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Abstract: Stochastic resonance (SR) phenomenon for a fractional linear oscillator with memory-inertia and memory-

damping kernels subject to multiplicative noise and additive noise is investigated. The correlation intensity between the

two noises is modeled as a time-modulated one. The amplitude gains for the input signal and that for the time-modulated

correlation signal are derived. Analysis results show that SR phenomenon occurs when the two amplitude gains vary with

the fractional exponent, vary with the intensity of the multiplicative noise, as well as vary with the frequency of the input

signal and with that of the time-modulated correlation signal.

Keywords: Stochastic resonance; Fractional linear oscillator; Memory-inertia; Memory-damping; Time-modulated
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1. Introduction

Stochastic resonance (SR) is a nonlinear phenomenon

occurred in a noisy system, which means that, owning to

the cooperation between the system and the noise, the

system output performance (signal amplitude, signal vari-

ance, signal-to-noise ratio, etc.) can be improved with the

presence of certain amount of noise [1–11]. The SR in a

broad sense indicates the non-monotonous dependence of

the system output on the parameters of the noise and on

those of the system. Many previous works of SR are con-

centrated on nonlinear noisy system driven by Gaussian

white noise and some non-Gaussian colored noise. How-

ever, in sensory system, particularly one kind of crayfish as

well as results for rat skin, the noise source in neural sys-

tem could be non-Gaussian stochastic processes: bounded

noise [12–16]. In general, the bounded noise can be

expressed as a harmonic function with a constant average

frequency and a random phase varying as a unit Wiener

process. Owning to possessing finite power, the bounded

noise can simulate environmental noise more realistic and

has wide application [17–19]. For example, in practical

engineering application, telegraph noise, i.e., dichotomous

Markov noise is such a kind of bounded noises [16]. Thus,

the investigation of SR phenomenon with bounded noise is

of great significance.

Thanks to the advantages of time memory and long-

range spatial correlation, fractional calculus can describe

physical processes and biochemical reaction processes with

memory and path dependence. It has been shown that many

physical and biochemical processes, as well as materials

and media have memory. Fractional calculus is widely used

in the study of anomalous diffusion, chaos and viscoelastic

materials [20–25]. The containment control of linear dis-

crete-time fractional-order multi-agent systems with time-

delays [20], the dynamical behavior of a fractional-order

mutualism parasitism food web module [21], as well as

fractional Brownian motions ruled by nonlinear equations

[22] has been investigated. The dynamic behavior for a

fractional-order delay tumor-immune system [23], the

nonlinear dynamic [24] and stability analysis [25] for a

fractional-order rotor-bearing-seal system has also been

studied.

In addition, the SR for fractional linear oscillators has

been paid much attention. SR for a fractional linear oscillator

with trichotomous noise [26], and stochastic multiresonance*Corresponding author, E-mail: linstu@163.com; guofen9932@

163.com
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for a fractional linear oscillator with random damping sub-

ject to signal-modulated noise [27] and with fluctuate

damping and time-delayed kernel subject to quadratic noise

[28] has been researched. The SR for an underdamped

fractional oscillator with fluctuating frequency subject to

trichotomous noise [27] and signal-modulated noise [29], as

well as the SR for a linear oscillator with random frequency

and two kinds of fractional derivatives driven by dichoto-

mous noise [30] has also been investigated. The SR for a

fractional oscillator with random mass driven by trichoto-

mous noise [31] and signal-modulated noise [32], as well as

the SR for a two coupled fractional harmonic oscillator with

fluctuating mass [33] has also been studied. Several quanti-

fiers have been used to characterize SR in noisy dynamic

systems, such as signal-to-noise ratio (SNR), the average

output amplitude gain, or the spectral amplification (SPA),

etc. SNR is often used in various nonlinear and linear noisy

systems [1–7], while the average output gain is usually used

in linear systems [26–33]. In this paper, we use the average

output gain to describe the non-monotonous behavior for the

system output signal.

As described above, many works have been done on the

investigation of the SR phenomenon for a fractional

oscillator with memory-damping [26–33], little attention

has been paid on the non-monotonous resonance behavior

for a fractional oscillator with two kinds of memory ker-

nels. In the following section, we will introduce this kind of

oscillator and analyze the SR phenomenon occurred in the

oscillator.

2. The fractional linear oscillator with memory-inertia

and memory-damping

There are large number of electric and magnetic phenom-

ena where the fractional calculus can be used [34–41]. A

fractional capacitor model has been proposed based on

Curie’s empirical law [35]. A fractional-order Chua’s

system based on the concept of Chua’s oscillator with

fractional derivatives has been considered [36]. A second-

order filter [37] and an asymmetric-slope band-pass filter

[38] with a fractional-order capacitor has been studied.

Fractional inductor and fractional capacitor have been used

in an LC tank circuit [39], used in a fractional-order mul-

tiple RLC circuit [40], as well as used in a fractional-order

low-pass filter circuit [41]. The Caputo definition of a

fractional derivative is usually used in electric circuit and

communication system because the initial conditions for

this definition take the same form as the more familiar

integer-order differential equations [34–41]. The relation-

ship between the voltage vcðtÞ and the current icðtÞ for a

fractional-order capacitor C can be given by [34, 35]

vcðtÞ ¼
1

CCðaÞ

Z t

0

iðsÞ
ðt � sÞ1�ads; ð1Þ

where Cð:Þ is the Euler’s Gamma function, a is the

fractional exponent, 0� a� 1. Now we consider a serial

RLC circuit consisting of a resistor R, a fractional capacitor

C and an inductor L. Based on electric circuit theory, the

voltage for the fractional capacitor satisfies the following

equation

LC

Z t

0

€vcðuÞdu
Cð1 � aÞðt � uÞa þ RC

Z t

0

_vcðuÞdu
Cð1 � aÞðt � uÞa þ vcðtÞ

¼ viðtÞ;
ð2Þ

where viðtÞ is the input voltage supply of the RLC circuit,

€vcðtÞ ¼ d2vcðtÞ=dt2, _vcðtÞ ¼ dvcðtÞ=dt. One can see that

system (2) denotes a fractional linear oscillator. From the

point of view of the force on an object, the first part of the

left side of Eq. (2) indicates an inertia force, and the second

part a damping force. Thus, Eq. (2) denotes an oscillator

with two kinds of memory kernel, i.e., one memory-inertia

kernel and one memory-damping kernel. Let b ¼ R=L,

x2
0¼1=

ffiffiffiffiffiffi
LC

p
, viðtÞ ¼ f ðtÞ ¼ A cosðXAtÞ, xðtÞ ¼ vcðtÞ, and

considering the resistor fluctuation nðtÞ and the external

environment noise, one can obtain the following equation
Z t

0

€xðuÞdu
Cð1 � aÞðt � uÞa þ ½bþ nðtÞ�

Z t

0

_xðuÞdu
Cð1 � aÞðt � uÞa

þ x2
0xðtÞ

¼ x2
0A cosðXAtÞ þ gðtÞ;

ð3Þ

here b and x0 are the damping coefficient and natural

frequency of the oscillator, respectively. A and XA denote

the amplitude and frequency of the input signal,

respectively. gðtÞ is an external environment noise from

the environment temperature, with zero mean and noise

strength Q. nðtÞ is a dichotomous noise [16], i.e., a kind of

bounded stochastic process [12–15], nðtÞ ¼ �a, with zero

mean and correlation function

nðt1Þnðt2Þh i ¼ a2 expð�k t1 � t2j jÞ ¼ D expð�k t1 � t2j jÞ;
ð4Þ

where D and k are the intensity and correlate rate of the

dichotomous noise, respectively. The correlation noise

intensity between multiplicative and additive noises is

always assumed as a constant, yet in an actual physical

system, noise and time varying signal may appear

multiplicatively, so that the former is modulated by the

later, i.e., the noise strength varies periodically with time.

For example, at the output of an amplifier in optics or radio

astronomy, periodically modulated noise should be used

3066 Xuan Lin, Feng Guo



[42]. The SR in a double-well potential with periodically

modulated noise has been investigated [42]. SR driven by

time-modulated correlated white noise sources [43], and

SR in bistable systems driven by correlated periodically

modulated additive and multiplicative noises [44] has been

analyzed. Moreover, Stochastic multiresonance in a single-

mode laser with periodically modulated noise [45] has been

studied. In this work, we assume that the correlation

strength between gðtÞ and nðtÞ is a time-modulated one,

which can be given by [43–45]

nðt1Þgðt2Þh i ¼ 2
ffiffiffiffiffiffiffi
DQ

p
qðtÞdðt1 � t2Þ; qðtÞ¼qB cosðXBtÞ;

ð5Þ

where qðtÞ denotes the strength of the time-modulated

correlated noise, with amplitude qB and frequency XB,

respectively. It is worth to mention that, to maintain the

positivity of the perturbed damping coefficient, it must be

bþ nðtÞ[ 0. Since nðtÞ is a bounded noise [16],

consequently it must be b� a[ 0. Since D ¼ a2, this

result in the constraint b[
ffiffiffiffi
D

p
. In the following contents

of this paper, the parameters are appropriately selected to

satisfy this condition. To find the system output amplitude,

one can apply statistical average on both sides of Eq. (3),

then one obtains
Z t

0

€xðuÞh idu
Cð1 � aÞðt � uÞa þ b

Z t

0

_xðuÞh idu
Cð1 � aÞðt � uÞa

þ e�kt
Z t

0

eku nðuÞ _xðuÞh idu
Cð1 � aÞðt � uÞa þ x2

0 xh i

¼ x2
0A cosðXAtÞ ð6Þ

Multiplying nðtÞ on both sides of Eq. (3), one get

e�kt
Z t

0

eku nðuÞ€xðuÞh idu
Cð1 � aÞðt � uÞa þ be�kt

Z t

0

eku nðuÞ _xðuÞh idu
Cð1 � aÞðt � uÞa

þ D

Z t

0

_xðuÞh idu
Cð1 � aÞðt � uÞa þ x2

0 nxh i

¼ 2
ffiffiffiffiffiffiffi
DQ

p
qB cosðXBtÞ

ð7Þ

Using the Shapiro–Loginov procedure [46], one can

obtain the following equations

d

dt
nxh i ¼ n _xh i�k nxh i; ð8Þ

n€xh i ¼ d

dt
þ k

� �2

nxh i ð9Þ

Let xh i ¼ x1; _xh i ¼ x2; €xh i ¼ x3; nxh i ¼ x4; n _xh i ¼
x5; n€xh i ¼ x6, one can easily find that

x2 ¼ _x1; x3 ¼ _x2 ð10Þ

Applying Laplace transformation (LT) on both sides of

Eqs. (6)-(10), i.e., xi LT�!Xi; i ¼ 1; 2; :::; 6, one can obtain the

following six equations

X2 ¼ sX1; X3 ¼ sX2 ð11Þ

X5 ¼ ðsþ kÞX4; X6 ¼ ðsþ kÞ2X4; ð12Þ

sa�1X3 þ bsa�1X2 þ ðsþ kÞa�1X5 þ x2
0X1

¼ LT ½x2
0A cosðXAtÞ�; ð13Þ

ðsþ kÞa�1X6 þ bðsþ kÞa�1X5 þ Dsa�1X2 þ x2
0X4

¼ LT ½2
ffiffiffiffiffiffiffi
DQ

p
qB cosðXBtÞ� ð14Þ

By solving Eqs. (11)-(14), one can get the expression for

X1. Assuming the system average output has the form

xh i ¼ hA cosðXAtÞ þ hB cosðXBtÞ, applying inverse Laplace

transform, one can get, in the long-time limit t ! 1, the

system output amplitude gain for input signal f ðtÞ and that

for time-modulated correlated signal qðtÞ, respectively, i.e.,

GA ¼ hA
A

¼ x2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2
2A þ f 2

4A

½f1Af2A þ f3Af4A � Dðf5Af6A þ f7Af8AÞ�2 þ ½f1Af4A þ f2Af3A � Dðf5Af7A þ f6Af8AÞ�2

s
ð14Þ

GB ¼ hB
qB

¼ 2
ffiffiffiffiffiffiffi
DQ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2
6B þ f 2

8B

½f1Bf2B þ f3Bf4B � Dðf5Bf6B þ f7Bf8BÞ�2 þ ½f1Bf4B þ f2Bf3B � Dðf5Bf7B þ f6Bf8BÞ�2

s
; ð15Þ
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where

f1i ¼ Xaþ1
i cos ðaþ 1Þp=2ð Þ þ bXa

i cos ap=2ð Þ þ x2
0; i

¼ A;B;

ð16Þ

f2i ¼ ðX2
i þ k2Þðaþ1Þ=2

cos ðaþ 1Þ arctanðXi=kÞð Þ þ bðX2
i

þ k2Þa=2
cos a arctanðXi=kÞð Þ þ x2

0; i
¼ A;B

ð17Þ

f3i ¼ Xaþ1
i sin ðaþ 1Þp=2ð Þ þ bXa

i sin ap=2ð Þ; i ¼ A;B;

ð18Þ

f4i ¼ ðX2
i þ k2Þðaþ1Þ=2

sin ðaþ 1Þ arctanðXi=kÞð Þ þ bðX2
i

þ k2Þa=2
sin a arctanðXi=kÞð Þ; i

¼ A;B;

ð19Þ
f5i ¼ Xa

i cos ap=2ð Þ; i ¼ A;B; ð20Þ

f6i ¼ ðX2
i þ k2Þa=2

cos a arctanðXi=kÞð Þ; i ¼ A;B; ð21Þ

f7i ¼ Xa
i sin ap=2ð Þ; i ¼ A;B; ð22Þ

f8i ¼ ðX2
i þ k2Þa=2

sin a arctanðXi=kÞð Þ; i ¼ A;B ð23Þ

3. Results and discussion

In the previous sections, by introducing a fractional

capacitor to a serial RLC circuit, we have obtained a

fractional linear oscillator with memory-inertia and mem-

ory-damping kernels. Considering the damping fluctuation

and time-modulated correlation noise between the multi-

plicative and additive noises, we have derived the expres-

sions for the output amplitude gains GA for the input

driving signal and GB for the time-modulated correlation

signal. From Eqs. (14)-(23), one can find that the two

amplitude gains are nonlinear functions of the parameters

of the noises and those of the oscillator. Now we discuss

the non-monotonous dependence of GA and GB on these

parameters from Figs. 1–9.

From Figs. 1 and 2 one can find that, with the increase of

the fractional exponent a, the two amplitude gains can obtain

one peak value, respectively. This phenomenon means that

the system output can be maximized by tuning the memory

exponent to an appropriate value, a similar effect to those

occurred in memory-damping oscillators with fluctuating

frequency [47] or with random damping coefficient [26]. The

resonant behavior for the amplitude gains versus the frac-

tional exponent a can be explained based on the cage effect

[48]. For small values of fractional exponent a, the force

induced by the medium is the main force, which not just

slowing down the particle but also causing the particle to

develop a rattling motion. The particle is binded by the

medium and moves slowly; therefore, the system output

signal is suppressed. As a increasing, this cage effect is

weakened and the output amplitude increases, at some values

of a it reaches a maximum value. At the same time, as the

particle moves more rapidly, the damping force induced by

the rapid velocity becomes the main force, which effectively

restricts the particle’s movement and results in the decrease

of the system output. Furthermore, from Fig. 1 and Fig. 2

one can easily conclude that the two amplitude gains also

Fig. 1 Amplitude gains versus the fractional exponent a for XA ¼ 0:5, XB ¼ 0:5, k ¼ 0:01, x0 ¼ 0:5, D ¼ 0:15, Q ¼ 0:1 for different values of

the damping coefficient b. It is shown that the amplitude gains obtain one resonant peak with the increase of the fractional exponent a and they

vary nonmonotonically with the increase of the damping coefficient b
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vary nonmonotonically with the increase of the damping

coefficient b and the noise correlate rate k.

We analyze the effect of the multiplicative noise on the

system output amplitude gains from Figs. 3, 4, 5. By virtue

of the cooperation between the noise and the system, for

some intermediate noise intensity, the system output can be

optimized, as shown from the three figures. Thus, the tra-

ditional SR phenomenon takes place, a similar effect to that

found in a memory-damping oscillator with random

damping coefficient [26]. Figure 3 shows that with the

increase of the fractional exponent a, the resonance peak of

the system amplitude gains moves to lower multiplicative

noise strength. In addition, the maximum value shifts to

small noise strength with the increase of fractional expo-

nent a or with the decrease of the damping coefficient b
and the noise correlate rate k. This suggests that, for small

values of noise intensity D, relatively small values of b and

k or relatively large values of a should be selected to

enhance the system output, as seen from these three figures.

Figure 6 shows that one peak exists on the curves of the

amplitude gains versus the signal frequencies, i.e., bona

fide SR takes place. Moreover, the resonance peaks of the

two amplitude gains become more sharper and higher with

the increase of fractional exponent a, which indicates that

Fig. 2 Amplitude gains versus the fractional exponent a for XA ¼ 0:8, XB ¼ 0:8, b ¼ 0:4, x0 ¼ 0:1, D ¼ 0:15, Q ¼ 0:8 for different values of

noise correlate rate k. The lines with no markers are the theoretical results, and the lines with markers are numerical simulation results. It is

shown that the amplitude gains obtain one resonant peak with the increase of the fractional exponent a and they vary nonmonotonically with the

increase of the noise correlate rate k

Fig. 3 Amplitude gains versus the multiplicative noise strength D for XA ¼ 0:2, XB ¼ 0:2, b ¼ 1:2, k ¼ 0:001, x0 ¼ 0:1, Q ¼ 0:1 for different

values of fractional exponent a. It is shown that the amplitude gains obtain one resonant peak with the multiplicative noise strength D and they

vary nonmonotonically with the increase of the fractional exponent a

Stochastic resonance for a fractional linear oscillator… 3069



relatively weak memory (large values of a) narrows the

system frequency band and makes it harder to tune the

system to its resonate state.

In order to examine the validity of theoretical results,

numerical simulations are performed by directly inte-

grated Eq. (3) using the method in Refs. [49, 50]. Some

simulation results are shown in Figs. 2, 4 and 6. From

these figures, one can conclude that the theoretical

results are consistent with the numerical simulations. We

point out that the frequencies of the periodic modulations

are equivalent, i.e., XA ¼ XB in Figs. 1–6, for the case

XA 6¼ XB, the resonant peak of the SNR versus the

fractional exponent and versus the multiplicative noise

strength, as well as the nonmonotonically variety of the

SNR with the damping coefficient and with noise cor-

relate rate can be also observed, as seen from Figs. 7, 8,

9.

4. Conclusions

In conclusion, in this work, by introducing a fractional

capacitor to an RLC serial circuit, a fractional linear

oscillator with memory-inertia and memory-damping is

Fig. 4 Amplitude gains versus the multiplicative noise strength D for XA ¼ 0:2, XB ¼ 0:2, a ¼ 0:99, k ¼ 0:001, x0 ¼ 0:1, Q ¼ 0:01 for

different values of the damping coefficient b. The lines with no markers are the theoretical results, and the lines with markers are numerical

simulation results. It is shown that the amplitude gains obtain one resonant peak with the variety of multiplicative noise strength D and they vary

nonmonotonically with the increase of the damping coefficient b

Fig. 5 Amplitude gains versus the multiplicative noise strength D for XA ¼ 0:2, XB ¼ 0:2, a ¼ 0:99, b ¼ 1:2, x0 ¼ 0:1, Q ¼ 0:01 for different

values of noise correlate rate k. It is shown that the amplitude gains obtain one resonant peak with the increase of the multiplicative noise strength

D and they vary nonmonotonically with the increase of the noise correlate rate k
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obtained. The correlation intensity between the multi-

plicative and additive noise is assumed as a time-variant

one. By virtue of the characteristics of the dichotomous

noise and that of fractional calculus, using Laplace

transform, the long-time system output amplitude gains

for the input signal and that for the time-modulated

correlation signal have been derived. One-peak resonant

phenomenon has been observed on the curves for the

two amplitude gains versus the fractional exponent and

versus the multiplicative noise intensity. A resonance

behavior of the amplitude gains as a function of the

input signal frequency has also been observed.

Fig. 6 Amplitude gains versus the signal frequencies for b ¼ 0:7, k ¼ 1, x0 ¼ 0:5, D ¼ 0:4, Q ¼ 0:2 for different values of fractional exponent

a. The lines with no markers are the theoretical results, and the lines with markers are numerical simulation results. It is shown that the amplitude

gains obtain one resonant peak with the variety of the signal frequencies and they vary nonmonotonically with the increase of the fractional

exponent a

Fig. 7 Amplitude gains versus the fractional exponent a for XA ¼ 0:4, XB ¼ 0:5, k ¼ 0:01, x0 ¼ 0:5, D ¼ 0:15, Q ¼ 0:1 for different values of

the damping coefficient b. It is shown that the amplitude gains obtain one resonant peak with the increase of the fractional exponent a and they

vary nonmonotonically with the increase of the damping coefficient b
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