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Abstract: The movement presented by chaos is violent oscillation, making the system unstable, which often is harmful in

engineering. Therefore, how to suppress chaotic state quickly is a research hotspot in the field of control. Compared with

integer-order system, fractional-order chaotic system has more complex dynamic characteristics, and it is often difficult to

control the dynamic system into a stable periodic motion. In this paper, a new sliding mode controller was proposed after

newly constructing a fractional-order chaotic system, to make the chaotic system enter a predetermined motion state

quickly and maintain stability. Firstly, a new five-dimensional fractional-order chaotic system was constructed, analyzing

its dynamic characteristics through the 0–1 test. Then, a sliding mode controller was designed, with proved stability to

regulate the motion state of chaotic system. Finally, the circuit realization and control process simulation of the five-

dimensional fractional-order chaotic system were carried out. The experimental results show that the proposed sliding

mode controller has simple structure, but fast response and excellent control effect.
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1. Introduction

Chaos is one of the greatest discoveries in physics in the

twentieth century, after relativity and quantum mechanics

[1]. Chaos control, as an important part of chaos theory, has

become a research hotspot nowadays because of its great

application value in the field of engineering technology

[2–9]. For secure communication, signal processing and

system control, compared with the integer-order system,

the fractional-order chaotic system has more prominent

application prospects, which, therefore, has received much

attention in the research. Previous studies have found the

facts that fractional-order chaotic systems are more accu-

rate than integer-order systems, with long history in its

calculus theory, which is the same as that of integer-order

system, but develops slower due to its lack of application

background. Up to now, although a lot of work has been

conducted in the field of fractional-order calculus, the

research on revealing the relationship between fractal,

chaos and fractional-order systems has just started,

including fractional-order chaos and hyperchaos, frac-

tional-order chaos control and synchronization, the real-

ization and application of fractional-order chaotic systems,

etc.

When chaos appears in some systems, continuous

irregular oscillations will occur along with the system

operation, which seriously endangers the safe operation of

the system. For example, if there is chaos in the power

system, the operating parameters will oscillate irregularly

and continuously, which may cause system instability of

the system and endanger its safe operation seriously. When

permanent magnet synchronous motor (PMSM) appears

chaotic motion under certain working conditions, it may

have violent oscillation of speed or torque, unstable control

performance and irregular electromagnetic noise, etc.

Brushless direct current motor (BLDCM) will produce

nonlinear chaotic motion during operation, resulting in

torque pulsation. There is also chaotic phenomena in the

switching circuit, which although does not cause destruc-

tive harm in switching converters, but is still unstable for

communication power systems requiring high reliability.
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Chaos in the circuit system will destroy its stability and

harm the circuit components. Therefore, it is of great sig-

nificance to control the chaos in the system, even suppress

its generation.

At present, the research on chaos control is mainly from

two aspects.One is chaos control and synchronization,which

means that when the chaos already exists and is disadvan-

tageous to the movement of the system or leads to an unfa-

vorable trend, it is necessary to control the chaotic system by

specific methods to weaken or eliminate the harm of chaos.

The other is the anti-control of chaos, which aims to selec-

tively produce or maintain and strengthen the already gen-

erated chaotic state. In the field of integer order, nonlinear

system control based on Lyapunov stability theory has been

extensively studied, with a series of results [10–14]. How-

ever, due to the late start of fractional-order control and its

complexity, the theory of fractional-order stability and

controller design methods is far inferior to those of integer-

order system. The current control methods for fractional-

order chaotic systems include linear feedback, impulse

control, adaptive control method, etc. In practical applica-

tions, there are often modeling errors, measurement errors,

structural changes, environmental noise and other factors,

which can cause uncertainty and external interference that

are inevitable. Therefore, it is of great practical significance

to study fractional-order chaotic system. In [15], a fractional-

order unstable dissipative system was introduced and ana-

lyzed. Chaoswith different fractional orders was observed as

a function of the system’s parameters. Furthermore, the

topological horseshoe for lower fractional orders was found.

In [16], a new unbalanced dynamic system with multi-vol-

ume attractors was proposed, which was a piecewise linear

system, simple, stable, showing chaos, and similar to a

nonlinear system. In [17], a dynamic system based on the

Langevin equation was proposed, with no random terms,

representing the properties of Brownian motion with frac-

tional derivatives. In [18], the electronic implementation of a

fractional Rössler system with an operational transconduc-

tance amplifier was introduced, with the advantages of low

voltage realization, integration and electronic adjustability.

In [19], a new fractional four-dimensional system was pro-

posed, exhibiting some hidden hyperchaotic attractors.

Sliding mode variable structure control [20–23] is a

special nonlinear control strategy, which can change con-

stantly according to the current state, so as to force the

system to move according to a predetermined sliding mode

state trajectory. In [24], a sliding mode hyperplane was

designed for a class of chaotic systems with uncertainties.

A new method of composite sliding mode control for a

class of uncertain chaotic systems was proposed in the

literature [25]. In [26], a nonlinear sliding mode controller

was proposed and applied to the nonlinear chaotic system.

In [27], the sliding mode control for a class of fractional-

order chaotic systems was studied, which could ensure the

asymptotic stability of uncertain fractional-order chaotic

systems in the presence of external disturbances. The lit-

erature [28] proposed a switching sliding mode control

technique for chaos control and suppression of non-au-

tonomous fractional-order nonlinear power systems with

uncertainties and external disturbances. All the above

researches have made important contributions to the

development of chaos control theory.

In this paper, a new sliding mode controller was pro-

posed for a new five-dimensional fractional-order chaotic

system, making the chaotic system enter a predetermined

stable motion state quickly. The structure of this paper is as

follows. In the second part, a five-dimensional fractional-

order chaotic system was constructed, and then its

dynamics was analyzed through 0–1 test. In order to realize

the state control, a sliding mode controller was designed in

the third part, and its stability was proved to effectively

suppress the chaos. In the experimental part, circuit real-

ization and control process simulation of the five-dimen-

sional fractional-order chaotic system were carried out,

respectively.

2. Construction and dynamics analysis of the new

chaotic system

In this section, definition of fractional differential equation

was presented firstly. Caputo derivative of fractional order

a of function x(t) is defined as follows:

Dq
t0
¼ Jm�q

t0
Dm

t0
x tð Þ ¼

1
C m�qð Þ r

t

t0

ðt � sÞm�q�1x mð Þ sð Þds
dmx tð Þ

dtm ; q ¼ m

8
><

>:

ð1Þ

Fig. 1 Lyapunov exponent spectra
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where m � 1\q\m 2 Zþ, the operator Dq
t0 is the Caputo

fractional differential operator of order q, C(•) is the

Gamma function. For the convenience of writing this

paper, Dq
t0 is replaced by dq

dtq.

2.1. System modeling

In this paper, a new five-dimensional fractional-order

chaotic system was designed as follows:

(a) (b) 

(c) (d)

(e) (f)

Fig. 2 Projections of attractor onto different planes of a five-dimensional fractional-order system
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dax
dta ¼ 30ðy � xÞ þ u þ 2v � 5z
dby
dtb

¼ 10x � xz þ 12y
dcz
dtc ¼ xy � 3z � v � 4x
dku
dtk

¼ pxy þ yz � 2u
dgx
dtg ¼ 3y

8
>>>>><

>>>>>:

ð2Þ

For systems with dimensionality greater than 1, there

exists a set of Lyapunov exponents, commonly known as the

Lyapunov exponent spectrum, where each of them

characterizes the convergence of the orbit in a certain

direction. Lyapunov exponent, a quantitative description of

the long-term average result of orbital exponent separation of

the system, is an overall characteristic of the system, with a

wide range of values which have no effect on the system

state. The state of the system is determined primarily by

positive and negative values of all Lyapunov exponents.

When the value of Lyapunov exponent is positive, each part

of the trajectory is unstable, and adjacent trajectories repel

each other, separating rapidly at exponential speed,

producing chaotic attractors with specific patterns. When

the value of Lyapunov exponent is 0, it lies on the boundary

of the relatively stable trajectory. When the value of

Lyapunov exponent is negative, the phase volume shrinks,

with the locally stable trajectory, corresponding to the

periodic orbital motion. Therefore, it can be judged whether

the system is in a chaotic state according to the values of

Lyapunov exponent.

Suppose five Lyapunov exponents are

kiði ¼ 1; 2; 3; 4; 5Þ. According to the theory of Lyapunov

exponent spectrum, we have k5\k4\k3\k2\k1\0 for

equilibrium points; k1 ¼ 0; k5\k4\k3\k2\0 for peri-

odic states; k1 ¼ k2 ¼ 0; k5\k4\k3\0 for pseudo-peri-

odic states; and k1 [ k2 ¼ 0; k5\k4\k3\ 0;k1 þ k3þ
k4 þ k5\0 for chaotic states. From Fig. 1, P 2 ½0; 5:5�,
k1 [ k2 ¼ 0; k5\k4\k3\0; k1 þ k3 þ k4 þ k5\0 is for a

chaotic state, and P 2 ½5:5; 20�, k1 ¼ 0; k5\k4\k3\k2\
0 is for a periodic state.

When the systemparameter p ¼ 1, projections of attractor

onto different planes for the designed five-dimensional

fractional-order chaotic system are shown in Fig. 2.

2.2. Dynamics analysis

At present, the commonly used methods for chaos identi-

fication mainly include phase diagram method, Poincaré

mapping method, spectrum analysis method, and Lyapunov

exponent method, with certain adaptability, but limitations.

For example, phase diagram method is simple and intu-

itive, but its accuracy is not high enough. Poincaré map-

ping method cannot directly distinguish between chaotic

and completely random motions. The calculation results of

the maximum Lyapunov exponent method were not

directly obtained in this paper. The determination of delay

time and embedding dimension has certain subjectivity and

uncertainty.

Gottwald GA and Melbourne I [29] proposed a reliable

and effective binary method for testing the chaos in the

system, which is called the ‘‘0–1 test’’. A discrete set

ðjÞf gðj ¼ 1; 2; � � � ;NÞ was formed with any positive num-

ber c 2 p=5; 4p=5½ �[ 0 and numerical simulation data.

When n does not exceed 0.1 times of N, the conversion

variables can be defined as follows:

pcðnÞ ¼
Xn

i¼1

/ðiÞ cos ic; qcðnÞ ¼
Xn

i¼1

/ðiÞ sin ic

In order to quantify the growth features (such as

diffusion behavior) of the characterization functions pcðnÞ

(a)

(b)

Fig. 3 Changes of median values of asynchronous growth rate k with

parameter p
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and qcðnÞ, the mean square displacement (MSD) of pcðnÞ
and qcðnÞ is defined as follows:

McðnÞ ¼ lim
N!1

XN

i¼1

pcði þ nÞ � pcðiÞ½ �2þ qcði þ nÞ þ qcðiÞ½ �2
( )

� lim
N!1

1

N

XN

i¼1

UðiÞ
" #2

1� cos nc

1� cos c

The convergence and divergence of functions pcðnÞ �
qcðnÞ can be directly measured by McðnÞ. The asymptotic

growth rate Kc of McðnÞ, the characteristic index of chaos

for dynamic system, can be obtained by linear regression

fitting log McðnÞ and log n, which can also be replaced by

the correlation coefficient of the two.

Specific steps of the algorithm are as follows:

1) Use the first data point N of different fractional-order

chaotic systems as a discrete set UðNÞ;
2) Take one data point from every 8 data points to replace

the discrete set UðNÞ;

3) Substitute UðNÞ into the conversion variable to get

pcðnÞ � qcðnÞ, and display them in the form of

trajectory image pcðnÞ � qcðnÞ;
4) The image of MSD McðnÞ varying with n and the

progressive growth rate Kc of McðnÞ, derived from

pcðnÞ � qcðnÞ;
5) Take the Median of all Kc as median value of Kc. The

discrete set UðNÞ shows chaotic characteristics. When

Kc tends to 1 and 0, the discrete set UðNÞ shows non-
chaotic characteristics.

The following judgment rules were adopted: if pcðnÞ �
qcðnÞ presents the form of random Brownian motion,

McðnÞ increases linearly with the time evolution, and Kc is

close to 1, then the sequence is judged to be a chaotic time

sequences. If pcðnÞ � qcðnÞ graph presents a bounded

periodic ring, McðnÞ is bounded, and Kc is close to 0, then it

is judged to be a non-chaotic time sequences (periodic or

period-doubling). Because the parameter c may have a

frequency resonance effect with the Fourier decomposition

(a) (b)

(c)

Fig. 4 Test results of system 0–1 test with p ¼ 1
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of the time series in the calculation process, the c is limited

to 100 random numbers between p=4 and 4p=5, and the

final return value is the median of Kc.

The system x-dimension and y-dimension median k

value changes with the system parameter p as shown in

Fig. 3.

It can be seen from Fig. 3 that, when p 2 ½1; 5�, the

median value k is close to 1, so the system is in a chaotic

state, the system dynamics behavior is complex; when

p 2 ð5; 10�, the median value k changes between 0–1, the

system is in a transitional state; when p 2 ½10; 20Þ, the

median value k is close to 0, the system is in a periodic

state.

When p ¼ 1, the 0–1 test result is shown in Fig. 4. It can

be seen from Fig. 4 that the pcðnÞ � qcðnÞ graph is a ran-

dom Brownian motion, MðnÞ evolves linearly with time, Kc

is close to 1, and the median is calculated to be 0.9952

(which can be regarded as 1).

When p ¼ 18, the 0–1 test result is shown in Fig. 5. It is

shown in Fig. 5 that the pcðnÞ � qcðnÞ graph is a periodic

ring, McðnÞ is bounded, Kc is close to 0, and the median is

- 0.0067 (which can be regarded as 0).

3. Sliding mode controller design

The dynamic characteristics of the fractional-order system

are more complex, and the stable periodic motion often

lacks flexibility when controlling the dynamic system. The

control of the sliding mode system has obvious advantages

in this aspect. It can be adjusted by the dynamic behavior

of the system. There is no need to greatly disturb and

change the system to make the system operate stably on the

expected orbit. Combining Eq. (2) with sliding mode

control theory, we can get Eq. (3) as follows:

(a) (b)

(c)

Fig. 5 Test results of system 0–1 test with p ¼ 18
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dax
dta ¼ 30ðy � xÞ þ u þ 2v � 5z þ d1
dby
dtb

¼ 10x � xz þ 12y þ d2
dcz
dtc ¼ xy � 3z � v � 4x þ d3
dku
dtk

¼ xy þ yz � 2u þ d4
dgx
dtg ¼ 3y þ d5

8
>>>>><

>>>>>:

ð3Þ

And d ¼ ½d1 d2 d3 d4 d5�T is the added sliding mode

control rate corresponding to each dimension, respectively.

Suppose the sliding mode switching function of this

system is as follows:

s ¼ c1 � e þ D�r
t e ð4Þ

where c1 is the sliding mode parameter and D�r
t e is the

negative r th derivative of e. And among them,

D�r
t e ¼ D�r

t e1 D�r
t e2 D�r

t e3 D�r
t e4 D�r

t e5½ �T ;
s ¼ s1 s2 s3 s4 s5½ �T ;
e ¼ e1 e2 e3 e4 e5½ �
¼ x � xref y � yref z � zref u � uref v � vref½ �T ;

where xref ; yref ; zref ; uref ; vref are reference values of state

variables.

Deriving from Eq. (4) leads to Eq. (5):

_s ¼ c1 � _e þ D1�r
t e ð5Þ

When the parameter is r ¼ 0:1 0:1 0:10.1 0:1½ �, and the

sliding mode reaching law is set as follows:

_s ¼ �ks3 � e sj j
1
2

1þ sj j
1
2

sgn sð Þ,

the control rate of sliding mode control system can be

obtained by combining Eq. (4) as follows:
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Fig. 6 Five-dimensional fractional-order chaotic system circuit (drive system)

d1 ¼ �ks31 � e sj j
1
2sgn s1ð Þ � c1 � D1

t e1 þ D0:9
t xe � 30ðy � xÞ � u � 2v þ 5z

d2 ¼ �ks32 � e sj j
1
2sgn s2ð Þ � c1 � D1

t e1 þ D0:9
t ye � 10x þ xz � 12y

d3 ¼ �ks33 � e sj j
1
2sgn s3ð Þ � c1 � D1

t e1 þ D0:9
t ze � y þ 3z þ v þ 4x

d4 ¼ �ks34 � e sj j
1
2sgn s4ð Þ � c1 � D1

t e1 þ D0:9
t ue � xy � yz þ 2u

d5 ¼ �ks35 � e sj j
1
2sgn s5ð Þ � c1 � D1

t e1 þ D0:9
t ve � 3y

8
>>>>>><

>>>>>>:

ð6Þ
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Proof of stability: When the Lyapunov stability theorem

is satisfied, the trajectory of the system state variable will

reach the sliding surface within a finite time to achieve

system stability, which can prove that the system is

asymptotically stable. This paper only proves the stability

of the new approach rate.

Theorem 1: For a sliding mode variable structure con-

trol system, its switching function is shown in Eq. (3), and

its Lyapunov function is defined as: V ¼ sT � s. If
_V ¼ _sT s þ sT _s� 0, then this control system is progressively

stable.

Fig. 7 MULTISIM simulation results
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(a) (b)

Fig. 8 x-dimensional time series and error response diagram

(a) (b)

Fig. 9 y-dimensional time series and error response diagram
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(a) (b)

Fig. 10 z-dimensional time series and error response diagram

(a) (b)

Fig. 11 u-dimensional time series and error response diagram

(a) (b)

Fig. 12 v-dimensional time series and error response diagram
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(a) (b)

(c) (d)

(e) (f)

Fig. 13 Phase diagrams of a five-dimensional fractional-order system after sliding mode control
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Proof:

_V ¼ _sT s þ sT _s

¼ 2sT � _s
¼ 2sT � c1 � e þ D1�r

t e
� �

¼ 2sT �

c1 � D1
t e � D0:9

t xe þ 30ðy � xÞ þ u þ 2v � 5z þ d1

c1 � D1
t e � D0:9

t ye þ 10x � xz þ 12y þ d2

c1 � D1
t e � D0:9

t ze þ xy � 3z � v � 4x þ d3

c1 � D1
t e � D0:9

t ue þ xy þ yz � 2u þ d4

c1 � D1
t e � D0:9

t ve þ 3y þ d5

2

6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
5

¼ 2sT � �

ks31 þ e
s1j j

1
2

1þ s1j j
1
2

sgn s1ð Þ

ks32 þ e
s2j j

1
2

1þ s2j j
1
2

sgn s2ð Þ

ks33 þ e
s3j j

1
2

1þ s3j j
1
2

sgn s3ð Þ

ks34 þ e
s4j j

1
2

1þ s4j j
1
2

sgn s4ð Þ

ks35 þ e
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1
2
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1
2

sgn s5ð Þ

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

¼ �2 ks41 þ e
s1j j

3
2

1þ s1j j
1
2

þ ks42 þ e
s2j j

3
2

1þ s2j j
1
2

þ
 

� � � þ ks45 þ e
s5j j

3
2

1þ s5j j
1
2

!

It can be seen from the above formula that the _V � 0, so

the control system is asymptotically stable.

4. Experimental simulation and analysis

4.1. Circuit implementation of the five-dimensional

fractional-order chaotic system

In order to verify the dynamic behavior of the system (2), a

nonlinear chaotic circuit is designed according to its

mathematical model. When designing this nonlinear cir-

cuit, in order to better observe the state change diagram of

the system and limit the system variables within the

allowable range of circuit elements, the system equation is

scaled without changing the nature of the system. The time

scale transformation is performed as s0 ¼ 100, s ¼ s0t,

then the system (2) is transformed to the following form.

dax
dta ¼ 3000ðy � xÞ þ 100u þ 200v � 500z
dby
dtb

¼ 1000x � 100xz þ 1200y
dcz
dtc ¼ 100xy � 300z � 100v � 400x
dku
dtk

¼ 100pxy þ 100yz � 200u
dgx
dtg ¼ 300y

8
>>>>><

>>>>>:

ð7Þ

According to Eq. (7), the circuit equation and circuit

diagram can be designed. The circuit equation of the

system is shown in Eq. (8):

dax
dta ¼

R7

CxR6

y
R1
� x

R2
þ u

R3
þ v

R4
� z

R5

� �

dby
dtb

¼ R11

CyR12

x
R8
� xz

R9
þ y

R10

� �

dcz
dtc ¼

R17

CzR18

xy
R13

� z
R14

� v
R15

� x
R16

� �

dku
dtk

¼ R22

CuR23

xy
R19

þ yz
R20

� u
R21

� �

dgx
dtg ¼

R24y
CvR25R26

8
>>>>>>>>><

>>>>>>>>>:

ð8Þ

If the value of the circuit elements in Eq. (8) is taken as

follows:

Ri i ¼ 6; 8; 12; 18; 23; 25ð Þ ¼ 10 kX;
Ri i ¼ 7; 8; 11; 17; 22; 24ð Þ ¼ 10 kX;

R16 ¼ 2:5 kX; Ri i ¼ 1; 2ð Þ ¼ 0:33 kX;
Ri i ¼ 3; 9; 13; 15; 20ð Þ ¼ 10 kX;

Ri i ¼ 14; 25ð Þ ¼ 3:33 kX; R5 ¼ 2 kX;
Ri i ¼ 4; 21ð Þ ¼ 5 kX; R10 ¼ 0:83 kX;

Ci i ¼ x; y; z; u; vð Þ ¼ 1 mF;

then the chaotic circuit is shown in Fig. 6.

By using MULTISIM 14.0 software to simulate the

system circuit, the chaotic attractor and the x-dimensional

time series are observed as shown in Fig. 7. Through the

comparison, it can be seen that the designed chaotic circuit

is consistent with the MATLAB analysis in Fig. 2.

4.2. Sliding mode control of the five-dimensional

fractional-order chaotic systems

In order to improve the stability of the system (2), the

sliding mode control is performed by Eq. (6) to make it

quickly enter a predetermined motion state and maintain

stability.

Setting parameters xe ¼ sinð2tÞ, ye ¼ 0:8 sinð2tÞ,
ze ¼ sinð2tÞ,ue ¼ 3 sinð2tÞ,ve ¼ 2 sinð2tÞ,h ¼ 0:0001,

e ¼ 0:0001, c1 ¼ 100. When the sliding mode control is

added to the system at t ¼ 20s, the simulation results are

given as in Figs. 8, 9, 10, 11 and 12.

Figure 8 shows the x-dimensional time series and error

response diagram with adding sliding mode control. It can

be seen from Fig. 8 that the system is in an irregular

oscillation state before 20 s, which indicates the system is

unstable and in a state of chaotic motion. When the sliding

mode control is added in 20 s, the system starts to track the

set value xe, thus a periodic motion state appears and the

system reaches stability. Figure 8 also shows that after

sliding mode control is added at 20 s, the error response

curve quickly drops to around 0, and the system tends to be

stable.
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Figure 9 displays the y-dimensional time series and

error response diagram with adding sliding mode control.

Correspondingly, Figs. 10, Fig. 11 and Fig. 12 are the

z-dimensional, u-dimensional curves and v-dimensional

curves. According to all the above simulation results, it can

be seen that after adding sliding mode control, the five

dimensions of the chaos system can quickly reach the set

stable state.

In Fig. 13, some projections of the controlled new five-

dimensional fractional-order system are given. It also can

be seen from Fig. 13 that after adding sliding mode control

at 20 s, the system transforms from chaotic motion to

periodic state, and the system quickly tracks the given

reference value, which proves the good control effect of the

sliding mode controller.

5. Conclusions

The dynamic characteristics of fractional-order chaotic

system are more complex than those of integer-order sys-

tem. Under certain conditions, chaos will do harm to the

system. In order to study how to suppress chaos and control

it to enter a predetermined state of motion and maintain

stability quickly, a new five-dimensional fractional-order

chaotic system was constructed and a new sliding mode

controller was proposed in this paper. Firstly, the dynamic

analysis was performed on the constructed five-dimen-

sional fractional-order chaotic system through the 0–1 test.

Then, a sliding mode controller was designed to realize the

periodic control of the chaotic system in a stable state. And

lastly, in order to verify the feasibility of the proposed

method, circuit realization and control process simulation

were performed on the five-dimensional fractional-order

chaotic system, respectively. The simulation experimental

results indicate that although the dynamic behavior is

complex, the sliding mode controller has a good control

effect on the five-dimensional fractional-order chaotic

system.
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