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Abstract: This work aims to predict moderate, intense, and super geomagnetic storms during the two recent solar cycles

23 and 24 encompassing the period 1996–2018 using an artificial neural network (ANN). Optimization of the neural

network includes a choice of activation function, training function, learning function, hidden layers, hidden neurons,

learning rate, and momentum constant. The results obtained by the present study show the ability of the ANN model to

produce an accurate estimate of the probability appearance of moderate and intense storms of about 88.9%.
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1. Introduction

The disturbance caused by various solar events in the

geomagnetic field can be of significant interest in the pre-

diction of space weather. Data science and machine

learning are relatively new tools used in science and

mathematics that can help to improve the conventional

methods used previously in space weather prediction,

especially for nonlinear data as input. Burton et al. [1] first

proposed an algorithm for Dst index prediction and inter-

planetary magnetic field (IMF) data. The algorithm also

helped to detect the causes of various types of storm

behavior. Kugblenu et al. [2] used an artificial neural net-

work (ANN) with one hidden layer, a backpropagation

algorithm, and three-hour Dst value before minimum Dst

occurrence, and also some other inputs to predict the Dst

index. Lazzús et al. [3] applied ANN to forecast the Dst

index using an algorithm known as ‘‘particle swarm opti-

mization.’’ Uwamahoro and Habarulema [4] used a neural

network-based model to predict geomagnetic index using

SW and IMF parameters as input with a correlation coef-

ficient of 0.8. Uwamahoro et al. [5] formulated an NN-

based prediction model for post-halo CME occurrence of

geomagnetic conditions during 2000–2005. His model is

75% accurate for moderate storms and 86% for storm

occurrence rate of halo coronal mass ejections (CMEs).

Srivastava [6] implemented a logistic regression model for

classifying the intense and super-intense geomagnetic

storms from 1996 to 2002 utilizing solar and interplanetary

properties of geo-effective CMEs. The model had 78%

accuracy for the validation dataset and 85% accuracy for

the training dataset. Kamide et al. [7] suggested that the

NN model can prove effective for both linear and nonlinear

processes. Many workers have prescribed that NN

approaches are appropriate for forecasting transient solar-

terrestrial phenomena. CMEs characteristics that influence

magnetic storms are still a topic of consideration [8].

Therefore, selections of key solar and IP parameters are

significant for the prediction of geomagnetic storms [6].

Lazzus et al. [9] employed ANN with particle swarm

optimization to forecast the Dst index from 1 to 6 h onward

with a correlation coefficient ranging from 0.79 to 0.86.

Also, Lethy et al. [10] applied ANN with seven input

parameters for 1-h to 12-h advance prediction and corre-

lation coefficient diverging from 0.857 to 0.876.

This paper focuses on the analysis of moderate

(- 100 nT B Dst B - 50 nT), intense (- 250 nT B

Dst B - 100 nT), and super (Dst B - 250 nT) geo-

magnetic storms that have occurred during two solar cycles

23 and 24. The entire phases of two solar cycles 23 and 24

have been considered for the analysis and prediction of

neural networks. It is quite significant to collect data that*Corresponding author, E-mail: pratyush.singh997@gmail.com
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contain all types and ranges of magnitude for geomagnetic

storms. At the beginning of the cycle, the frequency and

intensity of a geomagnetic storm are minimum. They rise

to the maximum during the middle phase of the cycle, and

then, they sink to a minimum again during the last phase of

the cycle [11]. Hathway [11] reviewed the periodic varia-

tion of sunspot area and various other parameters that show

solar activity such as a magnetic field, coronal mass ejec-

tions, cosmic ray fluxes, and geomagnetic activity. Each

cycle shows a maximum and a minimum with a typical

cyclic variation for these parameters. Considering the

whole solar cycle gives heterogeneity in data and makes it

more reliable for the prediction of the Dst index for geo-

magnetic storms.

Divergence in the input values of neural networks can

benefit to know the functional correlation between input

and output and consequently infer how well the network

has determined [12]. NN models for the prediction of

geomagnetic storms employing SW data as input have been

incurred by Lundstedt and Wintoft [13] who have repre-

sented the extent of geomagnetic disturbance by the Dst

index. Valach et al. [14] developed a neural network-based

model based on inputs such as X-ray flare, solar radio

bursts, solar energetic particle flux, and high energy proton

flux to predict subsequent geomagnetic storms. Dryer et al.

[15] suggested that models should account for both solar

and near-Earth conditions. Singh and Singh [16] discussed

the development of ANN-based model to study the pre-

cursor to moderate and intense geomagnetic storms during

the ascending phase of solar cycle 24 between 2009 and

2014 and reported a probability of 79% accuracy of pre-

diction. A Gaussian process regression has been adopted

for simulating the Dst index’s forecasts based on proba-

bility by Chandorkar et al. [17]. Gruet et al. [18] combined

the Gaussian process method with the long short-term

memory (LSTM) neural network to provide a 6-h ahead

forecast of the Dst index with a correlation coefficient

always higher than 0.873. Recently, Xu et al. [19] imple-

mented the bagging ensemble-learning algorithm which

combines a total of three algorithms—support vector

regression, artificial neural network, and long short-term

memory network to forecast the Dst index 1 to 6 h before

achieving an accuracy of interval prediction always higher

than 90%. Out of several reported studies, till now the

prediction of geomagnetic storms using a long-term anal-

ysis of the complete solar cycle using ANN is lacking. To

complete the study of prediction of moderate as well as

intense geomagnetic storms during two complete recent

solar cycles 23 and 24, the present study has been initiated.

The present study focuses on the geomagnetic storms

that occurred throughout the 23rd solar cycle from the

years 1996 to 2007 and the 24th solar cycle from 2008 to

2018. Various solar and interplanetary input parameters

were used to predict the moderate, intense, and super

geomagnetic storms of two recent solar cycles 23 and 24.

The prediction is done using artificial neural network

analysis. The number of hidden layers, hidden neurons,

learning algorithm, and training algorithm have been var-

ied and experimented with to find the optimal architecture

for ANN to give the least error and highest percentage

accuracy.

2. Input parameters

2.1. Solar input parameters

The solar input parameters examined in the investigation

are the CME velocity, angular width (AW), and the flare

class. Bruekner et al. [20] said that geomagnetic activity

has been attributed to either CMEs or the interplanetary

shock waves that accompany them. Hence, the CME

parameters play a significant role in the intensity of geo-

magnetic storms. The magnitude of the acceleration of

CME depends on the impulsiveness of the associated solar

flares [21]. An estimate for the volume of the corona that is

‘‘blown out’’ can be given by the angular width [22]. Apart

from AW, the CME speed is another significant property

related to geo-effective CMEs. It is observed that halo

CMEs obtain mean SW speed[ 470 km/s and prove to be

a significant parameter in the prediction of geomagnetic

storms [6]. Flare class is another significant input for our

neural network in the study. The logarithmic value of the

X-ray flare that occurred during the CME has been con-

sidered for input. Wang et al. [8] found that geo-effective

halo CMEs are generally connected with flare. Moreover,

Srivastava and Venkatakrishnan [23] perceived that fast

and full halo CMEs associated with massive flares lead to

great geomagnetic disruptions further. The halo CME data

have been obtained from the Web page:

https://cdaw.gsfc.nasa.gov/CME_list/halo/halo.html.

During solar cycle 23, a total of 232 halo CMEs and

during solar cycle 24, a total of 132 halo CMEs (both

partial and full) have been found geo-effective. Table 1and

Table 2 represent the distribution of all halo CMEs asso-

ciated with moderate, intense, and super geomagnetic

storms year-wise during the whole solar cycle 24 and for

solar cycle 23, respectively. There were no superstorms

during solar cycle 24. Out of a total of 364 geomagnetic

storms, there were 130 intense, 208 moderate, and 26 super

geomagnetic storms during solar cycle 23.

2.2. Interplanetary input parameters

In the interplanetary medium, CMEs can be presented as

shocks and ICME structures that connect to the
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magnetosphere and cause major to moderate storms.

Occurrences of shock waves are recognized by a simulta-

neous increase in the SW speed, density, abnormal proton

temperature as well as an increase in magnetic field mag-

nitude. Gonzalez and Tsurutani [24] suggested that the

intensity of the storm after the occurrence of shock-ICME

structures is well linked with two parameters which are the

negative IMF Bz component (Bz) and the electric field,

Ey = V Bz, where V specifies the SW velocity. Recent

findings have also established that the convective electric

field has the best correlation with the Dst index [25]. Dif-

ferent SW data have been taken from the Web page:

https://omniweb.gsfc.nasa.gov/form/omni_min.html. All

the solar and interplanetary input parameters used in the

present study are listed in Table 3.

3. Principal component analysis

Principle component analysis (PCA) is a procedure that is

helpful for the compression and grouping of data.

The explanation behind existing is to decrease the

dimensionality of a dataset by finding another arrangement

of samples, fewer than the main arrangement of samples

that holds most of the sample data [26]. Dimensionality

reduction can help to reduce the number of features which

saves computational power and time. It removes the fea-

tures which may not be essential and do not show much

variation with different samples of data. Dimensionality

reduction is also beneficial in reducing overfitting of data.

Steps involved in the calculation of PCA are given as

follows:

1. The dataset includes all the parameters for each of the

362 CMEs which is input.

2. We will compute the arithmetic mean for each

dimension of the dataset as given by Eq. (1):

Mean ¼
Pn

i¼1 ai
n

: ð1Þ

3. We will compute the covariance matrix for the whole

dataset through Eq. (2)

cov x; yð Þ ¼
Pn

i¼1ðxi � xmÞ yi � ymð Þ
.

n� 1: ð2Þ

4. We will calculate the eigenvectors and eigenvalues for

the covariance matrix as given in Eq. (3):

det A� kIð Þ ¼ 0: ð3Þ

5. We will arrange the eigenvalues in decreasing order

and choose m eigenvectors with largest eigenvalues to

form a d 9 m dimensional matrix W.

6. The last step is to take the transpose of the matrix

W and multiply it with the original dataset.

Table 1 List of all 132 CME-driven geomagnetic storm events which

occurred each year during solar cycle 24

Year Intense storms Moderate storms

2008 0 0

2009 0 0

2010 0 8

2011 6 18

2012 11 20

2013 2 27

2014 2 16

2015 4 11

2016 2 1

2017 2 2

2018 0 0

Total 29 103

Table 2 List of all 232 CME-driven geomagnetic storm events which

occurred each year during solar cycle 23

Year Intense storms Moderate storms Super storms

1996 0 0 0

1997 10 5 0

1998 8 8 0

1999 3 1 0

2000 13 27 2

2001 15 18 11

2002 11 13 0

2003 19 7 4

2004 3 3 9

2005 14 21 0

2006 5 2 0

2007 0 0 0

2008 0 0 0

Total 101 105 26

Table 3 Input parameters considered for the ANN model

Parameter Unit

Angular width (AW) [ 120o

Solar wind velocity (Vsw) km s-1

CME velocity (Vcme) km s-1

IMF negative magnetic component (Bz) nT

Electric field component (Ey) mV m-1

Flare class (Fclass) –
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Figure 1 shows the plot for the principal component

analysis; the red dots represent each of the observations,

i.e., the geomagnetic storms, whereas the blue lines are the

six variables that are considered for input in the study. The

length of the blue vector corresponds to its contribution to

the principal components, whereas the direction of the

vector shows how it is correlated with each of the principal

components. The major elements are shown by the axes in

Fig. 1.

4. Neural networks

4.1. Feed-forward network

In this work, we practiced feeding forward networks, where

the relationships in the neurons are steered along one

direction from the input layer to the output layer via the

hidden layer. The activation function of the output layer is

linear, whereas the activation function of the hidden layer

is tangent sigmoid which assists uphold and supports the

network [27]. The tangent sigmoid function is used

preferably because it varies from - 1 to 1; hence, it is

efficient for these data as many features attain both nega-

tive and positive values. The negative values can be

mapped as strongly negative and same for positive values.

4.2. Training function

The training function used in this work is gradient descent

with momentum. Training functions were implemented

with the batch training technique. In batch training, mod-

ification of network weights is not done until all the

training samples are propagated to the network. The

training function aims to reduce the error between the

calculated and observed Dst values to their minimum using

mean square error. The steps for Gradient descent with

momentum are:

1. Random initialization of weights.

2. Reiteratively do the accompanying:

(a) Initialize the weight correction to zero.

(b) For each of the inputs:

(i) Calculate target data—output data.

(ii) Calculate the gradient of error corresponding to each

weight.

(iii) Edit the weights as per the weight corrections.

3. Print net output and error.

End.

The gradient descent with momentum helps to perform

better than gradient descent. Bishop [28] said that gradient

descent with momentum can lead to faster convergence

toward the minimum cost without causing any divergent

oscillations.

Figure 2 represents a feed-forward network with the

inputs used in the study and a single hidden layer with three

hidden neurons. Each of the inputs will have a weight and a

bias which will be used to send a value to the hidden

neurons, and then, the values will be used as an input for

the activation function which will process it and send the

calculated value to the output layer.

Fig. 1 Principal component

analysis (PCA) plot of the

dataset. The red dots represent

each of the observations, i.e.,

the geomagnetic storms,

whereas the blue lines are the

six variables which are

considered for input in the study
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4.3. Hidden neurons

There is no specific guideline or hypothesis for finding the

specific number of neurons in the hidden layer. Neverthe-

less, Huang and Huang [29] derived a constraint on the

number of hidden neurons. Huang and Babri [30] showed

that the upper limit of the number of neurons required to

replicate the desired outputs of the training samples is

approximately close to the number of training samples in

the training set. Mirko and Christain [31] showed that ten

neurons are thought to be a good initial choice in practice.

The best configuration can be found by experimental and

trial, varying the number of neurons from lower to higher

number and observing the output performance.

5. Result and discussion

The input of the ANN was such that the columns contained

the number of samples whereas the rows contained the

number of attributes. The dataset was split randomly in

training, testing, and validation in the ratio of 70:15:15,

respectively. The random shuffling meant that all kinds of

data occurring throughout the cycle are included in train-

ing, testing and validation dataset. It is advised that the

three datasets contain data from the entire domain of data

to ensure the better performance of the neural network

model. The activation function used for the neural network

in all layers is tangent sigmoid. The number of hidden

layers and number of hidden neurons for the optimal neural

network are found by experimenting with various config-

urations. The algorithm used is a feed-forward backprop-

agation algorithm and the training function is gradient

descent with momentum. Table 4 represents the mean

squared error (MSE) performance for all neural networks

with tangent sigmoid as the activation function. The hyper

parameters were tuned for each neural network architecture

to obtain the best accuracy. The error could vary due to the

nature of input hence only the least error for all the com-

putations has been included.

The best performance result achieved was with 26 hid-

den layers, 15 hidden neurons with tangent sigmoid as the

activation function. The mean squared error performance

for the validation dataset observed was 1669. The overall

accuracy is 88.9% with a validation performance of

92.70% as shown in Fig. 3. The parameters for the ANN

Fig. 2 Feed-forward neural

network used in the present

study with used input

parameters, one hidden layer,

and three hidden neurons

Table 4 Mean squared error (MSE) performance of all neural net-

works with tangent sigmoid as activation function

Hidden layers 15 neurons 16 neurons 17 neurons

25 layers 2210 2106 2451

26 layers 1669 1956 2065

27 layers 1909 1975 2265

28 layers 1820 2071 2107

29 layers 1875 2591 1887
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model with the best performance are given in Table 5. The

least mean squared error for the validation dataset is as

shown in the plot in Fig. 4. The best performance achieved

with tan sigmoid was with 26 hidden layers and 15 hidden

neurons. Uwamahoro et al. [5] gave the best performance

of 75%. Singh and Singh [16] gave an accuracy of 79%.

Lazzus et al. [9] ANN predicts 1–6 h and Lethy et al. [10]

predict up to 12 h in advance with a significant correlation

coefficient. Our model had an overall accuracy of 88.9%

with a validation performance of 92.70% which is close to

the other ANN models considered above. Xu et al. [19]

used the Bagging Ensemble-learning algorithm which had

an accuracy of above 90% and is better than our ANN

model. Gruet et al. [18] combined the Gaussian process

method with the long short-term memory (LSTM) neural

network and able to predict in 6-h advance with a corre-

lation coefficient greater than 0.87. Thus, our ANN model

accuracy is consistent with the results of Gruet et al. [18].

Our study takes into input all the moderate, intense, and

super geomagnetic storms that occurred throughout the

Fig. 3 Percentage accuracy for

training, testing, validation, and

overall dataset comprising of

geomagnetic storms

Table 5 Parameters for the best ANN model

Parameters Description

Network type Feed-forward backpropagation

Training function Gradient descent with momentum and adaptive learning rate

Adaption learning function Gradient descent with momentum

Activation function Tangent sigmoid

Momentum constant 0.9

Learning rate 0.008
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23rd and 24th solar cycles during 22 years of data that have

not been done previously.

6. Conclusions

The present study presents the prediction of moderate,

intense, and super geomagnetic storms using inputs from

solar and interplanetary parameters over the whole phases

of two recent solar cycles 23 and 24 using an artificial

neural network (ANN). The complete dataset used in the

study was from 1996 to 2018 about 22 years and covers a

large period so that the prediction of the Dst index can be

reliable. The best performance for the neural network gave

an accuracy of 88.9% which provides accuracy that is

comparable to other studies that used ANN to predict

geomagnetic storms. As the PCA revealed that the data

vary without following a recognizable pattern and our

ANN model was able to give outputs at such high accuracy,

it shows that ANN can be used to predict geomagnetic

storms with good effect. Thus, the ANN model can be used

to predict geomagnetic storms with an accuracy of 88.9%

and can be used in applications such as satellite commu-

nication and weather forecast.

Future work should be aimed at including more

parameters that can assist with improving the expectation

of geomagnetic storms. Various algorithms can be applied

for the prediction apart from ANN which may be more

capable of predicting the Dst index and can obtain higher

accuracy.
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