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Abstract: In this article, we introduce analytical-approximate solutions of time-fractional generalized Pochhammer-Chree
equations for wave propagation of elastic rod by means of the g-homotopy analysis of the transform method (g-HATM). In
the Caputo sense, basic concepts for fractional derivatives are defined. Several examples are given and the results are
illustrated via some surface plots to present the physical representation. The results show that the current methodology is
productive, powerful, efficient, easy to use, and ready to incorporate a wide variety of partial fractional differential

equations.
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1. Introduction

The fractional analysis is defined as an enhancement of the
principles of classical order integral and derivative part of a
conventional investigation to fractional order. Fractional
analysis has been widely applied over the last century in
the fields of engineering, physics, and biology in associa-
tion with mathematics. The key explanation for this is that
many phenomena such as propagation and wave motion,
chaos, viscoelasticity and damping, filtering and irre-
versibility, controller architecture can be modeled and
explained more specifically using fractional analysis. As a
consequence, nonlinear partial fractional differential
equations (NPFDEs) have been inspired by many scientists
and researchers in recent years and have been thoroughly
researched and applied in various branches of science and
engineering for many real-life problems. As a result, many
science and engineering applications can be found and
applied via fractional NPFDEs [1-8]. Consequently, in
these listed areas, the discovery of numerical and
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analytical-approximate solutions of NPFDEs has a hugely
significant and special role. The most significant distinction
between classical and fractional analysis is that there is no
single derivative concept as in classical analysis. The
occurrence of diverse derivative description with fractional
calculus (FC) opens the door for considering the most
suitable one for the model’s form and thus obtaining the
best solution to the problem. We have diverse and
pioneering notions for FC and while there are transitions
between them, they vary in terms of their meanings and
their physical representations of their definitions. In this
article, we preferred to apply Caputo derivative definition,
which is the most popular one, for its practicality and
compatibility with classical initial conditions.

Some of the classical approximate and analytical tech-
niques for fractional differential equations (FDEs) have
been developed to date are optimal homotopy asymptotic
method that was implemented to Klein-Gordon, diffusion,
wave-diffusion and telegraph equations [9, 10], differential
transform method for system of equations and finance
equation [11, 12], homotopy perturbation method for sys-
tem of partial equations and Riccati equation [13, 14], finite
difference method for Burger—Fisher equation [15],
homotopy analysis method for Burgers—Korteweg—de
Vries equation and Whitham-Broer—Kaup equation
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[16, 17], reproducing kernel Hilbert space method for lin-
ear and nonlinear partial and Robin equations [18, 19],
residual power series method for Burgers—Kadomtsev—
Petviashvili and Burgers’ type equations [20, 21], g-ho-
motopy analysis method for Lax’s Korteweg—de Vries and
Sawada—Kotera equations and Noyes—Field model [22, 23]
and so on.

In this article, our goal is to study the Pochhammer—
Chree (PC) equation using the g-homotopy analysis
transform method (g-HATM) [26-32]. The PC model is
given as

O*ulx, 1 o? n
Diu(r.t) = S O (B ute) + o ()

+ B (x,1)),  1<p<2, 1>0,

(1)

where m is a positive number and f, f5,, and f; are con-
stants. This is a model of an elastic rod’s longitudinal
vibrations. It is a simplified version of the well-known
equation called the regularized Boussinesq equations, an
important model that basically explains the propagation of
long waves in regimes where water is shallow and waves,
like the other Boussinesq equations, have small amplitudes.
The (¢-HATM is the result of combining the (g-HAM and
the Laplace transform method. This method employs two
convergence control parameters, n and 7, to help modify
and regulate the solution’s convergence region. Many
scholars have recently used the proposed approach to find
solutions for differential equations illustrating various
models and phenomena associated with fractional calculus
and have presented numerical simulations to verify the
accuracy of the method.

The paper structure is proposed as follows. The basic
theory of fractional calculus is presented in Section 2. The
projected algorithm for the considered equation is devoted
to Section 3. Solutions for the considered equation are
presented in Section 4. Finally, the paper is ended with a
conclusion section.

2. Preliminaries

We recall some essential notions of FC and Laplace
transform.
Definition 1 The Riemann-Liouville fractional integral
of f(r) € C5(6> — 1) is defined as
1 t
T = —— / (1 — 9)F " F(B)do. 2)
r (N) 0

Definition 2 In the Caputo sense, the fractional derivative
of f € C", is presented as

io] =
dr ‘Lt 1/’7
{Mj(; (z‘719)"7”71f('7>(19)d197 n—1l<u<n, neN.
(3)
Definition 3 The Laplace transform (LT) of DIf(r) is
given by

Dif (1) =

n—1
g[pﬁlf(f)} =s'F(s) — Zs“_’_lf<"> 0", n—-1<u<n,
r=0

(4)

where F(s) is symbolize the LT of £(¢).

3. Projected algorithm for considered equation

Here, we illustrate procedure of hired scheme [33-37] for
P-C model defined in Eq. (1) for the case when n = 1 given
as

*u(x, 1)

or2ox?
2

0 . A
2z (Bl )+ ol (1) + o (6,0)), 1> 0, 1<p<2,

(5)

Diu(x,t) =

subjected to
u(x,0) = f(x) and u;(x,0) = g(x), (6)

where DHu(x, t) represents the Caputo fractional derivative
of u(x,r). Here, u(x,t) is a bounded function. Now, we
obtain the following equation by applying LT on Eq. (5)

2 [u(x,1)] —% Fx)] - slz [g(x)]

1 *u o 2
s+ (Bt + i) )

+ Byu (x, t))} =0.

The nonlinear is contracted as follows:

Nlol = 21g] = )] - 5 o] - 5 #{ s
+%(ﬁ1¢+ﬂ2¢2+ﬁ3w3)}, (8)

where ¢ € [0,1]. Then, the homotopy is construct as
(1 =ng)Z [ — uo(x,1)] = hgN [g], )

where ¢ is signifying LT. For ¢ =0 and q:%, the
following conditions satisfies;
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o0 =ulen)  o(xh ) =uso). (10)

By using Taylor theorem, we consider

u(x,t;,q) = uo(x, 1) + f: U (x,0)g", (11)
m=1

where

i) = 2 SO (12)

For the proper chaise of uy(x, 7), n and 7, the series Eq. (12)
converges at ¢ = 1/n. Then

u(x, ) :uo(x,t)—l—i:um(x,t)(l)m. (13)

m=1 n

After differentiating Eq. (13) m-times with ¢ and
multiplying by 1/m! and substituting ¢ = 0, one can get

$[um(x, 1) — kptm—1(x, t)] =R Um_1), (14)
with

7,,,:{140, Ui, ..., um}. (15)
Eq. (12) reduces after employing inverse LT to

U (X, 1) = kiptty—1 (x, t)—i—hff’l[Rm(Wm_])}, (16)
where

R (1) =2 [ 106,0)] = (1-2) E{ﬂx)} +S%{g<x}}

1 M, 0
_ L) Ztml Y
sH j{ 0r20x2 + ox2 <ﬁ1um71

m—1

m—1 j
+ 5, Z Ujllyy—1—j + B3 Z Z uiuj—ium—l—j}v
(17)

J=1 j=1 i=1

0 m< 1,
ky = (18)

n otherwise.

From Eq. (16), in addition to Eqgs. 17 and 18, we have

ki
U = (ko + )ity — h(1 - ;) o (x, )

1 Ot 0?
o -1 m—1 e
" [s”g { e o (P
m—1 m—1 j
B>ty B YD i) }] .
=1 =1 =1
(19)

Here,

up(x,1) = #7! E {f(x)} +S12{g(x}}. (20)

Finally, the g-HATM solution is

u(x t)—iu (l>m (21)
) - ot m n .

Here, we illustrate the convergence analysis of considered

scheme for projected model.

Theorem 3.1 (Uniqueness theorem) By the help of con-
sidered scheme, the achieved solution for the PC Eq. (5) is

unique wherever 0<)<1, where A= (k,+h)-+ Fz{é‘l1
+85 (B + Bo(P + Q) + B5(P* + Q> + PQ)) } T.

Proof The solution for consider equation defined in
Eq. (5) is presented as

u(x, 1) = gum(%yz (22)

where u,, is defined in Eq. (19). If possible, let # and w be
the two distinct solutions for Eq. (5) such that |u| <P and
|w| <Q, then
1 ot d'w

_ — _ _ppl) | 27
|u — w| ‘(km +h)(u—w)—he {sl‘ & {aﬂaxz 3raa

62
+ g (w4102 =)+ e - )]}

(23)

Now, we get the following result by applying convolution
theorem for LT

o*u o*w
0r20x2  0r20x?

1
[ — w| =(km+h)\u—w\+h/ <
Jo

(="
T+ 1)

' aaiz (B e =) + pale? =) 4 B =) D

t 64 62
S(karh)\M*WHh/o <W|M*W\+@(ﬁl|ufw|

(= 9"

+ ﬁz}(“—w)(“*‘w)‘+/53|(”—W)(M2+MW+W2)|F(H+1)dé
S(karh)\u—w\th/t (54—l + S {Bylu—w
0
_ o
Bl wl(P Q)+ il wl(P + PO+ @) {0

4 4 2 2 .
where 0] = aﬂaﬁ and 65 = 837. By the help of integral
mean value, the above equation reduces to

= wl < Ju = wl ((kn + 1) + 1{6} + 33(B, + Ba(P + ©)

+ B(P* + PO+ 0))}T) < fu— wlh.
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Thus, (1 —Z)|u —w|<0. Since 0<l<1, we conclude
that |u —w| =0 = u =w. This completes the required
result. |

Theorem 3.2 (Convergence theorem) Suppose p is a
Banach space and F : o — g is mapping. Suppose for
Yu,v € p

1F(u) = FO)[| < Afju — v, (24)
then there is a fixed point for F [24, 25]. Further, the
sequence converges to fixed point of F with an arbitrary

choice of uy, vy € p and

n

[t — un | < [lur = uol|- (25)
1—4

Proof Let (p[J],]']) be a Banach space of J with

||g()||—max|g(t)|. First, we prove {u,} is Cauchy

sequence in (p[J], ||-||)- Now, consider

lltt — wn|| = nfleajxmm — Uy

a Up—1
= max (ki + 1) (U1 — Up—1) — HL™ Lﬂf[ 3200
a Up—1 62
- 0r20x2 @ (ﬁl (umfl - unfl) + ﬁZ(ui—l - uifl)
+ B3 (uy,y — ”Z1))H
< Ky + h Il &ty
_r?éajx (m"" )|um 1 — Up— l| - # HW
upy) O s )
- atzaxz‘ + ) (ﬁl |t -1 — tp—1| + ﬁ2|“m—l - un—l’
+ .33|”r3nq - “,311|)H }
(26)

With the help of convolution theorem for LT, we obtain

it =t} < max { (o + 1) 11 u,,,l)|

Sty Otuy
_h/o (‘W_ atzaxz’ 6x2 (ﬁ U1 —

(t-9)"
u,3n—1 - ui—l D}mdf

<max{(k + )|ty — Up—1| — 1 /(5‘1‘|um_l — Uy
0
+ b2(ﬂ1 |um71 — un71|(P + Q)
Y
+ﬁ3|um71—un71|(P2+PQ+Q2))} (r—29) i

T
(27)

un—l|

+ .32’”31—1 - “i—l‘ + B4

- un71| + ﬂ2|umfl

By using integral mean value theorem [24, 25], the Eq. (27)
simplifies to

||um7un|\<max{(k + B) |t — tp—1|

+ h(éﬂumfl - un71| + 52( ]‘Mm,1 - un71|
+ Bolttm—1 — tn-1|(P + Q) + Paltm-1 (28)
—up_|(P? + PO + Q2))T}
ltm — wnl| < Allthim—1 — 1.
Form=n-+1;
||un+l - M,,H < /AtHun — Up—1 H < ;LzHun—l - un—Z” <
< A|uy — uo|.
(29)
On using triangular inequality, we have
Hum - unH S ||un+1 - un“ + ||un+2 — Upt1 ” +... .+ ”um — Un—1 ”
| [T |
<A+ 2+ 22+ 42" Y |y — wo|
1= jmn 1
S) (ﬁ) Hu1 — MOH‘
(30)
Since 0</i<1, we have 1 — /" "1 <1, then
n
””m*“an ||”1 *MOH- (31)
1—4
But |lu; —upl|<oo consequently as m — oo than

|t — ]| — O, and which gives {u, } is Cauchy sequence
in p[J]. Hence, {u,} is convergent sequence which com-
pletes the required result. O

4. Solutions for the considered equation

Here, we consider three cases of Eq. (5) to confirm the
applicability and efficiency of the hired algorithm.

Example 1 Consider Eq. (5) at ; #0, f, # 0 and f; =
0. Then, we have

otu O
W+@(ﬁlu+ﬁ2u2), (32)

subjected to

Diu =

u(x,0) = f(x) = [fl sech?(x), (33)
2
u(x,0) =g(x) = —~+——— ﬁlﬁl tanh(x) sech %(x). (34)

By the help of projected algorithm, we have
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Up (x, 1)
= (ki + Bttt — h(l - %")MO(X, 1)

Example 2 Consider Eq. (5) at §; #0, f, =0 and f; #
0 and then we have

dtu
i = 4 3 39
1 o*u, P (35) Dju(x,t) 020x2 + o2 (Blu + Bsu ), (39)
— ! f 20,2 + 5 o2
i x subjected to the initial conditions
62 m—1
el 1 V2
5 ax2;”’”’" ! ) H u(x,0) = £(x) = —Y2P and wy(x,0)
- V—Pix+ )
where _ ‘/iﬁl (40)
[g 4[3 B Vv =Bs(x + $)*
uo(x,1) = — =L sech?(x) + -4/ — = tanh( ) sech?(x). . .
ﬁz By By the help of projected algorithm, we have
(36) k,,
U (x,1) = (ki + B)t—1 (x, 1) — B 1 — — Jup(x, 1)
From Egs. 35 and 36, we have n
_ o) / — e [ig{ " arar +a—2<ﬂ 1 4
) OB OBy 2Nt 1) < 4f; - 18/31/2 ) st [ Uy ax2 \"T (41)
> 3 - sec m71 d
(1\/—[)'7 (’% cosh(\/-_ W 9ﬁ ﬁ3x> 4 h* (V 443 18/3 /32 + ﬁ3z (Z u,ul,]) l/lml,'):| :| ;
40 . I 15 i=0 " j=0
+ 6\/[f—3/i2r (ISSmh( m ) 2sinh (% Y=Y ﬁ;x>> .
> > where
3 5 . 2 B
X sech ( 4/% - 18/;1/33X> — 541\/5/3,/12/33t(c0sh (\/i Z/fz OB ) 2) Zﬁ \/iﬁ
i cosl L sech? ﬁz M()(x, t) - L +t 1 . 42
+ 360 ‘[M”<2 f (‘[ 252795 By ) 3) " ( g 186 Bs ) \/_—ﬁ%(x +¢) \/Tﬁ%(x + d’)z )
3 i 2 . ip . . .
— 162f, 3 sinh (\/5 TN +216/‘ £ ‘““( Py lgﬂ A )) On simplifying the forgoing equations, we get
37)
With the help of Eq. (35) other terms can be achieve. The
0 (x, 1) he (2v2} (42} — 908, 2(x + )
X1 == I\ L 1
C(a+ 1) (/—B3(x + ) (43)
+ 3V/Bit(x+ ) (% + 2x¢ + ¢ —20) + (x + ¢)’ (F + 2x¢p + ¢* — 12))),
3
24\/2[327121‘2“72 7 36
up (x, 1) =(n + R)uy (x,1) + 1 3276%t" + 11484671 (x + ¢)
S 1
- 30ﬁ%1t5(x + ¢)*(122% + 24x¢p + 12¢> — 517) — 2821* (x + ¢) (308x> + 616x¢
+ 3082 — 4995) + B (x + )} (—25242 — 12601 + 5 + 203 + 15x2(242 — 21) (44)
+ 10xp(2¢% — 63) 4 5¢* — 315¢* + 1512) + B, (x + ¢)°(—4200% — 12600 + x* + 45>
+ X2(6¢7 — 45) + x(4¢° — 90¢) + ¢* — 45¢% — 504) + Sa(u + 1)\/Byt(x + ¢)° (x* + 2x¢
+ ¢F = 42) + (1 — Dux + ¢) (2 + 2x¢ + ¢* — 30)).

analytical result for the corresponding equation is

2B, | B
—ﬁ—2sech2(x— —?t).

u(x,t) = (38)

Further terms can be obtained with the aid of Eq. (41). The
corresponding analytical result is
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u(x,t) = Y ! 4 U (x, 1) = (ki + B)ty—1(x,2) — h 1——k up(x,
( 7t) /—ﬂ3( /—ﬁlt ) ( 5) m( at) (m ) U ( 7t) ( ) O( t)

10Uy O
—hz L g{ 0r2ox? + ox? (ﬁluml
Example 3 Consider Eq.(5) at §; # 0,5, # 0 and ; # 0

and then \ * ﬁzz ki ﬁ3z (Z u]u,-,j) umli) H ’

4

i=0 j=0
0 o? 49
Dtu(x,t) = aﬂiau)ﬂ ) (Byu+ Bort* + i’ ) (46) (49)
where
subjected to 5
Ba Ba
- B, - uo(x,t):—§<l—tanh(x TN ))
u(x,0) = f(x) = A (1 tanh< TTREETYN 9/31/53)) B 3 ﬂ( 5= 9B1Bs)
2 h2 2 _

W TR ( 206 - 9m)>

and (50)
2

(x,0) = 2 ech? 2322 . (48) On solving the above equations, we can obtain
0/ — ﬁ3 (2/32 - 9ﬂ1ﬁ3)

Rt ; /
) = (972877 (9B, B5 — 252))T(oc + 1) (ﬁé sech < 4p3 — 18ﬁ1ﬁgx)
X <iﬁﬁ§r3 <3cosh<f2 Z‘Fﬁ%—ﬂiﬂlﬂsa —4) sech4( AT 18[31[3; >
+ 6\/Eﬁ‘2‘t2(13sinh (, /mx) — 2sinh ( T 18B ﬁ3x>) o
x sech3<1 /élﬁﬁ—ﬁilgsmﬁf) - 54iﬁﬂ1/>’zﬁ§t(cosh (ﬁ % ) 2)

2> — 9P Bs

o BN 2 L
+ 361\/§ﬁ2/33t<2C05h (ﬁ 2ﬁ§—9ﬁ1ﬁ3x> 3) sech ( 45 — 18P, s )

_ 5/2 . ﬁig) 2 3/2 ( L ))
16243, p5'* sinh (\/5 2ﬁ§ Yy +216p; tanh 432 1355

By the help of projected algorithm, we have Further terms can be obtained with the aid of Eq. (49). The
corresponding exact results is

_ =By 26 )
u()c,t)—3ﬁ3 (1 —ta h( ( - 9[31ﬁ3(x ct) ),

(52)
98,5253
where ¢ = 31/%.
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Table 1 Numerical stimulation for Example 1 at 77 = —1,n=1, , = —1.5, f, = 1, p = 2 for different x and ¢
xlt 0.01 0.02 0.03 0.04 0.05
0 2.39536 x 1073 9.52573 x 1073 2.12238 x 1072 3.72103 x 1072 5.70930 x 1072
2.5 2.60790 x 107> 1.02801 x 10~ 2.27659 x 10~ 3.97830 x 107 6.10184 x 107+
5 3.32879 x 1077 1.35988 x 107° 3.12339 x 107° 5.66558 x 107° 9.02838 x 107
7.5 2.25085 x 1077 9.19657 x 107° 2.11260 x 1078 3.83266 x 1078 6.10843 x 1078
10 1.51664 x 107! 6.19675 x 10711 1.42349 x 10710 2.58249 x 10710 4.11594 x 10710
(a) (b)
0.8 0.8
0.6¢ 0.6
u q-ll.\'l'x|0'4 Upxact =
0 0.2
0.0{'0\\ 0.0
5
(c) /
1.x107° E<
0
—1.x107°¢
UAbs. Err. 0.000
—2.%X1070 <
10
0.005
5
_100-010
Fig. 1 Nature of (a) ¢-HATM, (b) exact results, and (c) absolute error for Example 1 atn =1, 1= -1, =—1.5,,=1,and p =2
5. Results and Discussion ' ' Y ' ' 5
\ m=

In the present study, we find the solutions for the gener-
alized Pochhammer-Chree equations with the assist of an
efficient solution procedure (i.e., ¢-HATM) and captured
corresponding consequences. The considered model illus-
trates the stimulating consequences of the wave propaga-
tion of elastic rod. Three cases are hired to illustrate the
efficiency and applicability of the method with nonlinear
differential equations without hiring any perturbation and
dissertation. The numerical comparison study has been
carried between exact and achieved results for Example 1
and cited in Table 1, and it confirms as space increases the
accuracy of the attained series solution is also increase.

u(x, t)

Fig. 2 Nature of achieved results for Example 1 for distinct u at
t=01,n=1hr=—-1,f =-15and ff, =1
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Further, the nature of archived for three cases is captured
for diverse fractional-order and with respect to parameters
are associated with the method. For the fractional
Pochhammer-Chree equation is studied in Example 1, the
surfaces of the exact solution with achieved results in terms
of absolute error are presented in Fig. 1 and the effect of

u(x, t)

~<o
=<

Fig. 3 h-curves for Example
15 =1,t=005and x =2

1 for different pu at n=1, f;, =

(a)

Ug—HATM

fractional order in the obtained results, in this case, is
presented in Figs. 2, 3 with the change in x. We can
observe from Fig. 2 that, between the range [-1.5,2.5 ],
nature is stimulating for fractional order (p = 0.50). For
Examples 2, 3, the comparison of obtained consequences
with analytical results are, respectively, cited in Figs. 4, 5,

Fig. 5 Nature of achieved results for Example 2 for distinct u at
n=1h=-1,=15p3=—-05ando=—-1,¢p=1landx=1

(b)

Fig. 4 Nature of (a) g¢-HATM, (b) exact results, (c) absolute error for the Example 2atn =1,1=—1, f; = —1.5, 3 =-05,0=—-1,¢ =1

and u =2
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6, 7, and also the effect of fractional order is demonstrated
in Figs. 5, 8. Specifically, we can observe from Fig. 7, the
q-HATM results are accurate and confirmed with a small
absolute region.

The considered algorithms offer parameters, which can
assist for the converges region of the obtained solution with

0.50f L p=2
N u=175
0.45F \\ — — — 4=150
\
~ 040} .
< \
=
T 035f L
RN \
030f ~~e N
S~ AN
S-a ~
0.25F Tt S
30 -25 -20 -15 -10 -05 0.0
h

Fig. 6 h-curves for Example 2 for different y at n =1, ff; = 1.5,
p3=—-0506=-1,¢=1,r=005x=38

(a)

6
4

U g-HATM 2
0_

20 0.0

(©)

0.00020
0.00015
0.00010
Uaps. ErD.00005

0.00000 53

-10

the assist of the axillary parameter or homotopy parameter
() and which is presented in Fig. 3 for Example 1 with
distinct order and it can assist us to adjust and control the
convergence of the obtained results by modulating its value
with n. Precisely, the flat line segment authorizes the

u(x, t)

Fig. 8 Nature of achieved results for Example 3 for distinct u at
n=1h=-1,4=15p=1,p=—-0landt=1

0.05

20 0.00

Fig. 7 Surfaces of (a) g-HATM result, (b) exact result, (c) absolute error for Example 3 withi=—-1,n=1, f;, =15, ; =1, 3 =—0.1, and

p=2
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0.172F 7
u=2
0170 S~ L= 175
0.168" 4=150
. 0.166] 1
—_-~
H 0164 ]
S
0.162 1
01601 T TTTTTTTee——l ]
0.158 1 —— Tl
-2.0 -15 -1.0 -05 0.0

Fig. 9 h-curves for Example 3 for distinct uatn =1, §; = 1.5, f, =
I,fj3=-01,0=—-1,¢=11t=001l,andx =5

convergence region with exact results. For Examples 2, 3,
the (%)-curves are, respectively, presented in Figs. 6, 9 with
a small time for the particular values of the other param-
eters. Moreover, with seized records, we can realize that
the considered equations exceptionally be contingent on
the order and give a huge degree of freedom for general-
izing with fractional order. Also, this investigation may
support to illustrate miscellaneous types and assist to sei-
Zure more consequences.

6. Conclusions

In this research, the time-fractional generalized Pochham-
mer-Chree partial differential equation occurring in longi-
tudinal vibrations of an elastic rod has been implemented
with a reliable tool, namely the q-homotopy analysis
transform method. Using the Caputo derivative definition,
with three separate examples, effective approximate results
of the equation have been obtained. Then, the surface plots
are presented to illustrate approximate solutions. It is
therefore shown that the approach is very powerful and
could be used in various forms of FPDEs occurring in
various fields of mathematical physics.
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