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Abstract: Ab initio studies of strongly interacting bosonic and fermionic systems are greatly facilitated by efficient Monte

Carlo algorithms. This article emphasizes this requirement and outlines the ideas behind the construction of the cluster

algorithms and illustrates them via specific examples. Numerical studies of fermionic systems at finite densities and at real-

times are sometimes hindered by the infamous sign problem, which is also discussed. The construction of meron cluster

algorithms, which can solve certain sign problems, is discussed. Cluster algorithms which can simulate certain pure

Abelian gauge theories (realized as quantum link models) are also discussed.
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1. Introduction: Why cluster algorithms?

The ab initio studies of strongly correlated systems

occurring in Nature, whether in particle physics or in

condensed matter physics, are an extremely challenging

topic. Analytical solutions are difficult to find in most

cases, and perturbation theory fails for strong couplings.

Certain weak coupling methods (such as the epsilon-ex-

pansion [1, 2]) have been successful in addressing the

existence of fixed points in renormalization group flow, as

well as compute critical exponents at phase transitions by

systematically improving over the mean field estimates.

Large-N methods have provided another analytic handle on

some interesting quantum field theories (QFTs) [3]. In the

case of conformal field theories (CFTs), there has been

exciting developments through the use of AdS/CFT [4],

and the more recent conformal bootstrap [5] and the large

charge expansion [6]. Tensor Networks [7] have signifi-

cantly contributed to computing paradigms in lower

dimensional systems, by opening up the possibility to

simulate a large range of strongly interacting systems, even

in real-time.

However, in the overwhelmingly large majority of

cases, the Markov Chain Monte Carlo (MCMC) methods,

starting from the initial proposal of Metropolis et al. [8],

have provided an unbiased ab initio method to numerically

sample multidimensional integrals and evaluate the

expectation values of physical operators. Let us denote the

degrees of freedom in a (classical or quantum) system by

fqig; i ¼ 1; . . .;V , and the partition function for the system

as

Z ¼
Z

Dq e�SðfqigÞ ¼ Trexpð�bHÞ; ð1Þ

where SðfqigÞ is an action functional corresponding to the

Hamiltonian H at an inverse temperature b. The quantity

e�SðfqigÞ ¼ WðfqigÞ is the Boltzmann weight and is

typically positive for the chosen computational basis of

fqig. If this is not the case, we encounter the sign problem

and importance sampling fails. We will assume the

positivity of the Boltzmann weight for the moment and

will come back to the exceptions later. The expectation

value of a physical operator O (for example an order

parameter or a correlation function) is

hOi ¼ 1

Z

Z
Dq O e�SðfqigÞ ð2Þ

Starting from an initial probability distribution, a Markov

Chain is a series of probability distributions PkðfqigÞ,
which steadily converge to the fixed point distribution

PHðfqigÞ, which is the equilibrium distribution WðfqigÞ.
We will assume that the reader is familiar with the basics

of Markov Chains, and local Monte Carlo algorithms and

point to excellent textbooks which cover this topic in depth*Corresponding author, E-mail: debasish.banerjee@saha.ac.in
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[9, 10]. While it is not always difficult to construct a

Markov Chain with the necessary properties, the difficulty

lies ensuring that the rate of convergence is insensitive to

V. Further, even if a Markov chain were to converge to the

equilibrium distribution, one needs to sample this distri-

bution to obtain uncorrelated samples on which expectation

values and correlation functions of relevant operators can

be measured. This is exactly where improved algorithms,

such as the cluster algorithm, assert their importance. To

make this notion quantitative, we first introduce the con-

cept of autocorrelation time.

Operationally, after equilibrium is reached, (local)

Monte Carlo algorithm generates a set of configurations of

ðfqigÞ according to the Boltzmann weight, on which

physical operators are measured. Let us denote the distri-

bution at the lth Monte Carlo time as ðfqigÞl. Typically, the

distributions ðfqigÞl and ðfqigÞlþ1 are highly correlated

since only a small change is involved in one step to the

next. Therefore, measurement of the physical operator on

these two subsequent configurations, OlðfqigÞ and

Olþ1ðfqigÞ are also not independent.

Numerical calculations necessarily deal with finite data,

let us denote this by Nconf . The sample mean of the dataset

is O ¼ 1
Nconf

P
l Ol. According to the central limit theorem,

the sample mean O has a Gaussian distribution about the

exact expectation value hOi, such that hOi ¼ O � rO.
With uncorrelated measurements, the best unbiased esti-

mate of the error from the finite data-set is

rO ¼ 1

NconfðNconf � 1Þ
X

k

ðOk �OÞ2
" #1

2

: ð3Þ

Note that we have used O as the best estimate of the true

mean, hOi. For large Nconf ,

r2O ¼ 1

Nconf

X
m

ðOm �OÞ 1

Nconf

X
n

ðOn �OÞ
" #

¼ 1

N2
conf

XNconf

m;n

COðm � nÞ:
ð4Þ

The autocorrelation function, COðmÞ, is a property of the

Monte Carlo algorithm and is defined through the unequal

time-correlator

COðmÞ ¼ hOm0Omþm0 i � hOi2 ¼ COð�mÞ �m�1

C expð�m=sexpÞ
ð5Þ

and decays exponentially at asymptotic times, with the

decay time sexp corresponding to the slowest mode in the

Monte Carlo dynamics. The integrated autocorrelation

time, sint, defined as

2sint �
XM

m¼�M

COðmÞ ¼ COð0Þ þ 2
XM

m¼1

COðmÞ ð6Þ

and the cut M is due to finiteness of the dataset, and we

have ignored corrections of order sexp=Nconf , for large

Nconf . Note that COð0Þ is the sample variance. The

expression for the error on the mean is then

r2O ¼ 2sintCOð0Þ
Nconf

¼ COð0Þ
Neff

ð7Þ

implying that there are only Neff independent configura-

tions in the Markov chain. Unlike the equilibrium values,

sint depends on the algorithm. Near a critical point, for

example, autocorrelation times diverge with the physical

correlation length n as s� cnz, and z� 2 for local algo-

rithms (z is called the dynamical critical exponent). Such

studies are therefore numerically challenging especially

near the critical point, and the phenomena is called critical

slowing down. Cluster algorithms can guarantee extremely

small sint, and sometimes even z� 0, thereby practically

eliminating this problem.

2. Quantum spin models

Using the formulation of Fortuin and Kasteyln [11, 12], the

first cluster algorithm for simulating classical spin (the

Ising and the Potts) models was constructed by Swendsen

and Wang [13] and then extended by Niedermayer [14] and

Wolff [15] for continuous spins systems. We refer to the

review [16] for more details. Cluster algorithms for con-

tinuous systems, such as hard spheres, have also been

developed. We do not discuss them here, but refer to [17]

for a more detailed exposition. We instead focus on cluster

algorithms for quantum systems, starting with quantum

spins.

Cluster algorithms for quantum spin systems, in the

world line formulation of quantum spins, were first

developed in [18, 19] and extended to the continuous time

version in [20]. We note that the Stochastic Series

Expansion (SSE) of the quantum spin Hamiltonian as

developed in [21] leads to a loop Monte Carlo updating

method [22], similar to the cluster algorithm. There has

been significant developments in generalizing this algo-

rithm for a variety of models, larger quantum spins, and we

refer the reader to [23] for details and a more complete set

of references. We note that the worm algorithm is another

powerful idea which has led to the development of efficient

algorithm for a large class of models, and in many cases is

as powerful as the cluster algorithms. We refer to the

interested reader to [24, 25] for details.
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Let us illustrate the construction of a cluster algorithm

for the Heisenberg model, which not only has a very rich

physical pedagogy behind it, but is also useful to under-

stand the magnetic properties in certain electronic systems

[26]. This method is independent of spatial dimensions, but

we will consider ð2þ 1Þ�d, anti-ferromagnetic version

J [ 0 for definiteness. Starting from the Hamiltonian on a

square lattice of linear extent L, the partition function Z at

an inverse temperature b is:

Z ¼ Tr expð�bHÞ; H ¼ J
X

x;î¼1;2

S~x � S~xþî: ð8Þ

Using the Suzuki–Trotter formula [27], we separate the

Hamiltonian into 4 parts (2d parts in d-spatial dimensions),

H ¼ H1 þ H2 þ H3 þ H4, such that the spins contained in

each part mutually commute.

H1 ¼ J
X

x¼ð2m;nÞ
S~x � S~xþ1̂; H2 ¼ J

X
x¼ð2mþ1;nÞ

S~x � S~xþ1̂;

H3 ¼ J
X

x¼ðm;2nÞ
S~x � S~xþ2̂; H4 ¼ J

X
x¼ðm;2nþ1Þ

S~x � S~xþ2̂:

ð9Þ

We construct Z by inserting intermediate time-slices, such

that b ¼ 4N�, and � is the temporal lattice spacing. Using

I ¼ jnkihnkj, we expand Z as a product over the matrix

elements of the transfer matrix, expressed in the Sz ¼ � 1
2

basis, which is chosen as the computational basis:

Z ¼ Tr expð�bHÞ ¼ lim
N ! 1

� ! 0

X
n

hnj e��ðH1þH2þH3þH4Þ
h iN

jni

¼ lim
N ! 1

� ! 0

X
fng

n4N ¼ n0

YN�1

k¼0

hnkje��H1 jnkþ1ihnkþ1je��H2

jnkþ2ihnkþ2je��H3 jnkþ3ihnkþ3je��H4 jnkþ4i
ð10Þ

We have used the Trotter formula in the second line, and

the matrix elements connect only the specific bonds.

Finally, we can express the matrix elements via the local

action

Z ¼
Y
x;t

X
sðx;tÞ¼�1

e�S½s1;s2;s3;s4�
ð11Þ

where the term S½s1; s2; s3; s4� connects two neighboring

spins, s1; s2 at a time-slice, t, with their forward-in-time

partners s3; s4. Note that only a set of bonds are active at a

given time-slice, and all others are passive, and this 4-spin

interaction traces an active plaquette. A schematic

figure for the Trotter decomposition in ð1þ 1Þ-d is

shown in Fig 1 (left), where the shaded plaquettes are the

active ones and indicate the spin pairs which are interacting

at that given time. A representative s1; s2; s3; s4 are also

shown in the same figure. For the anti-ferromagnetic

Heisenberg model, the explicit values of the transfer matrix

(in the basis where the states of the two spins at sites x and

y are j""i; j"#i; j#"i; j##i) are:

e�S½s1;s2;s3;s4� ¼ hs1s2je��JS~xS~y js3s4i

¼ e�
�J
4

1 0 0 0

0 1
2
ð1þ e�JÞ 1

2
ð1� e�JÞ 0

0 1
2
ð1� e�JÞ 1

2
ð1þ e�JÞ 0

0 0 0 1

2
6664

3
7775

ð12Þ

Note that there are only two off-diagonal elements, both of

which are negative. For a bipartite lattice, the negative sign

can be eliminated by doing a unitary transformation on

every alternative spin, such that the off-diagonal elements

become 1
2
ðe�J � 1Þ. For a triangular lattice, for example (or

for any non-bipartite lattice, in general), this does not work,

and we encounter the first example of a sign problem. In

the chosen basis, the probability weights are not positive

definite, and Monte Carlo simulation cannot be performed.

Next, to construct a cluster algorithm we have to expand

the configuration space by including bond variables,

together with the quantum spins. This implies choosing the

bond variables [b] such that the following equation is sat-

isfied for the different possibilities of s1; s2; s3; s4,

e�S½s1;s2;s3;s4� ¼
X

½b¼A;B�
e�S½s1;s2;s3;s4;b�: ð13Þ

In this particular example, as shown in Fig 1, the linear

equations can be satisfied by the use of two bond breakups,

A and B. The clusters are constructed as follows: (a) start

from an initial site, (b) follow the chosen breakups as

explained in the caption of Fig 1 (right) until the initial

point is reached. In this case, the resulting cluster is the

same as a loop, and hence, the relation to the loop algo-

rithm. Flipping the cluster implies the operation

j"ki $ j#ki, which preserves the Boltzmann weight of the

configuration and yet changes the configuration globally,

thereby decorrelating them very fast. This is the reason for

the efficiency of the cluster algorithm—the clusters corre-

spond to correlated degrees of freedom, which get effi-

ciently updated by flips. In fact, representing the

configurations in terms of clusters allows one to construct

improved estimators for quantities such as the magnetiza-

tion, susceptibility and the correlation function.

Let us illustrate the construction of improved estimators

through examples. The total (uniform) magnetization of the

spins is given as M½fSzg� ¼
P

iðSzÞi ¼
P

C MC, where i

Recent progress on cluster and meron algorithms 1671



runs over all the space-time lattice sites, and C runs over all

the clusters into which a single configuration of spins has

been decomposed. The equality follows since each spin

must uniquely belong to a cluster. The cluster magnetiza-

tion is thus given as MC ¼
P

i2CðSzÞi. Since each cluster

flip changes the sign of MC, we conclude that hMi ¼ 0.

Note that this is consistent with the physical result that the

magnetization always vanishes in a finite volume. Such

results are extremely difficult to observe, especially in the

broken phase, with local update algorithms. Another

example is the (uniform) susceptibility:

v ¼ b
V
hM2i ¼ b

V
hð
X

C

MCÞ2i ¼
b
V
h
X
Ci;Cj

MCi
MCj

i

¼ b
V
h
X

C

M2
Ci

ð14Þ

Note that different clusters Ci and Cj are uncorrelated and

hence, the cross-terms vanish under the operation of all

cluster flips, leaving behind only diagonal terms. Further in

a cluster C, since all the spins are pointing in the same

direction, the magnetization is given by the total cluster

size, MC ¼ �jCj. This allows us to rewrite v as follows,

v ¼ b
V h

P
C jCj2i. Thus, it is evident that clusters are rele-

vant physical objects, since their size is related to a phys-

ical quantity.

Two variants of this cluster algorithm are well-known:

multi-cluster algorithm, which proceeds to construct all the

possible clusters on a given configuration of spins and

bonds, and then flips each cluster with a 50% probability,

and the single-cluster, or the Wolff algorithm which con-

structs a single cluster at always flips it. It is also possible

to construct this cluster algorithm in continuous time.

It is to be noted that both types of cluster algorithms

suffer from Trotter errors, caused due to the finite �

essential in the numerical simulations. In particular, the

errors on the physical quantities go as �2, and thus one

typically simulates for several different � values to take the

time-continuum limit. It is, however, possible to construct

the cluster algorithms directly in the time-continuum limit

[20], which eliminate the Trotter errors completely.

It must be emphasized that for the cluster algorithm to

be successful, certain special configurations called refer-

ence configurations need to exist. In the case of the

Heisenberg anti-ferromagnet, the reference configura-

tion(s) are the ones where the spins are staggered on the bi-

partite lattice. Any configuration can then be decomposed

into a certain set of clusters, and the clusters are accord-

ingly flipped to bring the configuration into (one of) the

reference configurations. This trivially proves ergodicity.

In many cases (examples are frustrated magnets, spin

glasses, gauge theories), while it is conceivable to build

clusters, absence of reference configurations causes the

clusters to grow too big, almost filling up the whole vol-

ume. In such a case, the cluster algorithm does not perform

any better than a local update algorithm.

A B

↑ ↑

↑ ↑

↓ ↓

↓ ↓
= 1 = A

↑ ↓

↓ ↑

↓ ↑

↑ ↓
= 1

2 (e
εJ − 1) = B

↑ ↓

↑ ↓

↓ ↑

↓ ↑
= 1

2 (e
εJ + 1) = A + B

Fig. 1 (left) An example of a world-line configuration of the anti-

ferromagnetic Heisenberg model. There is one transition and one anti-

transition which spatially displaces a spin-up (down) and brings it

back. (right) Possible bond-types for this model: (a) the A-type

breakup connects identical spins forward in time, (b) the B-type

breakup connects opposite (spin-up with spin-down) spins sideways.

We can figure out the probability of the weights by computing which

breakup can be applied for which interaction plaquette. For those

where the spin-states do not and cannot change (top), only A can be

applied, whereas where the spin state flips (middle) only B can be

applied. The last case is where the spin state can change but did not.

Here, the A-breakup can be applied with the probability

WA ¼ A=ðA þ BÞ ¼ 2=ðexpð�JÞ þ 1Þ
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3. Fermions

Attempting to simulate fermions brings us head on with

the fermion sign problem. This is most directly seen in

the world-line representation of the fermions in the

occupation number basis. In dimensions d 	 2, it is easy

to construct world-lines of identical fermions which

twist around each other as they evolve in Euclidean

time. Configurations which have fermions exchanging

positions an odd number of times have an overall

negative sign compared with those where fermions

exchange positions an even number of times (everything

else being identical), due to the Pauli exclusion prin-

ciple. A particularly clear statement of this fermion sign

problem and what it entails to solve the problem is

given in [28].

As in the case of quantum spins, to simulate fermionic

systems we construct the partition function as usual. In the

Lagrangian formulation, one uses Grassmann variables,

which is typically integrated out to leave behind a deter-

minant involving auxiliary fields (if the theory has four-

Fermi interactions, or Yukawa couplings), or even gauge

fields (as in quantum electrodynamics, or quantum chro-

modynamics). Updating procedures either involve updat-

ing the determinant directly [29, 30], or recast the

determinant in terms of bosonic fields, which are then

updated [31]. To construct cluster algorithms for fermions,

we first obtain a bosonic representation using the Jordan–

Wigner transformation. If the resulting bosonic system can

be efficiently updated using a cluster algorithm, then one

can identify types of interactions for which the fermion

sign problem can be solved [32]. When such an approach

succeeds, it is known as the meron algorithm first

introduced in [33] and will be discussed below. Other

novel approaches, such as the fermion bag [34, 35] or the

diagrammatic Monte Carlo [24, 36], are getting

increasingly popular in simulating fermionic systems. The

former method expands the fermionic action and groups

regions where the fermions can propagate freely against

regions where they are bound into monomers and dimers.

The Monte Carlo procedure then updates these regions,

which are denoted as fermion bags. The latter approach

directly samples the Feynman diagrams associated with

the interactions, and in certain regimes can be related to

the bag approach.

Before discussing the construction of the meron algo-

rithm, we elaborate the nature of the fermionic sign prob-

lem, which will also serve to understand the solution. First,

we set up the fermionic path integral in the occupation

number basis fnkg:

Zf ¼ Tr expð�bHfÞ ¼
X
fnkg

pðfnkgÞ; hAi

¼ 1

Zf

X
fnkg

AðfnkgÞpðfnkgÞ;
ð15Þ

where pðfnkgÞ is the probability for a given configuration,

and A is an operator in the occupation number basis. To

qualify the severity of this problem, one can consider the

sign of the configuration as a part of the observable A

through the decomposition pðfnkgÞ ¼ signðfnkgÞjpðfnkgÞj,
the sign being �1 depending on whether the fermions in

the configuration swap their positions even or odd number

of times. It follows that

hAif ¼
P

fnkg AðfnkgÞpðfnkgÞP
fnkg pðfnkgÞ

¼
P

fnkg AðfnkgÞsignðfnkgÞjpðfnkgÞjP
fnkg jpðfnkgÞj



P

fnkg jpðfnkgÞjP
fnkg signðfnkgÞjpðfnkgÞj

¼ hA � signib
hsignib

ð16Þ

The subscript b indicates that the averaging is done over a

bosonic system whose weights, jpðfnkgj, are positive

definite by construction. The quantity hsignib measures

the severity of the sign problem. It can shown that

hsignib ¼ expð�bVDf Þ, where Df ¼ ff � fb is the

difference in free energy density between the fermion

and bosonic ensembles. At low temperatures and large

volumes, this quantity is exponentially small:

ðrsignÞb
hsignib

¼
hsign2ib � hsigni2b
h i1

2

ffiffiffiffi
N

p
hsignib

� expðbVDf Þffiffiffiffi
N

p ; ð17Þ

where N is the number of uncorrelated data, and we have

used hsign2ib ¼ 1; hsignib � 0. Clearly, N � expð2bVDf Þ
to determine the sign. Thus, even if hAif � 1, it is measured

as the ratio of two exponentially small signals and requires

exponential effort to extract from statistical noise.

One could aim to cancel the negative signs by pairing

the configurations which carry an �1 sign with those that

carry a 1 sign, such that only a few unmatched configura-

tions remain. In fact, this is the idea behind the meron

algorithm. It is, however, important to realize that this

solves only one-half of the sign problem. With the

matching, we effectively have sign2 ¼ sign, since sign ¼
0; 1 and hence

Recent progress on cluster and meron algorithms 1673



ðrsignÞb
hsignib

¼
hsignib � hsigni2b
h i1

2

ffiffiffiffi
N

p
hsignib

� expðbVDf=2Þffiffiffiffi
N

p ; ð18Þ

Note that we have achieved an exponential gain in statis-

tics, but one still needs N � expðbVDf Þ for any meaningful

result. The meron algorithm incorporates the two steps

together: it identifies the configurations which can be

analytically cancelled, and never generates them. Thus,

one always generates configurations which contribute non-

trivially to Zf . The algorithm, however, only works for a

restricted class of interactions.

Let us illustrate this for the t� V model in ð2þ 1Þ-d,
extensively used in the study of certain electronic systems

(though the algorithm can be constructed in any dimen-

sions). The Hamiltonian is

Hf ¼ � t

2

X
x;î¼1;2

ðcyxcxþî þ cy
xþî

cxÞ þ V
X

x;î¼1;2

ðnx �
1

2
Þ

ðnxþî �
1

2
Þ;

ð19Þ

with V 	 t[ 0. The fermion creation (annihilation)

operators at site x, cxðcyxÞ satisfy the following anti-

commutation relations:

fcx; cyg ¼ fcyx; cyyg ¼ 0; fcyx; cyg ¼ dxy. The

corresponding bosonic system is obtained by using the

Jordan–Wigner transformation. An ordering of the lattice

points is defined: l ¼ x þ y � L (in d ¼ 2), and the fermionic

operators are expressed as follows:

cyx ¼ r31 � r32 � � � r3l�1r
þ
l ; cx ¼ r31 � r32 � � � r3l�1r

�
l ;

nx ¼ cyxcx ¼
1

2
ðr3l þ 1Þ:

ð20Þ

This preserves the anti-commutation relations. We use the

(fermion) occupation number basis (nxj0i ¼ 0; nxj1i ¼ j1i,
with 0 denoting an unoccupied and 1 an occupied site) to

construct Zf by splitting the Hamiltonian into different

parts and invoking the Suzuki–Trotter formula. With some

algebra to keep track of the negative signs, the transfer

matrix between the adjacent time-slices can be expressed

through the following 4
 4 plaquette interactions (the

state labels at sites x and y denote j00i; j01i; j10i; j11i):

e�S½n1;n2;n3;n4� ¼ hn1n2je�
t
2
ðcyxcyþcyycxÞ��Vðnx�1

2
Þðny�1

2
Þjn3n4i

¼ e
�V
4

e��V=2 0 0 0

0 coshð�t=2Þ Rsinhð�t=2Þ 0

0 Rsinhð�t=2Þ coshð�t=2Þ 0

0 0 0 e��V=2

2
666664

3
777775

ð21Þ

The structure of the transfer matrix is very similar to the

one of the quantum spins, and the main difference is the

string operator R ¼ r3lþ1 � r3lþ2 � � � r3m�1 between the sites

x ¼ l and x þ î ¼ m, where l\m in the lattice ordering.

This allows the rewriting of Zf in the occupation number

basis ½fnx ¼ 0; 1g� as

Zf ¼
X
fng

sign½fng�e�S½fng�: ð22Þ

Some example configurations which contribute to Zf are

shown in Fig. 2. Without the sign factor, the weights of the

resulting bosonic system are identical to that of the XXZ-

Hamiltonian:

H ¼
X

x;î¼1;2

tðS1
x � S1

xþî
þ S2

x � S2
xþî

Þ þ VS3
x � S3

xþî

h i
; ð23Þ

which reduces to the anti-ferromagnet for t ¼ V ¼ J. The

Zf is decomposed in terms of bonds, in addition to spins:

Zf ¼
X
½n;b�

sign½n; b� expð �S½n; b�½ �Þ ð24Þ

Interestingly, in the limit t ¼ V the only breakups that are

needed are the A and the B breakup, with same probabili-

ties as derived in Fig. 1 (right). Fig 2 shows a typical

fermion configuration, and a particular set of breakups, and

how clusters are identified. Cluster flips are operations

fnk $ 1� nkjnk 2 Cig, where Ci is the i-th cluster. Cluster

flips give rise to new worldlines significantly different from

their parent ones, but carry the same weights.

The crucial consequence of these cluster rules is that the

sign of the whole configuration factorizes into a product of

the signs associated with each individual cluster. An

example is already seen in Fig 2 (right). The clusters which

can change the sign of the configuration are called merons.

It is possible to reach a reference configuration by flip-

ping clusters appropriately. In this example, the configu-

ration in Fig 2 (left) is the reference configuration, which

has a positive sign (signCi
¼ 1) for all clusters i. When a

cluster is flipped, its contribution to sign is signCi
¼ 1ð�1Þ

if the quantity Nw þ Nh=2 is odd (even). Nw is the temporal

winding number of the cluster, while Nh is the number of

spatial hops [33]. The meron concept allows exact pairing

of even and odd signs:

Zf ¼
X
½n;b�

sign½b� expð�S½n; b�Þ

¼
X

½b�;zero�meron

2NC expð�S½b�Þ;

sign½b� ¼ 1

2NC

X
clusterflips

sign½n; b�:

ð25Þ

sign½b� ¼ 0 if at least one of the clusters is a meron. Fur-

ther, the existence of the reference configuration with a

positive Boltzmann weight guarantees that the unpaired
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configurations all carry positive weight and can be reached

by flipping clusters from an initial configuration which has

zero-merons. The Monte Carlo sampling proceeds by

generating configurations which only lie in the zero-meron

sector. If a proposed flip gives rise to meron cluster, it is

rejected. Thus, one is able to completely solve the sign

problem with the meron concept.

Let us emphasize that for generic interactions the meron

concept does not hold, and whether a cluster is a meron

depends on the orientation of other clusters. Therefore,

much more (exponential) computational effort is needed to

identify the merons. However, there is a large class of

interactions which can be solved with the meron concept,

and we refer the reader to [32] for a review.

4. Pure gauge theories

Cluster algorithms for gauge theories run into problems

since the relevant variables that need to be updated get

frustrated, and very often the clusters occupy the entire

volume. The resulting algorithm is not much better than a

local update algorithm. One direction of research tried to

identify the relevant degrees of freedom, which may or

may not be identical to the degrees of freedom in which the

action is constructed. For example, for a /4 theory, the /
field can be separated into an Ising (Z2) variable and a

modulus variable. The Z2 degrees of freedom were updated

using a cluster algorithm while the modulus of the / field

was updated with a local update algorithm [37], which

resulted in an efficient algorithm with a low (z\1)

dynamical exponent. Similar methods have been applied to

the SU(2) lattice gauge theory [38, 39] targeting the

Polyakov loop as the embedded degree of freedom. While

some success on the theories with one and two time-slices

was reported, these methods do not work well for larger

lattices.

A completely different formulation of gauge theories,

the quantum link model formulation [40–42], which real-

izes continuous gauge symmetries with finite dimensional

Hilbert spaces and generalizes the Wilson construction of

lattice gauge theories, has recently been more amenable to

simulation with cluster algorithms. As an illustrative

example, we will describe the U(1) quantum link model

(QLM). The degrees of freedom of this Abelian lattice

gauge theory are quantum links, Ux;î and electric fluxes,

Ex;î, both of which are operators defined on the bonds

connecting neighboring sites, x and x þ î and î ¼ 1; 2 in

d ¼ 2. These operators satisfy canonical commutation

relations:

½Ex;î;Uy;ĵ� ¼ Ux;îdxydij; ½Ex;î;Uy
y;ĵ
� ¼ �Uy

x;î
dxydij;

½Ux;î;Uy
y;ĵ
� ¼ 2Ex;îdxydij;

ð26Þ

The operators E, U can be chosen to be the components of

a spin-S object: U ¼ Sþ;Uy ¼ S�;E ¼ S3. The parameter

S can be thought of regulating the local Hilbert space

dimension. In the limit S ! 1 [43], these models

C1

C2

C3 C4

C5

C1
C1

C1
0 1 2 3 4

x

t

f1 f2

f1 f2

f1 f2

f1f2

Fig. 2 Example configurations which contributes to Zf . (left) The

two fermions f1 and f2 are static during their entire Euclidean time-

evolution, and trace out vertical worldlines. For t ¼ J, only A (ver-

tical) and B (horizontal) bonds are required. The figure shows one
bond configuration. The oriented clusters are constructed by starting

from a single point and following the bonds—upwards (downwards)

for a filled (empty) site for A-breakups, sideways for a filled (empty)

site touching B-breakups. This choice of breakups gives rise to 5

different clusters, as marked in the figure. (middle) On flipping

clusters marked 1, 3 and 4, we obtain a completely different world-

line configuration, but one where the fermions do not exchange

positions. (right) Flipping cluster 5 gives rise to a configuration

where the fermions interchange positions, and hence due to the

anticommutation relations, this configuration has an overall negative

sign compared to the one on the left. The cluster 5 is a meron
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reproduce the Hamiltonian formulation of Wilson gauge

theories [44]. The Hamiltonian we will be interested in

only contains operators which commute with the Gauss’

Law:

H ¼ �J
X
h

Uh þ Uy
h

� �
þ k

X
h

Uh þ Uy
h

� �2

;

Gx ¼
X

i

Ex;xþi � Ex�i;x

� � ð27Þ

In addition, we could have included any function of the

electric fluxes, and in particular, the kinetic energy of the

gauge fields
P

x;i E2
x;i. When the quantum link operators are

considered in the spin-1
2
representation, this model has

several interesting physical applications. In ð2þ 1Þ-d, the
physics of this model is relevant for the understanding the

behavior of low-temperature frustrated magnets [45], and

spin-liquid phases [46, 47]. A close cousin of this model is

the quantum dimer model (QDM), especially well-known

in condensed matter physics as a toy model to describe

certain aspects of superconductivity [48–50]. Therefore, we

continue with the gauge links in the spin-1
2
representation

and hence ignore the kinetic energy term of the gauge

links, which is a constant. The local link Hilbert space is

two-dimensional, and in the electric flux basis they are

denoted by upward (downward) arrows for E ¼ 1
2
ð� 1

2
Þ for

vertical links, and right (left) arrow for E ¼ 1
2
ð� 1

2
Þ for

horizontal links. The action of the Hamiltonian on the

electric flux states is shown in Fig 3.

Specifying the Gauss’ Law further specifies which basis

states can contribute to the partition function, and which

not. For the QLM, the Gauss’ Law is chosen as Gxjwi ¼ 0,

for every site x, for every eigenstate jwi of the Hamilto-

nian. The QDM chooses a different set of states, which are

specified by Gxjwi ¼ ð�1Þx1þx2 jwi. Physically, this implies

that the vacuum selected by the QLM is charge neutral at

each vertex, while the QDM chooses a vacuum with

staggered positive and negative unit charges. The link

states allowed at the vertex for the QLM is shown in Fig 4

(left) and for the QDM in Fig 4 (right). The Gauss’ Law

generates the gauge transformations, which can be gener-

ically denoted as V ¼
Q

x expðihxGxÞ, where hx 2 ð0; 2p� is
the parameter of the transformation. The Hamiltonian is

invariant under this transformation: eH ¼ Vy � H � V ¼ H,

since ½Gx;H� ¼ 0, for all x. Physically, Gx labels different

super-selection sectors of the theory which do not mix

under unitary dynamics.

The partition function of this model is defined by pro-

jecting the eigenstates of the Hamiltonian into a specified

Gauss’ Law sector, Z ¼ Tr½expð�bHÞPG�. The projection

operator PG ¼
Q

x Gx, therefore, constrains the Hilbert

space further. To construct the cluster algorithm, we note

that we can divide the Hamiltonian into two parts

H ¼ HA þ HB, such that the all terms in each part mutually

commute. Thus, the Trotterization divides the lattice into

even and odd sub-lattices, such that at a given time-step

only a single sub-lattice needs to be updated. For a fixed

b ¼ �N, we have a two-step transfer matrix

Z ¼ Tr ðTATBÞNPG

� �
: ð28Þ

The single plaquette transfer matrix can be expressed as

Th ¼ 1þ ðUh þ Uy
hÞe��Jksinhð�JÞ

þ ðUh þ Uy
hÞ

2
e��Jkcoshð�JÞ � 1
� � ð29Þ

The resulting transfer matrix is 16-dimensional (i.e., a 16

16 matrix), and it is easy to read off the Boltzmann weights

from this equation. For plaquettes which are not flippable,

only the diagonal element is unity, and all other off-diag-

onal elements are zero. For the two flippable plaquette

configurations, the diagonal contribution has the weight

U� Ux+î,ĵ

Ux+ĵ,̂i

Ux,ĵ

Ux,̂i

U� = Ux,̂iUx+î,ĵU
†
x+ĵ,̂i

U†
x,ĵ

HJ = −J

Hλ = λ

H = 0

Fig. 3 (left) Layout of the plaquette, and the four spin interaction.

(right) The action of the operators in the Hamiltonian on the possible

plaquette states. The UhðUy
hÞ term flips a clockwise (anti-clockwise)

oriented plaquette to an anti-clockwise (clockwise) oriented one and

annihilates the remaining 14 possible states. This is the J-term of the

Hamiltonian and is an off-diagonal operator. The k-term counts the

total number of flippable (both in the clockwise and anti-clockwise

orientation) plaquettes
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e��kcoshð�JÞ, while the off-diagonal elements (which

indicate the plaquette flips) carry the weight e��ksinhð�JÞ.
The idea behind the construction of the cluster algorithm

is to dualize the gauge theory in ð2þ 1Þ-d, which gives rise

to a Zð2Þ quantum height model in ð2þ 1Þ-d. The dual-

ization is an exact rewriting of the partition function in

terms of new degrees of freedom which are Zð2Þ degrees of
freedom located at dual sites. As shown in Fig 5, every flux

configuration can be mapped to a height configuration. A

configuration of quantum height variables is assigned the

values hA
~x ¼ 0; 1 and hB

~x ¼ � 1
2
. located at the dual sites

~x ¼ ðx1 þ 1
2
; x2 þ 1

2
Þ and is associated with a flux

configuration

Ex;î ¼ hX
~x � hX0

~xþî�1̂�2̂

h i
mod2 ¼ � 1

2
; X;X0 2 fA;Bg:

ð30Þ

The modulo function acts by adding or subtracting 2 until

the result is in the desired range ð�1; 1�. We note that while

for each height configuration there is exactly one flux

configuration, the reverse is not true. It can be shown that

there are exactly two height configurations for each flux

configuration. In addition, we note that the mapping to the

height variables only works when (a) there are no charges

at the lattice sites and (b) when charges Q ¼ �2 are located

on the lattice sites. This explicitly indicates the Zð2Þ nature
of the height variables.

Before deriving the cluster rules, it is useful to under-

stand the Boltzmann weights of the configurations in terms

of the height variables, as shown Fig 6. In terms of the

height variables, the transfer matrix gives rise to a 6-height

interaction between the heights m1; � � � ;m6. Of these,

m1;m2;m3;m4 live on a timeslice t, m5 lives on the

timeslice t � 1 and m6 on t?1. Depending on the values of

m1;m2;m3;m4, the height m5 can undergo a transition to m6

(corresponding to a plaquette flip), or not. In this language,

if ðm1;m2;m3;m4Þ ¼ ð1; 1; 0; 0Þ or (0, 0, 1, 1), the pla-

quette is flippable and form the reference configurations.

The weights of these configurations and the derivation of

the cluster rules are illustrated in Fig 6 and the

figure caption.

With these cluster rules implemented in terms of the

height variables, the super-selection sectors which have

charges Qx ¼ �1 are never generated. However, it is still

possible to generate charges Qx ¼ �2, since they are

compatible with the height representation. Therefore, in

addition to the cluster rules for the Hamiltonian, the ones

for the Gauss’ Law need to additionally implemented. To

implement the Gauss’ Law note that we need to consider

four height variables meeting around a site: the top-left and

the bottom-right belong to a one sub-lattice (say A), and

top-right and bottom left belong to the other sub-lattice (B).

It can be easily verified that if the site contains a charge

�2, then both the height variables in both sub-lattices are

locally out of their reference configuration. Thus, this sit-

uation should always be avoided. This can be implemented

as follows: when updating the A sub-lattice at a given site,

it is checked if the corresponding sites of the B sub-lattice

are out of the reference configuration. If this is the case,

then we bind the two height variables together, so that they

are always flipped together, and a forbidden configuration

is not generated. If the relevant height variables in the B

sub-lattice are in a reference configuration, then no addi-

tional bonds are put on the A sub-lattice heights. An

identical procedure is followed while updating the other

Fig. 4 (left) The Gauss’ Law condition for the QLM, in d ¼ 2, this

allows 6 possible states on each vertex, while (right) the Gauss’ Law
condition for the QDM in d ¼ 2 allows for 4 states for each vertex.

The red circle represents Q ¼ þ1, while the blue circle the Q ¼ �1,

which are distributed in a staggered fashion on the square lattice

+

+

−

−

−

+

+

−

−

−

+

+

+

−

−

+

Fig. 5 Mapping of an electric flux configuration (shown with arrows

on the links) to a height configuration (shown with þ and - variables

at the centers of the plaquettes). The þ and - are placeholders for

0; 1ð� 1
2
Þ on A (B) sub-lattices. Every time a flux pointing right or

upwards (corresponding to E ¼ 1
2
) is crossed, the height variable is

changed, while it remains unchanged if a left or downward pointing

flux (corresponding to E ¼ � 1
2
) is crossed. The configuration shown

has all plaquettes flippable, and the corresponding height variables are

in their reference configuration
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sub-lattice. It is sufficient to check this on a single times-

lice, since the Gauss’ Law commutes with the Hamiltonian.

We emphasize that this cluster algorithm for the gauge

theory is somewhat different from the usual type of cluster

algorithms since clusters are separately built on each sub-

lattice depending on the values of frozen height variables in

the other sub-lattice. In the next step, the frozen sub-lattice

is updated. This algorithm was first implemented in [51] to

study the physics of the U(1) QLM, and it uncovered new

phases of confined gauge theories which break translation

and charge conjugation symmetry [52].

It is interesting to note that, even though this algorithm

is very efficient on the QLM, extending this to the QDM is

not as useful. Since the Hamiltonian is the same, the same

cluster rules can be applied. The problem is, however, with

the different Gauss’ Law, which now frustrates the refer-

ence configuration. Due to the absence of the reference

configuration in the chosen basis of the quantum height

model, the clusters grow quite large to occupy about

80�90% of the space-time volume, which makes the

cluster algorithm not much better than a local update

Metropolis algorithm. However, a combination of both

these algorithms was used to study the physics of the QDM

[53, 54] and reliably extract the phase diagram at zero

temperature. For the QDM, certain other computational

methods have been reported [55, 56], including certain

novel effective theory approaches [57].

5. Conclusions

Cluster algorithms are extremely efficient tools which are

very useful to speed up the Monte Carlo sampling of

strongly interacting systems wherever they are applicable.

These algorithms act by placing bonds between degrees of

freedom which are correlated and build up patches in

configuration space which can be flipped. The flipping

process gives rise to a new configuration which is very

different from the parent one, but has the same Boltzmann

weight. Thus, the correlation in between the subsequent

Monte Carlo configurations is removed, since the clusters

themselves are physical degrees of freedom. In the case of

fermions, configurations often come with negative signs

associated with fermions interchanging their respective

positions. A novel cluster algorithm—the meron algorithm,

is able to analytically cancel clusters which are responsible

m1

m2

m3

m4

m5

m6

m1, m2, m3, m4 height variables
lives at timeslice t

m5(m6) lives at timeslice t-1 (t+1)

Bonds for top-right panel
A join m5 and m6

B keep m5 and m6 separate
Bonds for bottom-right panel

A join m1, m2, m3, m4

B keep m1, m2, m3, m4 separate

0

1

1

0
+ 1

2

+ 1
2

e−εJλcosh(εJ)
A + B

0

1

1

0
+ 1

2

− 1
2

e−εJλsinh(εJ)
B

0

1

1

0
+ 1

2

+ 1
2

e−εJλcosh(εJ)
A + B

0

1

0

1
+ 1

2

+ 1
2

1
B

Fig. 6 (left top) Layout of the height variables across the timeslices

t � 1, t and t þ 1. (left bottom) Two kinds of bonds are enough to

solve the linear equations: the A-breakup joins heights, while the B-

breakup keeps the heights separate. Different scenarios need to be

considered—out-of-plane (temporal) bonds, and in-plane (spatial)

bonds. (right top) Cluster rules for temporal bonds: with

m1;m2;m3;m4 in a reference configuration and m5 ¼ m6, both A-

and B-breakups can contribute, while if m5 6¼ m6, then only the B-

breakup contributes. To satisfy detailed balance, we must have PA ¼
A=ðA þ BÞ ¼ e��Jk=coshð�JÞ and PB ¼ tanhð�JÞ. In the case, when

m5 ¼ m6 and m1;m2;m3;m4 are not in a reference configuration, then

we have to bind m5 and m6 with probability 1, otherwise a forbidden

configuration will be generated. (right bottom) Spatial breakups: if

m5 6¼ m6, then connect m1;m2;m3;m4 with probability 1, to prevent

the generation of a forbidden configuration. If m5 ¼ m6, then two

different cases can occur: if m1;m2;m3;m4 are in a reference

configuration, then the Boltzmann weight is e��Jkcoshð�JÞ and we

can apply either the A, or the B-breakup. Otherwise, the weight is 1

and only B breakup is applied (m5 and m6 are not bound together).

Solving the equations, we get PA ¼ 1� e��Jk=coshð�JÞ and

PB ¼ 1� PA
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for the negative worldlines and only operate in the Hilbert

space which contribute non-trivially to the partition func-

tion. Cluster algorithms for gauge theories are even more

challenging than other systems since one has to identify

proper degrees of freedom which can be used to build

clusters that do not occupy the whole space-time volume.

In the case for certain quantum link models, this has been

achieved by dualizing the original Hamiltonian and

rewriting it exactly in terms of dual quantum height vari-

ables. The resulting cluster algorithm is every efficient.

Further, for gauge theories, the Gauss’ Law needs to be

implemented, which may or may not be possible with the

cluster rules that allow the sampling the full Hilbert space.

For example, in the case of QLM where the vacuum is

charge neutral, this is not a problem, but the QDM which

has a staggered background charge this does not work so

well, and the clusters become large. This can be understood

as the lack of a reference configuration for the QDM, which

is an essential ingredient for the success of a cluster

algorithm.

Demanding the existence of reference configurations, it

is possible to construct models which are guaranteed to

have efficient cluster algorithm. Such Hamiltonians are

often called designer Hamiltonians [58] and can be studied

in any space-time dimensions. Since the exact form of the

microscopic interactions is unimportant to study physics

associated with breaking of symmetries across thermal or

quantum phase transitions, thanks to universality, cluster

algorithms can be used to study a wide range of physical

phenomena in naturally occurring strongly correlated

systems.

In the past few years, there has been renewed interest

with cluster and meron algorithms. In the context of clas-

sical spin models, the meron algorithm is being used to

study the topological charge and the vorticity properties of

nonlinear sigma models [59]. For lattice fermions, the

meron algorithm has been used to study a Hamiltonian

spin-half lattice fermions that displays symmetry

enhancement for certain coupling regimes [60]. In the

context of gauge theories, the dualization technique has

been extended to a non-Abelian SU(2) quantum link model

on the honeycomb lattice and an efficient cluster algorithm

has been constructed in terms of the dual height variables

[61]. This cluster algorithm operates on a four sub-lattice

structure, where the clusters are built using the heights on

one sub-lattice, while the heights on the other three sub-

lattices decide the nature of bonds. This study identified

more crystalline confined phases in non-Abelian theories,

as well as showed fractionalization of a Z(2) flux.

Another very novel and interesting development with

cluster algorithms is the simulation of strongly correlated

systems in real-time and far out of equilibrium. The first

such study considered interesting initial states which are in

contact with a thermal reservoir and are completely driven

via dissipation. The authors of [62] devised a cluster

algorithm to simulate the Lindblad evolution in an anti-

ferromagnetic initial state. More extensive studies revealed

what kinds of measurements give rise to sign problems, and

which measurements did not [63]. Transport phenomena in

strongly correlated spin-1
2
driven via Lindblad dynamics

was studied using cluster algorithms in [64].
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