ê1 þ V2ê2 þ V3ê3: ð65Þ

On the other hand, the noncoordinate basis vectors are

given by,

�̂ð1Þ ¼ q̂ �̂ð2Þ ¼
/̂
q

�̂ð3Þ ¼ ẑ ð66Þ

and the contravariant vector components are

V ð1Þ � Vq Vð2Þ � V/ V ð3Þ � VZ : ð67Þ

Now using the above relations and employing (53a), (63)

and (67) we have,

V1 ¼ Vð1Þ ¼ Vq V2 ¼ 1

q
ðVð2ÞÞ ¼ V/

q
V3 ¼ V ð3Þ ¼ Vz

ð68Þ

so that according to (56) the divergence of a vector is given

by

r � V ¼oqðVqÞ þ o/
V/

q

� �

þ ozðVzÞ þ VqC
i
i1

þ V/

q

� �

Ci
i2 þ VzC

i
i3

¼ 1

q
oqðqVqÞ þ

1

q
o/ðV/Þ þ ozðVzÞ

ð69Þ

Appendix B: 113 (threading) formulation of spacetime

decomposition (Landau formalism)

To define spatial metric and spatial distances in a given

spacetime (metric), we choose the 1þ 3 (threading) for-

mulation of spacetime decomposition. Unlike the 3þ 1 (or

foliation) formulation of spacetime decomposition in

which spacetime is foliated into constant-time hypersur-

faces, in the 1þ 3 formulation, it is decomposed into

threads tracking history of each spatial point. This formu-

lation of spacetime decomposition starts from the follow-

ing general form for the spacetime metric [24]

ds2 ¼ds2syn � dl2 ¼ g00ðdx0 � AgidxiÞ2

� cijdxidxj ; i; j ¼ 1; 2; 3
ð70Þ

in which dssyn ¼ ffiffiffiffiffiffi

g00
p ðdx0 � AgidxiÞ is the synchronized

proper time, Agi ¼ � g0i

g00
is the so-called gravitomagnetic

potential and

dl2 ¼ cijdxidx j ¼ �gij þ
g0ig0j

g00

� �

dxidxj ð71Þ

is the spatial line element (also called the radar distance
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element) of the 3-space in terms of its three-dimensional

spatial metric cij. It is the integral of this line element

between two spatial points which gives the spatial distance

between two events,

L ¼
Z xF

xI

dl ð72Þ

The 3-velocity is defined in terms of the synchronized

proper time as follows

vi ¼ dxi

dssyn
¼ cdxi

ffiffiffiffiffiffi

g00
p ðdx0 � AidxiÞ : ð73Þ

where now using (70) and (73) the spacetime line element

could be written as follows

ds2 ¼ ds2syn 1� v2

c2

� �

: ð74Þ

Now the components of the 4-velocity ua ¼ dxa

ds , in terms of

the components of the 3-velocity are given by

u0 ¼ 1

ffiffiffiffiffiffi

g00
p ffiffiffiffiffiffiffiffiffiffiffiffi

1� v2

c2

q þ Aiv
i

c
ffiffiffiffiffiffiffiffiffiffiffiffi

1� v2

c2

q ; ui ¼ vi

c
ffiffiffiffiffiffiffiffiffiffiffiffi

1� v2

c2

q ; ð75Þ

where in the comoving frame, vi ¼ 0, it reduces to ua ¼
ð 1
ffiffiffiffiffi

g00
p ; 0; 0; 0Þ as expected. It is this same formulation of

spacetime decomposition which allows one to use the

analogy with electromagnetism and define the so called

gravitoelectric and gravitomagnetic fields as follows;

Eg ¼ � 1

2g00

rg00 Bg ¼ r� Ag: ð76Þ

In terms of the above fields and in the context of the so-

called Gravitoelectromagnetism, vacuum Einstein field

equations could be rewritten in the following quasi-

Maxwell form [25]

r� Eg ¼ 0; r � Bg ¼ 0 ð77Þ

r � Eg ¼ 1=2hB2
g þ E2

g ð78Þ

r � ð
ffiffiffi

h
p

BgÞ ¼ 2Eg � ð
ffiffiffi

h
p

BgÞv� ð79Þ

ð3ÞRij ¼ �Ei;j
g þ 1

2
hðBi

gBj
g � B2

gc
ijÞ þ Ei

gEj
g: ð80Þ

where ð3ÞRij is the 3-dimensional Ricci tensor of the 3-

space constructed from the three-dimensional metric cab in

the same way that the usual 4-dimensional Ricci tensor Rlm

is made out of glm.

It should also be noted that in the above equations, all

the differential operations are defined in the 3-space with

metric cij [24, 25], in particular, divergence and curl are

defined as follows:

divV ¼ 1
ffiffiffi

c
p

o

oxi
ð ffiffiffi

c
p

ViÞ; ðcurlVÞi ¼ 1

2
ffiffiffi

c
p �ijk oVk

oxj
� oVj

oxk

� �

ð81Þ

in which c ¼ det cij and one can show that

�g ¼ g00c: ð82Þ
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