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Abstract: The optical solitons are extracted with Chen–Lee–Liu (CLL) equation that is considered with group velocity

dispersion. The CLL equation describes the propagation of optical pulses in monomode fibers. In this article, the variety of

solitons like dark, singular, dark-singular, bright-dark and periodic solutions are obtained by the mean of Fan-extended sub

equation method under different constraint conditions. Moreover, for showing the physical interpretation of some

recovered solutions, we also plot 3D maps by using the suitable values of involved parameters in solutions. The perfor-

mance of the used method shows the adequate, validity and ability for implementation to many other nonlinear models.
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1. Introduction

In the last decades, the theory of optical solitons draws the

attention of the researchers and scientific community,

because it is an active area of research in the fields of

telecommunication engineering and mathematical physics.

Optical solitons are type of solitary waves which have the

capability of propagation of waves without scattering over

long distance, i.e., they maintain their shape for long period

of time and distance. They are significant in optical fiber

communication due to this feature. Optical solitons are the

fundamental key of telecommunication society. Solitons

models are extensively helpful in mechanism of solitary

wave-based communications links, optical pulse compres-

sors, fiber-optic amplifiers and several others. The propa-

gation of optical soliton’s dynamics through nonlinear

optical fibers governs next generation technology for data

transfer across inter-continental distances. Solitonic solu-

tions have become a popular topic among traveling wave

solutions since they act as a bridge between physics and

mathematics [1–12]. Lump solutions are constructed for

KP hierarchy with higher-order dispersion relations [13]. A

verity of lump and its interaction solutions are investigated

in ð2 þ 1Þ dimensions to linear PDE [14]. Soliton equations

are computed in different fields, such as it is associated

with bi-Hamiltonian structure [15]. Rational and exact

solutions to JM equation are constructed, together with a

Bäcklund transformation technique [16] and Cole–Hopf

transformation [17]. Recently, different approaches are

also considered for diverse lump solutions [18–20].

Furthermore, the nonlinear partial differential equations

(NLPDEs) have remarkable importance because of its

broad range usages and applications. Nonlinear phenomena

have become one of the great impressive fields for the

researchers in this modern era of science. NLPDEs are

largely used in diverse scientific fields such as biology,

physics, geochemistry, ocean engineering, fluid mechanics,

solid-state physics, geophysics, optical fibers, plasma

physics and many other fields to explain the physical

behavior of natural phenomena and dynamical processes.

NLPDEs are often used to explain the behavior of waves in

diverse fields. In order to understand these intricate phe-

nomena, it is key to extract more exact solutions of

NLPDEs. By using the obtained exact solutions one can

understand the complex structure of physical phenomena.

It is notable that many NLPDEs in diverse fields like

biology, physics and chemistry consist of unknown func-

tions and parameters and the study of exact solutions

provides the guidance to the researchers to maintain and

design the experiments, by producing the suitable natural
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environment, to obtain the these unknown function and

parameters.

One of the models that derived from the well-known

nonlinear Schrodinger’s equation (NLSE) is CLL equation

[21]. This is one of the three forms of derivative NLSE that

are also generally investigated in nonlinear optics.

Recently, different algorithms [22–33] have been imple-

mented to extract the optical solitons in different forms to

the CCL equation.

The propagation of optical pulses inside in a monomode

fibers modeled by the CLL equation is given below:

iqt þ aqxx þ ibjqj2qx ¼ 0: ð1Þ

When we take a ¼ b ¼ 1, the above equation collapses

to the regular CLL equation, see also [21]. The parameters

a and b represent group velocity dispersion (GVD) and

nonlinear dispersion coefficients, respectively [34].

However, Fan-extended sub equation method [35] is

utilized as an integration approach to find out different

kinds of solutions in monomode fibers modelde by CLL

equation in this manuscript. This technique develop a

significant relationships between NLPDEs and others

simple NLODEs. It has been examined that with the aid of

simple solutions and solvable ODEs, different kind of

traveling wave solutions of some complicated NLPDEs can

be easily constructed. This is the key concept of Fan’s

technique. The main outcome of the proposed technique is

that we have succeeded in a single move to get and orga-

nize various types of new solutions.

This piece of article is discussed as sequence: In Sect. 2,

overview of the method. In Sect. 3, the CLL equation is

studied. In Sect. 4, results and discussion and finally paper

comes to end with conclusion in last Sect. 5.

2. Overview of the method

In this section, key points of the method are given. Suppose

that a NLPDE of the form as

Cðv; vt; vx; vxt; . . .Þ ¼ 0; ð2Þ

where C is a polynomial in its arguments. For solving (2),

we introduce traveling wave transformation as:

v ¼ uðnÞ; n ¼
Xl

i¼0

cixi; ð3Þ

where ci are all arbitrary constants. After replacing (3) into

(2), we have NODE in the following form.

�
�
u;u0;u00;u000; . . .

�
¼ 0; ð4Þ

Furthermore, uðnÞ and UðnÞ depicts the following

polynomial relation

v ¼ uðnÞ ¼
Xn

j¼0

dju
jðnÞ; ð5Þ

where the dj are constants to be determined later, and uðnÞ
satisfying the following general elliptic equation:

/
02 ¼ du

dn

� �2

¼ h0 þ h1/þ h2/
2 þ h3/

3 þ h4/
4; ð6Þ

where h0, h1, h2, h3, and h4 are constants. For detail see

also [35, 36].

3. Extraction of solutions

For solving Eq. (1), we start with wave transformation

qðx; tÞ ¼ QðnÞeiw, where n ¼ x� mt and

w ¼ � kxþ xt þ h. Here h;x and k are parameters, which

represent the phase constant, frequency and wave number,

respectively. Substitute transformation into Eq. (1), we get

imaginary and real components, respectively, one can get

the following constraint condition.

m ¼ �2ak þ bQ2: ð7Þ

From imaginary part and the real part, one can obtain the

following equation

aQ00 þ bkQ3 � ðxþ ak2ÞQ ¼ 0: ð8Þ

To find the various kinds of soliton solutions by using

the above said method. The result can be written as,

f1Q
00 þ f2Q

3 þ f3Q ¼ 0; ð9Þ

where f1 ¼ a, f2 ¼ bk and f3 ¼ �ðxþ ak2Þ. Balance

between the linear term Q00 and the nonlinear term Q3 to

determine the value of n by simple calculation, we get

n ¼ 1. So Eq. (9) has the following solution

QðnÞ ¼ b0 þ b1/ðnÞ; ð10Þ

where b0 and b1 will be calculated later and /ðnÞ holds the

generalized elliptic equation and adjusting Eq. (10) by the

assistant of generalized elliptic Eq. (6) into Eq. (9), we

have equations of an algebraic system for b0, b1, f1, f2 and

f3 as follow:

b1f1h1

2
þ b3

0f2 þ f3b0 ¼ 0; ð11Þ

b1f1h2 þ 3f2b
2
0b1 þ b1f3 ¼ 0; ð12Þ

3b1f1h3

2
þ 3b0f2b

2
1 ¼ 0; ð13Þ

2b1f1h4 þ f2b
3
1 ¼ 0: ð14Þ

For getting the maximum of hi ði ¼ 0; 1; 2; 3; 4Þ

1540 M Younis et al.



arbitrary, it is necessary to select variables properly. Due to

this, b0, b1, f2 and f3 are considered as variables. Solving

(11)–(14), we have the solutions as follow:

b0 ¼
�
�h3f1

2f2b1

�
; ð15Þ

b1 ¼
�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2f1h4

f2

s �
; f1h4f2\0; ð16Þ

f2 ¼
�
�f1b1h1

2b3
0

� f3

b2
0

�
; ð17Þ

f3 ¼
�
� f1h2 � 3b2

0f2

�
: ð18Þ

The new traveling wave solutions of Eq. (1) are

determined, as

qðx; tÞ ¼ QðnÞeiw ¼ ½b0 þ b1/ðnÞ�eiw; ð19Þ

where

n ¼x� mt; w ¼ � kxþ xt þ h: ð20Þ

It may also be noted that

b0 ¼� ah3

2bb1k
; ð21Þ

b1 ¼�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�2ah4

bk

r
; abkh4\0; ð22Þ

f2 ¼ ak2 þ x

b2
0

� ab1h1

2b3
0

; ð23Þ

f3 ¼� 3bb2
0k � ah2: ð24Þ

We can get different types of solutions by considering

f1, f2, f3, h0, h1, h2, h3 and h4 as arbitrary constants.

Case I / will be the one solution of the twenty four /I
l

ðl ¼ 1; 2; 3; . . .; 24Þ: When we take

h0 ¼ r2; h1 ¼ 2rp; h2 ¼ 2rqþ p2; h3 ¼ 2pq; h4 ¼ q2:

In this case, we get more two types of solutions.

Type I / will be the one solution from /I
l

ðl ¼ 1; 2; . . .; 12Þ. When we take

p2 � 4qr[ 0 and pq 6¼ 0; qr 6¼ 0:

For example, if by considering l ¼ 1; 2; 3; 4; 5; 9 then we

get following soliton solutions:

Dark soliton solution:

q1ðx;tÞ¼
��

�apq

bb1k

�
�

ffiffiffiffiffiffiffiffi
�a

2bk

r� �
� pþGtanh

�
G

2
n

�� 	

eiw;

ð25Þ

Singular soliton solution:

q2ðx;tÞ¼
��

�apq

bb1k

�
�

ffiffiffiffiffiffiffiffi
�a

2bk

r� �
� pþGcoth

�
G

2
n

�� 	

eiw;

ð26Þ

The complex soliton solution:

q3ðx; tÞ ¼
��

�apq

bb1k

�
�

ffiffiffiffiffiffiffiffi
�a

2bk

r� �

� pþ G

�
tanh

�
Gn

�
� isech

�
Gn

��� 	

eiw;

ð27Þ

Combined singular soliton solution:

q4ðx; tÞ ¼
��

�apq

bb1k

�
�

ffiffiffiffiffiffiffiffi
�a

2bk

r� �

� pþ G

�
coth

�
Gn

�
� csch

�
Gn

��� 	

eiw;

ð28Þ

Mixed dark-singular soliton solution:

q5ðx; tÞ ¼
��

�apq

bb1k

�
�

ffiffiffiffiffiffiffiffi
�a

8bk

r� �

� 2pþ G

�
tanh

�
G

4
n

�
þ coth

�
G

4
n

��� 	

eiw;

ð29Þ

Combined soliton solution:

q6ðx; tÞ ¼
�apq

bb1k

� �
� q

ffiffiffiffiffiffiffiffiffi
�2a

bk

r !"

�
�2r sinh G

2
n

� �

p sinh G
2
n

� �
� G cosh G

2
n

� �
( )#

eiw;

ð30Þ

where G ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 � 4qr

p
.

Type II / has solution from /I
l ðl ¼ 13; 14; . . .; 24Þ.

By taking

p2 � 4qr\0 and pq 6¼ 0; qr 6¼ 0:

For example, the following trigonometric and combined

trigonometric traveling wave solutions for l ¼
13; 14; 16; 17; 20 may be obtain:

q7ðx;tÞ¼
��

�apq

bb1k

�
�

ffiffiffiffiffiffiffiffi
�a

2bk

r� �
� �pþHtan

H

2
n

� �� 	

eiw;

ð31Þ

q8ðx;tÞ¼
��

�apq

bb1k

�
�

ffiffiffiffiffiffiffiffi
�a

2bk

r� �
� pþHcot

H

2
n

� �� 	

eiw;

ð32Þ
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q9ðx; tÞ ¼
��

�apq

bb1k

�
�

ffiffiffiffiffiffiffiffi
�a

2bk

r� �

� pþ H

�
cot

�
Hn

�
� csc

�
Hn

��� 	

eiw;

ð33Þ

q10ðx; tÞ ¼
��

�apq

bb1k

�
�

ffiffiffiffiffiffiffiffi
�a

8bk

r� �

� �2pþ H

�
tan

�
H

4
n

�
þ cot

�
H

4
n

��� 	

eiw;

ð34Þ

q11ðx; tÞ ¼
��

�apq

bb1k

�
� q

ffiffiffiffiffiffiffiffiffi
�2a

bk

r !

� �
2r cos

�
H
2
n

�

H sin

�
H
2
n

�
þ p cos

�
H
2
n

�

8
>><

>>:

9
>>=

>>;



eiw;

ð35Þ

where H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4qr � p2

p
.

Here p, q and r are arbitrary constants. Moreover, the

above solutions are valid for

ðaÞðbkÞ\0:

and

n ¼ x� mt; w ¼ �kxþ xt þ h:

We cannot express each solution here due to the limit of

length.

Case II / will be one of solution from

/II
l ðl ¼ 1; 2; 3; . . .; 12Þ. When we take

h0 ¼ r2; h1 ¼ 2rp; h2 ¼ 0; h3 ¼ 2pq; h4 ¼ q2; p2 ¼ �2rq:

Only one type will be discussed in this case.

Type I

When

qr\0 and qr 6¼ 0:

For instance, take l ¼ 1; 2; 3; 4; 9 then we have the fol-

lowing soliton solutions:

Dark soliton solution:

q12ðx;tÞ¼
��

�apq

bb1k

�
�

ffiffiffiffiffiffiffiffi
�a

2bk

r� �

� �
ffiffiffiffiffiffiffiffiffiffiffi
�2qr

p
þ

ffiffiffiffiffiffiffiffiffiffiffi
�6qr

p
tanh

ffiffiffiffiffiffiffiffiffiffiffi
�6qr

p

2
n

� �� 	

eiw;

ð36Þ

Singular soliton solution:

q13ðx; tÞ ¼
��

� apq

bb1k

�
�

ffiffiffiffiffiffiffiffi
� a

2bk

r� �

� �
ffiffiffiffiffiffiffiffiffiffiffiffi
� 2qr

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
� 6qr

p
coth

� ffiffiffiffiffiffiffiffiffiffiffiffi
� 6qr

p

2
n

�� 	

eiw;

ð37Þ

Bright-dark soliton solution:

q14ðx; tÞ ¼
��

�apq

bb1k

�
�

ffiffiffiffiffiffiffiffi
�a

2bk

r� �

� �
ffiffiffiffiffiffiffiffiffiffiffi
�2qr

p
þ

ffiffiffiffiffiffiffiffiffiffiffi
�6qr

p
tanh

ffiffiffiffiffiffiffiffiffiffiffi
�6qr

p
n

� ��n

�isech
ffiffiffiffiffiffiffiffiffiffiffi
�6qr

p
n

� ��o

eiw;

ð38Þ

The combined singular soliton solution:

q15ðx; tÞ ¼
��

�apq

bb1k

�
�

ffiffiffiffiffiffiffiffi
�a

2bk

r� �

� �
ffiffiffiffiffiffiffiffiffiffiffi
�2qr

p
þ

ffiffiffiffiffiffiffiffiffiffiffi
�6qr

p
coth

ffiffiffiffiffiffiffiffiffiffiffi
�6qr

p
n

� ��n

�csch
ffiffiffiffiffiffiffiffiffiffiffi
�6qr

p
n

� ��o

eiw;

ð39Þ

Combined soliton solution:

q16ðx; tÞ ¼
�apq

bb1k

� �
� q

ffiffiffiffiffiffiffiffiffi
�2a

bk

r !"

�
�2r sinh

ffiffiffiffiffiffiffiffi
�6qr

p
2

n

� �

�
ffiffiffiffiffiffiffiffiffiffiffi
�2qr

p
sinh

ffiffiffiffiffiffiffiffi
�6qr

p
2

n

� �
�

ffiffiffiffiffiffiffiffiffiffiffi
�6qr

p
cosh

ffiffiffiffiffiffiffiffi
�6qr

p
2

n

� �

8
>><

>>:

9
>>=

>>;

3
775e

iw;

ð40Þ

where p, q and r are arbitrary constants. Moreover, the

above solutions are valid for

ðaÞðbkÞ\0:

and

n ¼ x� mt; w ¼ �kxþ xt þ h:

Case III / has solution one of the ten

/III
l ðl ¼ 1; 2; 3; . . .; 10Þ. If we take h0 ¼ 0, h1 ¼ 0 and

h2; h3; h4 are arbitrary constants.

For instance, if we take l ¼ 1, then

h2 ¼ 1; h3 ¼ �2c

a
; h4 ¼ c2 � b2

a2
:

The traveling wave solution will take the form as
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q17ðx; tÞ ¼
c

bb1k

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2ðc2 � b2Þ

abk

r !
asechn

bþ csechn

� 	" #
eiw;

ð41Þ

By taking l ¼ 2, and

h2 ¼ 1; h3 ¼ �2c

a
; h4 ¼ c2 þ b2

a2
:

We get soliton solution as

q18ðx; tÞ ¼
c

bb1k

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2ðc2 þ b2Þ

abk

r !
acschn

bþ ccschn

� 	" #
eiw;

ð42Þ

where a, b and c are arbitrary constants. Moreover, above

solutions are valid for

ðc2 � b2ÞðaÞðbkÞ\0:

ðc2 þ b2ÞðaÞðbkÞ\0:

and

n ¼ x� mt; w ¼ �kxþ xt þ h:

Similarly for l ¼ 3 and h2 ¼ 4; h3 ¼ � 4ð2bþdÞ
a ; h4 ¼

c2þ4b2þ4bd
a2 ; then we have

q19ðx; tÞ ¼
2ð2bþ dÞ

bb1k

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2ðc2 þ 4b2 þ 4bdÞ

abk

r !

� asech2n

bsech2nþ c tanh nþ d

� 	
eiw:

ð43Þ

Here a, b, c and d are arbitrary constants. Moreover,

above solutions are valid for

ðc2 þ 4b2 þ 4bdÞðaÞðbkÞ\0:

and

n ¼ x� mt; w ¼ �kxþ xt þ h:

Case IV / has solution one of the sixteen

/IV
l ðl ¼ 1; 2; 3; . . .; 16Þ. If we take h1 ¼ 0, h3 ¼ 0 and h0,

h2, h4 as arbitrary constants.

Type 1 For instance, by choosing l ¼ 13 and

h0 ¼ 1

4
; h2 ¼ 1 � 2m2

2
; h4 ¼ 1

4
:

We get the wave solution as

q20ðx; tÞ ¼ ½b0 þ b1 nsn� csnf g�eiw; ð44Þ

In the limiting cases

Remark 1 if we take m ! 1 and nsðnÞ ¼ cothðnÞ, csðnÞ ¼
cschðnÞ then Eq. (44) gains the form of Jacobi wave

function degenerate as combined soliton like solutions as

q21ðx; tÞ ¼ �
ffiffiffiffiffiffiffiffi
�a

2bk

r� �
½cothðnÞ � cschðnÞ�eiw; ð45Þ

From the above equation, one may obtain the singular

and dark soliton solutions by using the identities

cothðnÞ þ cschðnÞ ¼ coth n=2; cothðnÞ � cschðnÞ ¼
tanh n=2 , respectively.

q211
ðx; tÞ ¼ �

ffiffiffiffiffiffiffiffi
�a

2bk

r� �
cothðn=2Þeiw; ð46Þ

q212
ðx; tÞ ¼ �

ffiffiffiffiffiffiffiffi
�a

2bk

r� �
tanhðn=2Þeiw; ð47Þ

Remark 2 when m ! 0 and nsðnÞ ¼ cscðnÞ, csðnÞ ¼
cotðnÞ in this case Eq. (44), takes the periodic singular

solutions.

q22ðx; tÞ ¼ �
ffiffiffiffiffiffiffiffi
�a

2bk

r� �
½cscðnÞ � cotðnÞ�eiw; ð48Þ

Type 2

If we take l ¼ 16 and h0 ¼ m2

4
, h2 ¼ m2�2

2
and h4 ¼ m2

4

then we have the following solution as.

q23ðx; tÞ ¼ ½b0 þ b1 snn� icsnf g�eiw; ð49Þ

For limiting cases

Remark 1 when m ! 1 and snðnÞ ¼ tanhðnÞ, csðnÞ ¼
cschðnÞ then Eq. (49) gains the form of Jacobi wave

function degenerate as combined soliton like solutions as

q24ðx; tÞ ¼ �
ffiffiffiffiffiffiffiffi
�a

2bk

r� �
½ tanhðnÞ � icschðnÞf g�eiw; ð50Þ

Remark 2 when m ! 0 and snðnÞ ¼ sinðnÞ, csðnÞ ¼
cotðnÞ then Eq. (49) has the periodic singular solution

q25ðx; tÞ ¼ �
ffiffiffiffiffiffiffiffi
�a

2bk

r� �
½ sinðnÞ � icotðnÞf g�eiw: ð51Þ

Here a, b and c are arbitrary constants. Moreover, above

solutions are valid for

ðaÞðbkÞ\0:

and

n ¼ x� mt; w ¼ �kxþ xt þ h:

Case V

System does not admit a solution of this group if

h2 ¼ h4 ¼ 0, h0; h1; h3, are arbitrary constants.
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4. Results and discussion

Based on the different values of the parameters, solutions

are graphically depicted into distinct physical structures in

the form of optical dark soliton, singular soliton, optical

bright soliton and periodic singular wave function in the

following section. The obtained solitonic wave solutions

have different physical meanings. For example, hyperbolic

functions such as, the hyperbolic tangent appears in the

calculation and rapidity of special relativity while, the

hyperbolic cotangent arises in the Langevin function for

magnetic polarization. The physical movement of obtained

solutions is shown by plotting 3D graphs, and 3D plotting

for different value of parameters of the solutions given by

Eqs. (25) and (27), in Fig. 1, by Eqs. (29) and (34) in Fig. 2,

by (35) and (36) in Fig. 3, by (39) and (40) in Fig. 4, by

Eqs. (41) and (42) in Fig. 5, in Eqs. (43) and (48) in Fig. 6,

which helps to emphasize that all parameters have major

influences for the solitary wave behavior. It is believed that

the attained outcomes in our paper will be beneficial to

explain the physical meaning of the studied model. The

obtained results will be used thoroughly for the audience of

optical solitons.

5. Conclusions

This paper retrieved the dynamics of optical solitons in

optical monomode fibers which is modeled by CLL equa-

tion incorporating with group velocity dispersion. By using

Fan extended sub equation method, we successfully

recovered diverse solutions which are qualitative in nature.

During the calculations, we found that our solutions take

the form trigonometric and hyperbolic including known

bright, dark, singular the some mixed form solutions.

Furthermore, it is seen that for the limiting cases m ! 0; 1,

we get Jacobi elliptic functions degenerate into combined

optical solitons and combined periodic singular solutions,

respectively. We also plotted 3D sketches for better

explanation of the attained solutions. The calculations also

Fig. 1 3D surfaces of Eqs. (25) and (27), respectively

Fig. 2 3D surfaces of Eqs. (29) and (34), respectively
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reveals us the importance of this method to find the ana-

lytically solutions in a more general way. The obtained

solutions will be beneficial and helpful in the monomode

fibers and nonlinear optics. It is claimed that this paper

provides inspiration, motivation and encouragement for

doing the research in future in the area of optical fibers,

Fig. 3 3D surfaces of Eqs. (35) and (36), respectively

Fig. 4 3D surfaces of Eqs. (37) and (40), respectively

Fig. 5 3D surfaces of Eqs. (41) and (42), respectively
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where these results are useful in telecommunication

industry to enhance the performance and capacity of

transmission systems.
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