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Abstract: In this research work, four distinct models corresponding to the f(R)) gravity theory are investigated in the

Frı̂edmann–Lemaitre–Robertson–Walker formulism. The bouncing behavior of Universe is studied by examining the

aforesaid distinct models in the framework of f(R)) gravity theory for solving the singularity problem in the standard Big-

Bang cosmology. The cosmological constraints are plotted in provisions of cosmic time using these viable models in the

formulism of f(R) gravity theory. Later on, we investigated the bounce circumstance and reconstructed f(R) gravity for

hybrid expansion law. Furthermore, the reconstruction of f(R) gravity is extended using the red-shift parameter. This red-

shift parameter is also used for compiling the cosmological parameters, which deduce accelerated expansion of the

Universe. Conclusively, the stability of these proposed models is investigated using an arbitrary function (quantity of speed

of sound), which represents late-time stability.
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1. Introduction

General relativity (GR) provides an acceptable explanation

of numerous specifications of the universe that are based

upon affirmed evidence and different theories. Currently,

we need to focus on those research problems that are yet

undetermined, such as the non-singularity in the standard

Big-Bang cosmology. In order to overcome the problem of

singularity, we require to develop a scientific framework,

i.e., a model that should incorporate the known universe

and can also provide an acceptable explanation for the

universe as an oscillatory system. The idea of an oscillatory

universe ensures that the present universe came into being

after the disintegration of the previous universe [1].

Alternatively, an emerging idea of a bouncing universe was

presented. The idea of a bouncing universe satisfactorily

explains the Big-Bang cosmology and provides a relevant

solution to the non-singularity problem in the field of Big-

Bang cosmology [2, 3]. The idea that the universe expe-

riences bouncing is widely appreciated, and other fields of

cosmology, such as Brane cosmology [4] and vector field

[5], have considered this idea to provide an explanation of

different phenomena. Possibly, the bouncing in the uni-

verse can be explained as that due to the nonvanishing

charge, bouncing can occur. This bouncing gives rise to a

phase shift of the universe from a contracting phase to an

expanding phase. During this phase shift, the Hubble

parameter (H) changes in range from H\0 (contracting

phase) to H[ 0 (expanding phase), and at H ¼ 0(bouncing

phase), we get the point where bounce occurs [6–9].

Presently, with the availability of experimental data and

different relevant theories that explain the expansion of the

Universe, we have a comprehensive literature which

establishes the accelerated phase expansion of the Uni-

verse. Firstly, the idea of accelerating expansion arose with

the observations of Type Ia supernova [10], related to LSS

(large-scale structure) [11] and cosmic microwave back-

ground [12]. It is observed that the universe is experiencing

an expansion of an accelerated nature due to the presence

of an unknown energy. This unknown energy is referred to

as dark energy (DE). This so-called DE contributes almost

70% of the total universe’s energy. The universe is filled

with a fluid of perfect nature that has negative pressure.

This perfectly filled universe also obeys an EoS (equation

of state), and the parameter of this EoS has a value of less
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than 1 (so-called phantom phase). There are different

possibilities to explain the framework of DE, such as the

cosmological constant [13], the scalar fields (that incor-

porate phantom, tachyon, quintom, quintessence, etc.)

[14–20]. Some models, like holographic [21–26], modified

[27–29], interacting [30–35], and Brane-world [36–38],

also provide an acceptable explanation of DE.

Keeping in view the above-mentioned list of models, the

appropriate choice is the modified theory of gravity. In

comparison with other candidates, the modified theory of

gravity has a significant edge over them because it avoids

tedious computation of numerical solutions. Moreover, the

modified theory of gravity is compatible with the latest

experimental data related to DE and the late-time accel-

erating universe. In the literature, corresponding to the

modified theory of gravity, different models have been

developed using distinct techniques [39–42]. By trans-

forming the Ricci scalar R to f(R) with a random function

in the gravity action term, one such possible model is

obtained. f(R) is the name of this model [43, 44]. When

compared to traditional gravity models, the f(R) gravity is

thought to be a better choice for justifying DE. The Ein-

stein–Hilbert action, which was recently introduced, is

defined by f(R) and the matter Lagrangian. This Einstein–

Hilbert action produces Friedmann equations using the

background of the FLRW (Friedmann–Lemaı̂tre–Robert-

son–Walker) metric.

In this paper, we use f(R) gravity calculations to solve

the problem of the initial singularity in the Big-Bang the-

ory. To achieve this goal, we will use distinct models

within the framework of f(R) gravity, as well as bounce

cosmology with f(R) gravity. We will establish that the

phase shift is accelerated in nature. Initially, it accelerates

from the contracting phase and then, by passing through a

bouncing point, finally reaches the expanding phase. This

specific problem is illustrated by using a scale factor (a(t)).

The a(t) obeys the given conditions as follows: during the

contracting phase, the derivative of the scale factor ( _a\0)

is negative; during the expanding phase, the ð _a[ 0) is

positive; and at the bounce point, the ð _a ¼ 0). For the

purpose of clarity and confirmation, these conditions are

also illustrated by the relevant figures.

Moreover, we present a possible description of the idea

that f(R) gravity is a source of DE. To support such a claim,

we will reformulate f(R) gravity by incorporating the red-

shift parameter. In accordance with the aforementioned

concept, a parametrization for f(R) gravity will be inves-

tigated, which may provide acceptable arguments for the

description of the universe’s accelerated expansion.

Finally, we will use an arbitrary function (quantity of sound

speed c2s ) to test the stability of our proposed models.

This paper is classified as follows: In Sect. 2, we

investigated f(R) gravity using four different models, and as

a result, we solved field equations for the FLRW metric in

a perfect fluid background. Then, in Sect. 3, we presented

an analysis of the universe’s bouncing nature using H and

a parameters, as well as different f(R) gravity models. We

extended the reconstruction of the f(R) gravity using a new

(red-shift) parameter in Sect. 4 of this article. We further

used this red-shift parameter to redefine effective pressure,

effective energy density, and the cosmological parameters.

In Sect. 5, we checked the stability of the proposed models.

In the last section of this article, we briefly described our

obtained results and also presented a suitable conclusion.

2. f(R) gravitational theory

We can write the Einstein–Hilbert action (S) using the f(R)

gravity background. The modified action (Sf ðRÞ is as

follows:

Sf ðRÞ ¼
1

2j

Z
d4x

ffiffiffiffiffiffiffi�g
p

f ðRÞ þ SM; ð1Þ

where the symbols used in Sf ðRÞ are represented as

follows: g is the tensor’s determinant, j is the constant of

the above-mentioned coupling, and SM represents the

action of the matter field. The main goal of this theory is

to obtain a standard algebraic expression for the Ricci

scalar rather than the cosmological constant (K) in the GR

action term. Corresponding to Eq. (1), we can calculate the

field equations of the f(R) gravity theory by varying Sf ðRÞ
with respect to glm as follows:

RabfR �
1

2
f ðRÞgab þ gabh�rarb

� �
fR ¼ jTab: ð2Þ

In Eq. (2), Tab represents the tensor of energy

momentum in standard form, rb a derivative operator in

covariant form, fR � df=dR, and h � rbrb. The fR term

incorporates second corresponding derivatives of the

metric variables, which is frequently named as scalaron,

and propagates to a new scalar degree of freedom. By

taking a trace of Eq. (2), we can specify the equation of

motion (EoM) for scalaron as follows:

3hfR þ RfR � 2f ðRÞ ¼ jT; ð3Þ

where T � Tb
b . In fR, Eq. (3) appears to be a second-order

differential equation. Equation (3) differs from GR in that

the trace of the Einstein field equation yields R ¼ �jT in

GR. This distinction demonstrates that the fR term in f(R)

gravity produces scalar degrees of freedom. It is not

mandatory or implied by the condition T ¼ 0 that the Ricci

scalar R in dynamics disappears (or is set to a constant
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value). This makes Eq. (3) an important tool for the

discussion of a number of unrevealed but fascinating

cosmic fields, such as the Newtonian limit, and stability.

The use of a constant Ricci scalar in conjunction with the

condition Tab ¼ 0 in Eq. (3) yields the following:

RfR � 2f ðRÞ ¼ 0: ð4Þ

By making an appropriate choice of any feasible

formulation of f(R) gravity, the above-mentioned equation is

named the Ricci algebraic equation. In the case of obtaining

constant roots of the above-mentioned equation, such as R ¼
K (say), then Eq. (3) produces the following expression:

Rab ¼ gabK
4

: ð5Þ

Thus, it shows (anti) de Sitter as the maximally

symmetric solution. The restructured form of Eq. (2) can

be written as follows:

Gab ¼ j
fR

Tab
ðDÞ

þ Tab

� �
� Tnet

ab ; ð6Þ

where the symbol Gab denotes an Einstein tensor and Tab
ðDÞ

represents the energy-momentum tensor of effective form.

The equivalent expression for Tab
ðDÞ

is as follows:

Tab
ðDÞ

¼ 1

j
rarbfR �hfRgab þ

�
f � RfR

� gab
2

n o
:

We used the FLRW background metric,

ds2 ¼ �dt2 þ a2dr2 þ a2 dh2 þ r2sin2hd/2
� �

; ð7Þ

In Eq. (7), a denotes a scale factor that is dependent on t.

The Ricci scalar R associated with metric Eq. (7) is given

by:

R ¼ 6 _HðtÞ þ 12HðtÞ2: ð8Þ

Here, H(t) represents the Hubble parameter, which is

HðtÞ ¼ _aðtÞ
aðtÞ, while

_HðtÞ denotes the derivative of H(t) with

respect to cosmic time (t).

By solving Eq. (6) for metric Eq. (7) results in the

following:

3HðtÞ2 ¼ 1

fR
j2qm þ 1

2
fRfR � fg � 3HðtÞ _RfRR

� �
; ð9aÞ

�½2 _HðtÞ þ 3HðtÞ2� ¼ 1

fR
j2Pm � 1

2
fRfR � f g þ _R2fRRR

�

þ2HðtÞ _RfRR þ €RfRR
	
:

ð9bÞ

In Eqs. (9a and 9b), the symbols qm and Pm denote

energy density and pressure, respectively. By considering

the conservation equation, raT
ðmÞab ¼ 0, as well as the

EoS parameter, xm ¼ Pm

qm
, the following equation can be

obtained:

_qm þ 3qmðxm þ 1ÞHðtÞ ¼ 0; ð10Þ

the solution of the above equation gives,

qm ¼ qm0
a�3ðxmþ1Þ: ð11Þ

Furthermore, by comparing standard Friedmann

equations to the present approach,

qnet ¼
3

j2
HðtÞ2

and

Pnet ¼ � 1

j2
ð3HðtÞ2 þ 2 _HðtÞÞ;

Additionally, by considering standard Friedmann

equations and comparing with the present approach,

qnet ¼
3

j2
HðtÞ2

and

Pnet ¼ � 1

j2
ð3HðtÞ2 þ 2 _HðtÞÞ;

Equations () are reexpressed as follows:

qnet ¼ qm þ qf ðRÞ ¼ j�2 j2qm þ 3HðtÞ2ð1� fRÞ
h

� 1

2
ðf � RfRÞ � 3HðtÞ _RfRR

�
;

ð12aÞ

Pnet ¼ Pm þ Pf ðRÞ ¼ j�2

�
j2Pm � ð3HðtÞ2 þ 2 _HðtÞÞð1� fRÞ

þ 1

2
ðf � RfRÞ þ _R2fRRR

þ 2HðtÞ _RfRR þ €RfRR

�
;

ð12bÞ

where the symbols qnet and Pnet denote net energy density

and net pressure, respectively, while

qf ðRÞ ¼ j�2 3HðtÞ2ð1� fRÞ �
1

2
ðf � RfRÞ � 3HðtÞ _RfRR

� �
;

ð13aÞ

Pf ðRÞ ¼ j�2 �ð2 _HðtÞ þ 3HðtÞ2Þð1� fRÞ
h

þ 1

2
ðf � RfRÞ þ _R2fRRR þ 2H _RfRR þ €RfRR

�
:

ð13bÞ

For net terms, we can reexpress the conservation

equation using Eq. () as,
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_qnet þ 3qnetHðtÞð1þ xnetÞ ¼ 0; ð14Þ

here

xnet ¼
Pnet

qnet
¼ � 1þ 2 _HðtÞ

3HðtÞ2

 !
; ð15Þ

denotes parameter that corresponds to effective EoS.

3. Reconstruction method for hybrid expansion law

model

In this section, we are remodeling the present modified

gravitational models. We use the methods presented in

Refs. [45–47] for this remodeling, followed by the intro-

duction of proper functions P and Q, which are functions of

a scalar field (t), where t denotes the cosmic time. Provided

that no matter what content is present, the action in Eq. (1)

is expressed as follows:

I ¼
Z

dx4
ffiffiffiffiffiffiffi�g

p
PRþ Qþ Lm½ �: ð16Þ

Now, by solving the above equation along with Eq. (9),

we acquire,

Q ¼ �6H2P0 � 6PH2; ð17Þ

where prime denotes a derivative with respect to time,

while the second equation reduces to the following,

P00 � HP0 þ 2PH0 ¼ 0: ð18Þ

We obtain the solution of the above-mentioned differential

equation for the case of hybrid expansion law. By

manipulating the obtained solution, we express f(R) in

general form as,

f ðRÞ ¼ PðRÞRþ QðRÞ: ð19Þ

In order to derive exact solutions, we will consider the

hybrid expansion law for the scale factor as written: [48]

aðtÞ ¼ tnebt; ð20Þ

where n is an integer while b represents a constant. The

bouncing behavior of such a type is demonstrated in Fig. 1.

By using the above-mentioned scale factor and probing

for P and Q, we obtain the following,

p ¼ t
1
2
a1þnþ1ð Þ c1U

1

2
nþ a1 þ 1ð Þ; a1 þ 1; t

� ��

þc2L
a1
1
2
�a1�n�1ð Þ tð Þ

i
;

ð21Þ

and

Q ¼ 3t
1
2
a1þn�3ð Þ nþ tð Þ c1 � a1 þ 3nþ 2t þ 1ð Þf g½

U
1

2
nþ a1 þ 1ð Þ; a1 þ 1; t

� �

þ c1t a1 þ nþ 1ð ÞU 1

2
nþ a1 þ 3ð Þ; a1 þ 2; t

� �

þ c2 2tLa1þ1
1
2
�a1�n�3ð Þ tð Þ � a1 þ 3nþ 2t þ 1ð ÞLa11

2
�a1�n�1ð Þ tð Þ

n oi
;

ð22Þ

where,

a1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 þ 10nþ 1

p
; ð23Þ

and U(a, b, z) is hypergeometric function and LanðxÞ is the
generalized Laguerre polynomial.

Substituting these values into Eq. 19,

Fig. 1 Hubble parameter for

hybrid expansion law
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f ¼ t
1
2
a1þn�3ð Þ Rt2



c1U

1

2
nþ a1 þ 1ð Þ; a1 þ 1; t

� ��

þc2L
a1
1
2
�a1�n�1ð Þ tð Þ

o
� 6 nþ tð Þ2

� c1U
1

2
nþ a1 þ 1ð Þ; a1 þ 1; t

� �
þ c2L

a1
1
2 �a1�n�1ð Þ tð Þ

� �

þ 3 nþ tð Þ c1 � a1 þ nþ 1ð Þð Þf

U
1

2
nþ a1 þ 1ð Þ; a1 þ 1; t

� �

þ c1t a1 þ nþ 1ð ÞU 1

2
nþ a1 þ 3ð Þ; a1 þ 2; t

� �

þ c2 2tLa1þ1
1
2
�a1�n�3ð Þ tð Þ � a1 þ nþ 1ð ÞLa11

2
�a1�n�1ð Þ tð Þ

 �oi
:

ð24Þ

Furthermore, cosmic time has the following relationship

to the Ricci scalar:

t� ¼ 12n�
ffiffiffi
6

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n 2nR� Rþ 12ð Þ

p
R� 12

; ð25Þ

where R 6¼ 12 and by assuming tþ, we get the recon-

structed f(R) as follows:

The behavior of this reconstructed function can be seen

in Fig. 2.

4. The bouncing behavior in modified gravitational

theory

This section describes the universe’s bouncing behavior as

well as bouncing conditions using the proposed models

within the framework of the f(R) gravity theory. The

occurrence of the bounce gives rise to fluctuations in the

Fig. 2 The behavior of reconstructed function for different values of

n

fþðRÞ ¼
3ffiffiffi

6
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n 2nR� Rþ 12ð Þ
p

þ 12n
� �2

ffiffiffi
6

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n 2nR� Rþ 12ð Þ

p
þ 12n

R� 12

 !1
2
a1þnþ1ð Þ

ðc1ðnð3R 4a1 þ
ffiffiffi
6

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n 2nR� Rþ 12ð Þ

p
þ 16

 �
� a1 þ 3ð ÞR2 þ 12

ffiffiffi
6

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n 2nR� Rþ 12ð Þ

p
� 144Þ �

ffiffiffi
6

p
a1 þ 1ð Þ R� 12ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n 2n� 1ð ÞRþ 12ð Þ

p

þ n2R Rþ 36ð ÞÞU 1

2
a1 þ nþ 1ð Þ; a1 þ 1;

12nþ
ffiffiffi
6

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n 2nR� Rþ 12ð Þ

p
R� 12

 !

þ c1n a1 þ nþ 1ð ÞðR
ffiffiffi
6

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n 2nR� Rþ 12ð Þ

p
þ 24n� 6

 �
þ 12

ffiffiffi
6

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n 2nR� Rþ 12ð Þ

p
þ 72ÞU 1

2
a1 þ nþ 3ð Þ; a1 þ 2;

12nþ
ffiffiffi
6

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n 2nR� Rþ 12ð Þ

p
R� 12

 !
þ

c2ððnð3Rð4a1 þ
ffiffiffi
6

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n 2nR� Rþ 12ð Þ

p
þ 16Þ � a1 þ 3ð ÞR2 þ 12

ffiffiffi
6

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n 2nR� Rþ 12ð Þ

p
� 144Þ �

ffiffiffi
6

p
a1 þ 1ð Þ R� 12ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n 2n� 1ð ÞRþ 12ð Þ

p

þ n2R Rþ 36ð ÞÞLa11
2
�a1�n�1ð Þ Rð Þ þ 2nðR

ffiffiffi
6

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n 2nR� Rþ 12ð Þ

p
þ 24n� 6

 �

þ 12
ffiffiffi
6

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n 2nR� Rþ 12ð Þ

p
þ 72ÞLa1þ1

1
2
�a1�n�3ð Þ Rð ÞÞÞ:

ð26Þ
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universe. The universe undergoes a phase shift by trans-

ferring fluctuations initially from a phase of contracting to

a phase of expanding. Under the formulation of the Big-

Bang cosmology theory, this phase shift provides a solution

of non-singularity [6–9].

Consequently, for an effective bounce, the Hubble

parameter runs through the range from H\0(contracting)

to H[ 0 (expanding) and satisfies H ¼ 0 (bouncing) for

the bounce point. Moreover, the problem of the bouncing

universe can also be expressed by taking into account the

scale factor a. The variance of the scale factor is related to

the phase shift in the universe as follows: during the con-

tracting phase, the scale factor decreases to _a\0, while

during the expanding phase, the scale factor increases to

_a[ 0. Additionally, at the point of bounce and around this

pint, the scale factor obeys the variance conditions of _a ¼ 0

and €a[ 0.

Considering the fact that for a bouncing universe, H

ranges from the lower limit of H\0 to the upper limit of

H[ 0 with respect to time evolution, additionally it puts a

necessary condition on the Hubble parameter that at the

bounce point when H ¼ 0, then the derivative of the

Hubble parameter must be greater than zero ( _Hbounce [ 0)

at this point as:

_Hbounce ¼ � j2

2
ð1þ xnetÞqnet [ 0; ð27Þ

the above-mentioned condition results in qnet [ 0 with

xnet\� 1.

At present, at the bounce point, the relevant bounce

conditions for the model can be determined. As a result, in

order to obtain the following expression for _Hbounce using

the condition in Eq. (27) along with Eq. (), it is necessary to

have _Hbounce [ 0 and Hbounce ¼ 0.

_Hbounce ¼ ð2fRÞ�1 �j2ðqm þ PmÞ þ _R2fRRR þ €RfRR

 	

[ 0:

ð28Þ

Now, using the proposed models in the framework of

f(R) gravity, we will thoroughly investigate the universe’s

bouncing behavior. Examining bouncing in the f(R) gravity

framework is advantageous because it allows us to make

specific choices for our investigation. Some of the sug-

gested compatible forms of such models within the

framework of f(R) gravity are denoted as [49]:

• Model 1

We consider the

f ðRÞ ¼ Rþ a1R
2 � a2

R
; ð29Þ

where a1 and a2 are the free parameters. The first term is a

quadratic correction proposed by Starobinsky [50], while

the last term is given in Ref. [51, 52].

• Model 2

We consider the

f ðRÞ ¼ Rþ b1 ln b2R½ �; ð30Þ

where b1 and b2 act as free parameters. The term proposed

in Ref. [53] is proportional to lnðRÞ or R�nðlnðRÞÞm
• Model 3

We consider the

f ðRÞ ¼ Rþ c1e
�c2Rð Þ; ð31Þ

where c1 and c2 are the free parameters.

• Model 4

We consider the

f ðRÞ ¼ Rþ l1
R
: ð32Þ

where l1 is constant.

Moreover, by inserting models mentioned in Eqs. (29),

(30), (31) and (32) in Eq. () separately and then by solving

using numerical techniques, we obtain corresponding

numerical solutions. Through plots of these numerical

solutions, one can easily evaluate the cosmological

parameters w.r.t. cosmic time as shown in Figs. 3 and 4.

The bouncing behavior in regime of distinct choices of

f(R) is as following,

In case of model 1 mentioned in Eq. (29), we can see the

bouncing behavior in the first part of Fig. 4, e.g., H runs

from bounce point (Hðt� � 0:21562Þ ¼ 0) as HðtÞ\0 to

HðtÞ[ 0, while the lowest scale factor is or

_aðt� � 0:21562Þ ¼ 0.

In Fig. 4, the bouncing action can be noticed as Hðt� �
0:65023Þ ¼ 0 , while HðtÞ\0 to HðtÞ[ 0. On the other

hand, we notice that the minimal element for the scale is or

_aðt� � 0:65023Þ ¼ 0 in case of model 2.

The same bouncing behavior is noticed in Fig. 4, which

exhibit that from the bounce level, the Hubble parameter

runs through Hðt� � 0:375342Þ ¼ 0 as HðtÞ\0 to

HðtÞ[ 0. Similarly, we can see how the minimal element

for the scale or _aðt� � 0:375342Þ ¼ 0 in case of model 3.

Moreover, we are confident of the possibility of

observing the bouncing behavior in Fig. 4. We can see in

Fig. 4 that in the case of model 4, the Hubble parameter

ranges from Hðt� � 0:260048Þ ¼ 0 as HðtÞ\0 to

HðtÞ[ 0, while the minimal element for the scale or

_aðt� � 0:260048Þ ¼ 0.

Furthermore, Figs. 5 and 6 exhibit the variation of qnet
and Pnet in terms of cosmic time, respectively. It is noticed

that qnet [ 0 and Pnet\0 vary with respect to cosmic time,

which provides an evidence for an accelerated universe.

Figure 7 exhibits the variation of EoS in terms of cosmic-

time. One can notice in Fig. 7 that there is a crossing

occurring over divide line (phantom-divide line); this

relates the problem with experimental data coming from
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late-time observations and crossing over phantom-divide

line [54, 55].

In the next section, we will be reconstructing the above-

mentioned model using red-shift parameter.

5. Reconstruction through red-shift

This section consists of the exploration of the described

model using the red-shift parameter(z). This red-shift

parameter can be written as z ¼ ainitial
aðtÞ � 1, where ainitial

represents the scale factor’s initial value. This ainitial refers

to the universe at present. The description of the red-shift

parameter in this manner ensures that cosmic z is zero in

late time. As a result, another dimensionless parameter,

r(z), is defined as rðzÞ ¼ HðzÞ2
H2

initial

in terms of the Hubble

parameter. The Hinitial in the r(z) expression represents the

initial value of the Hubble parameter for the current uni-

verse. To re-express the above-mentioned Friedmann

equations involving the red-shift parameter z, we must first

introduce a differential equation with the differentiation

variable cosmic time t. Differential equation is of the fol-

lowing form:

d

dt
¼ �Hð1þ zÞ d

dz
: ð33Þ

The re-expressed form of Eqs. (8) and (12) involving the

red-shift parameter z is now as follows:

Fig. 3 The scale factor, a(t), in terms of cosmic time

Fig. 4 The Hubble parameter(H(t)) in terms of cosmic time

Fig. 5 The energy density (qnet) and pressure (Pnet) in terms of cosmic time under Models 1 and 2

Fig. 6 The energy density, qnet, and pressure, Pnet, in terms of cosmic time under Models 3 and 4

Fig. 7 The variation of EoS parameter, xnet w.r.t. cosmic time
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R ¼ 12H2
0r � 3H2

0ð1þ zÞ�r; ð34Þ

qnet ¼
1

j2
j2qm þ 3H2

0rðfRðzÞ þ 1Þ � 3

2
H2

0ð1þ zÞ�rfRðzÞ
�

þ3H2
0ð1þ zÞrf 0RðzÞ �

1

2
f ðzÞ

�
;

ð35Þ

Pnet ¼
1

j2
j2Pm þ 1

2
H2

0ð1þ zÞ�rðfRðzÞ þ 2Þ
�

�3H2
0rðfRðzÞ þ 1Þ þ 1

2
f ðzÞ þ H2

0ð1þ zÞ2rf 00R ðzÞ

þ 1

2
H2

0ð1þ zÞ2 �rf 0RðzÞ � H2
0ð1þ zÞrf 0RðzÞ

�
:

ð36Þ

The derivative w.r.t. z is represented by prime in

Eqs. (35) and (36). The energy density of matter qm, the
function f(R), and its derivative with respect to R are

denoted as follows:

qm ¼ qm0

a0
1þ z

� ��3ð1þxmÞ
: ð37Þ

For now, we will explain the origination of dark energy

by redeveloping the model. For this specific purpose, we

have introduced a function r(z). This function is fitted with

the experimental data collected from the supernova

[56, 57]. To achieve the best fit, the parametrization of

r(z) involving the red-shift parameter is defined as a

polynomial of third degree, as shown in [58, 59]:

rðzÞ ¼ Xm0
ð1þ zÞ3 þ A0 þ A1ð1þ zÞ þ A2ð1þ zÞ2:

ð38Þ

A0 ¼ 1� A1 � A2 � Xm0
. An important point to note here

is that when A1 ¼ A2 ¼ 0, this parametrization agrees well

with the KCDM model as well as A0 ¼ 1� Xm0
. According

to Ref. [54], the best fit parameters are Xm0
¼ 0:3, A1 ¼

�4:16� 2:53 and A2 ¼ 1:67� 1:03. In the present work,

to achieve the best fit, parameters are adjusted as

Xm0
¼ 0:3, A0 ¼ 3:2, A1 ¼ �3:5 and A2 ¼ 1. It is worth

mentioning here that these free parameters are of great

importance for accomplishing this job. This selection of

parameters is based upon positive and negative values of

net energy density and net pressure, respectively, and also

upon the overlapping of EoS over the phantom divide line.

After this, the cosmological parameters are acquired

using Eq. (38) into Eqs. (35–36 ). The newly obtained

cosmological parameters involve red-shift. As a result, we

plot qnet, Pnet, and xnet with the red-shift parameter. These

plots are shown in Figs. 8, 9 and 10.

For the assumption of choice 1, the net EoS variation

shows that the value of EoS is approximately equal to

�0:934827 in late time (z ¼ 0). Similarly, in the case of

option 2, the net EoS variation shows that the value of EoS

in late time (z ¼ 0) is approximately equal to �1:08582.

The net EoS variation demonstrates that the value of EoS is

approximately equal to �2:5 in late time (z ¼ 0) for choice

3 and �2:50066 in the case of choice 4.

This variation of EoS ensures that the expansion of the

accelerated universe satisfies the condition xnet\� 1. The

acquired results agree with the results given in Ref. [60, 61]

for the case of a flat universe.

In case of choice 3, the behavior is unusual and further

we will check the stability of these models in the next

section.

6. Stability

It is critical to argue the stability of the proposed models in

f(R) gravity theory here. Keeping in view the fact that this

universe is full of perfect fluid, one can treat it as a ther-

modynamical system. To accomplish this goal, an arbitrary

function (quantity of sound speed (c2s )) is introduced to

explain the system composed of the perfect fluid. This

arbitrary function can be written in terms of net energy

density qnet and net pressure Pnet of the universe as,

c2s ¼
dqnet
dPnet

:

It is established that for a thermodynamical system the

value of above function is greater than zero. Consequently,

the conditions for stability can be checked when c2s [ 0. A

thermodynamic system can be explained perturbatively

using adiabatic and non-adiabatic approaches. The possible

perturbation quantities here can be net energy density, net

pressure and entropy of the universe.

Now we define the above-mentioned system as

Pnet ¼ PnetðS; qnetÞ. This system is then solved perturba-

tively by applying perturbation w.r.t. Pnet as:

dPnet ¼
oPnet

oS

� �
qnet

dSþ oPnet

oqnet

� �
S

dqnet

¼ oPnet

oS

� �
qnet

dSþ c2sdqnet;

ð39Þ

In the above equation, the first and second terms of the

equation represent non-adiabatic and adiabatic processes,

respectively, in the problem of cosmology. Because we are

taking the perturbation as an adiabatic in cosmology, in the

cosmological system, variations of entropy vanish to zero

as dS ¼ 0. As a result of the aforementioned argument, we

only include adiabatically process in our research work.

Differentiating Eqs. (35) and (36) with respect to the

red-shift parameter yields the arbitrary function c2s . Now
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the calculated function c2s appears in terms of the red-shift

parameter. By accruing such a function, we now further

solve it using numerical techniques and plot it against the

red-shift parameter, which is shown in Fig. 11. Considering

Fig. 11, we can conclude that in late time (z ¼ 0), the value

of c2s approaches approximately 2.49306 in the case of

model 1 and 0.140505 in the case of model 4, and there are

also some other regions where c2s [ 0 and thus agrees with

the condition c2s [ 0. Similarly, in the case of model 2,

c2s [ 0 by z[ 0:6. As a result, we see the unusual behavior

of model 3, as shown in Fig. 11, in which c2s\0, implying

that model 3 is unstable and bouncing.

7. Conclusions

This research work has been carried out using the FLRW

metric. We proposed four distinct viable models and then

tested them in the context of f(R) gravity. The findings

obtained by using the f(R) gravity in the context of

wormhole modelling can also be discussed by mentioning

the past works presented in Ref. [62–68]. We assumed that

the fluid was perfect and hence obtained modified Fried-

mann equations using solutions of the field equations.

Then, by modifying gravity, we separated the two func-

tions (qnet and Pnet) and acquired the corresponding useful

EoS. Following that, we examined the bouncing behavior

of our proposed models with respect to cosmic-time t to see

whether they were viable in the f(R) gravity background.

Keeping in view the bouncing behavior, we achieved a

bounce state at the stage of bounce and demonstrated the

corresponding cosmological parameters. Furthermore,

using parametrization of the r(z) function, we reconstructed

the gravitational constant f(R) in terms of the red-shift

component and thus expressed corresponding cosmological

parameters using red-shift z, specifically the Friedmann

equations and the effective EoS. We then studied the nature

of EoS along with effective energy density and pressure

using red-shift, which resulted in: qnet emerging as positive

while Pnet emerged as negative. Additionally, the variance

of xnet showed that the EoS crosses over the phantom step.

This important result agrees with the idea that the universe

Fig. 8 The energy density, qnet, in terms of red-shift

Fig. 9 The pressure, Pnet, in terms of red-shift

Fig. 10 The EoS parameter, xnet, in terms of red-shift

Fig. 11 The speed of sound, c2s , in terms of red-shift
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is expanding gradually and also corresponds to observa-

tional results [60, 61]. We observed that there is a key role

for free parameters in drawing successive plots. These free

parameters support those choices which depend upon val-

ues of net energy density and net pressure, respectively, as

well as intersecting the xnet over the phantom divide line.

At the end, we examined the stability of the situation by

computing an arbitrary function c2s (speed of the sound) in

red-shift terms. For this, we drew a plot of c2s versus red-

shift. Resultantly, we showed in Fig. 11 that late-time

stability exists when c2s [ 0 in the original time. The

acquired results of our considered models in f(R) gravity

also establish the results presented in Ref. [69, 70].
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